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Abstract

Risk-managers are often confronted with the evaluation of operational policies in which two

or more system components are simultaneously a¤ected by a change. In these instances, the

decision-making process should be informed by the relevance of interactions. However, because

of system and model complexity, a rigorous study for determining whether and how interactions

quantitatively impact operational choices has not been developed yet. In the light of the central

role played by the multilinearity of the decision-support models, we investigate of the presence

of interactions in multilinear functions �rst. We identify interactions that can be a-priori ex-

cluded from the analysis. We introduce sensitivity measures that apportion the model output

change to factors individual and interaction contributions in an exact fashion. The sensitiv-

ity measures are linked to graphical representation methods as tornado diagrams and Pareto

charts, and a systematic way of inferring managerial insights is presented. We then specialize

the �ndings to reliability and probabilistic safety assessment (PSA) problems. We set forth

a procedure for determining the magnitude of changes that make interactions relevant in the

analysis. Quantitative results are discussed by application to a PSA model developed at NASA

to support decision-making in space mission planning and design. Numerical �ndings show that

sub-optimal decisions concerning the components on which to focus managerial attention can

be made, if the decision-making process is not informed by the relevance of interactions.
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1 Introduction

Quantitative models play a crucial role in supporting decision-makers in several operations research

(O.R.) applications. In engineering risk assessment problems, managers �face a challenge when

deciding how to allocate scarce resources to minimize the risks of failure. As resource constraints

become tighter, balancing these failure risks is more critical, less intuitive and can bene�t from the

power of quantitative analysis [Dillon et al (2003); p. 354].� In his seminal work about the use

of quantitative models, Little (1970) highlights the need to know �what it was about the input
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that made the output come out as they did [Little (1970); p. B469].� Little�s statement warns

one about the black box e¤ect, namely leaving a model�s informational content unexploited. In

this respect, sensitivity analysis techniques �appear to be the key ingredient needed to draw out

the maximum capabilities of mathematical modelling [Rabitz (1989)].�Nonetheless, a recent survey

[Saltelli and Annoni (2010)] shows that the most widely utilized sensitivity methods are based

on one-factor-at-a-time (OFAT) variations. To this group belong techniques as tornado diagrams

[Howard (1988)], spiderplots [Eschenbach (1992)] and Pareto charts [Hart and Hart (1989)], as well

as reliability sensitivity indices as the Birnbaum, Di¤erential, Criticality, Risk Achievement Worth

(RAW) and Risk Reduction Worth (RRW) importance measures [Birnbaum (1969), Cheok et al

(1998), Borgonovo and Apostolakis (2001).]

Calculation simplicity and easiness of interpretation make OFAT techniques attractive. How-

ever, their limitations have been highlighted in design of experiment [Myers and Montgomery

(1995)], sensitivity analysis [Saltelli and Annoni (2010), Saltelli and D�Hombres (2010)] and O.R.

[Wagner (1995)]. The main drawback of OFAT methods is their inability of delivering information

about interactions � among others, see the geometric argument recently o¤ered by Saltelli and

Annoni (2010). � If a model is not an additive function of the factors, the superimposition of

individual e¤ects does not explain model results [Myers and Montgomery (1995)].

This issue can critically a¤ect the allocation of resources in operational decisions when one

or more system components are simultaneously a¤ected by a change (change in inspection and

maintenance policies, ageing etc.). The problem is speci�cally unveiled by Vesely et al (1990), where

sensitivity measures for the presence of interactions in system ageing are introduced. Recently,

several studies have redirected attention to the problem [Zio and Podo�llini (2006), Lu and Jiang

(2007), Gao et al (2007), Borgonovo (2010b)]. However, a methodology for determining how and

when interactions matter in the evaluation of operational policies has not been proposed yet. Indeed,

because the industrial systems under investigation are made of several tens of components, the

corresponding decision-support models contain hundreds of factors. In an n-variate model, 2n � 1
potential interactions are present. When n is greater than 20, the number of interactions is greater

than 1 million. Such complexity hinders the analysis of interactions � general re�ections on model

complexity and interactions are o¤ered by Herman (1992). �

This work introduces a systematic approach to the quanti�cation of interactions in risk-informed

operational decision models. Because several of these models are multilinear (probabilistic safety

assessment models, reliability functions, belief-networks, etc.), we start with analyzing interactions

in generic multilinear functions (f). The equivalence of the Taylor and integral representations of

a �nite change in f allows us to introduce sensitivity measures that identify the exact fraction of

�f associated with a given factor. Furthermore, a triplet of sensitivity measures that dissect a

factor�s impact in its individual, interaction and total contributions is introduced. We show that

they can be estimated at a cost of 2n+2 model runs. This result grants applicability of the method

to full-�edged operational models.

Two aspects emerging in practical applications are addressed next. First, because multilinear
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functions are in�nitely many times di¤erentiable, interactions might not be numerically signi�cant if

changes are small. A procedure for investigating the magnitude of changes that makes interactions

relevant in the analysis (interaction threshold) is introduced. Knowledge of the threshold has the

following practical implication: if the policy under investigation involves changes that are below the

threshold, the decision-making process does not need to be informed by the relevance of interactions.

Second, in several instances, managers are interested in an analysis at the group rather than

individual factor level. However, the relationship between individual and group sensitivity measures

is not straightforward [Cheok et al (1998)]. By exploiting the mathematical link between the

di¤erential and integral decompositions, we obtain sensitivity measures for quantifying interactions

among factor groups in multilinear functions. The extension preserves both the properties and the

computational advantages that hold for individual factors, allowing decision-makers to select the

level of aggregation.

These �ndings are then specialized to operational decision problems supported by reliability and

probabilistic safety assessment (PSA) models. We prove that the PSA risk metric is a multilinear

function of the basic event probabilities and initiating event frequencies. Then, the results obtained

for generic multilinear functions allow us to: i) identify the interactions that can be a-priori ex-

cluded; and ii) extend the notion of total order reliability importance [Borgonovo (2010b)] to PSA

models.

We present a systematic way of obtaining managerial insights via three sensitivity analysis set-

tings concerning model structure, direction of change and key-driver identi�cation [for the concept

of sensitivity setting, see Saltelli and Tarantola (2002)] and illustrate the graphical representation

of results in the form of Pareto charts and extended tornado diagrams. A sample belief-network

example is used to demonstrate the procedure [Park and Darwiche (2004)].

We address quantitatively the presence of interactions in a complex operational decision-making

problem: the design of a multi-phased lunar space mission. The decision-support tool is a prob-

abilistic safety assessment (PSA) model developed for the US National Aeronautics and Space

Administration (NASA), as part of the lunar program of the Agency. The model uses a phased-

based event tree and fault tree logic structure to model a lunar mission, including multiple phases

(from launch to return to the Earth surface) and multiple critical systems [for an introduction

to the methodology of space PSA, we refer to Stamatelatos et al (2002); see also NASA (2005).]

Numerical results show that knowledge of the interaction contributions becomes essential in the

identi�cation of the elements on which to focus managerial attention to insure that target system

performance and safety are achieved.

The remainder of the paper is organized as follows. Section 2 presents results for the interaction

properties of multilinear functions both at the individual level. Section 3 extends the sensitivity

measures to factor groups. Section 4 casts the �ndings in the context of PSA and reliability models.

Section 5 illustrates the graphical representation of results and the derivation of managerial insights

in the context of a belief-network model. Section 6 describes the full-�edged PSA model utilized

in the numerical experiments. Sections 6.1 and 6.2 report the case-study results at the basic event
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and system levels respectively. Section 6.3 discusses the determination of the interaction threshold.

Section 7 o¤ers conclusions.

2 Interactions in Multilinear Functions: Finite and In�nitesimal Changes

This section presents an analysis of the interaction properties of multilinear functions.

Multilinearity plays a fundamental role in many OR problems. In reliability, the expression

that links the reliability function of any coherent and non-coherent system to the component failure

probabilities is multilinear [Borgonovo (2010b)]. In multiattribute utility theory, a key-role is played

by multilinear utility functions [Keeney and Rai¤a (1993)]. As Bordley and Kirkwood (2004) state

�the target-oriented preference conditions are analogous to reliability theory conditions for series

or parallel failure modes in a system [Bordley and Kirkwood (2004)].�In Bayesian networks, the

mathematical relations that binds the model output to the network parameters is multilinear [Park

and Darwiche (2004)]. In response surface problems, multilinear metamodels are often selected for

reproducing the input-output mapping [Myers and Montgomery (1995)]. One cannot omit the role

of multilinear functions in optimization [Crama (1993), Rikun (1997), Sherali and Driscoll (2002),

Lambert et al (2005), Floudas and Gounaris (2009)], set function theory [Hammer and Rudeanu

(1968)], game theory and economics [Grabisch et al (2000), Grabisch et al (2003), Lambert et al

(2005), Alonso-Meijide et al (2008)].

We write a multilinear function f : Rn ! R as follows:

y = f(x) =
nX
k=1

X
i1<i2<:::<ik

�i1;i2;:::;ik � xi1 � xi2 � ::: � xik (1)

with �i1;i2;:::;ik 2 R, k = 0; 1; :::; n. If all �i1;i2;:::;ik are non null, f is called a combinatorial

multilinear function [Crama (1993), Rikun (1997)] and contains 2n � 1 terms. Eq. (1) states

that a multilinear function is separately a¢ ne in each variable, which is an alternative de�nition

of multilinearity [Marinacci and Montrucchio (2005)]. Furthermore, f is a homogeneous function

satisfying Euler�s equation of order 1. It is also a Bernstein polynomial of order 1 [Marinacci

and Montrucchio (2005)] and coincides with its Maclaurin polynomial [Borgonovo (2010b)]. In

particular, the following holds.

Lemma 1 Let f : Rn ! R be a multilinear function, and let x0 and x1 any two points in Rn.
Then,

�f = f(x1)�f(x0) =
nX
i=1

f 0i ��xi+
X
i1<i2

f 00i1;i2 ��xi1 ��xi2+:::+
X

i1<i2;::<ikmax

fkmaxi1;i2;:::;ikmax
��xi1 ��xi2 :::��xikmax

(2)

where kmax is the size of the largest product term in f .

Lemma 1 states that the Taylor (Maclaurin) expansion of any multilinear function is exact,

with the maximum order determined by kmax, the highest number of factors in the product terms
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of f [for proofs, see Grabisch et al (2000), or Borgonovo (2010b)]. Eq. (2) provides the di¤erential

decomposition of a �nite change in f . By eq. (2), let us de�ne the following sensitivity indices.

De�nition 1
�ki1;i2;:::;ik := f

k
i1;i2;:::;ik

��xi1 ��xi2 ::: ��xik (3)

�ki1;i2;:::;ik represents the portion of the di¤erential decomposition of �f associated with the

simultaneous change in xi1 ; xi2 ; :::; xik . By eq. (3), eq. (2) can be rewritten as follows

�f =
nX
s=1

X
i1<i2<:::<is

�si1;i2;:::;is (4)

We observe that the number of terms in eq. (4) is 2n� 1. This �gure coincides with the number of
terms in which a generic function can be decomposed according to an integral (instead of di¤erential)

decomposition. In fact, given a product measure � and a ��measurable function g(x) : X � Rn !
R, it holds [Efron and Stein (1981), Rabitz and Alis (1999), Wang (2006)]:

g(x) = g0 +

nX
i=1

gi(xi) +
X
i<j

gi;j(xi; xj) + :::+ g1;2;:::n(x1; x2; :::; xn) (5)

where 8>>>><>>>>:
g0 = E�[g] =

R
���
R
g(x)d�

gi(xi) = E�[gjxi]� g0 =
R
���
R
g(x)

Q
k 6=i d�k � g0

gi;j(xi;xj) = E�[gjxi; xj ]� gi(xi)� gj(xj)� g0
:::

(6)

Eq. (5) contains 2n � 1 orthogonal terms. Given any two points x0;x1 2 X; any change �g =
g(x1)� g(x0) can then be decomposed in 2n� 1 terms by subtracting term by term the expansions

of g at x1 and at x0:

�g = g(x1)� g(x0) =
nX
i=1

�gi +
X
i<j

�gi;j + :::+�g1;2;:::n (7)

In particular, when � is the Dirac-� measure, one obtains [Borgonovo (2010a); Borgonovo (2010c)]

�g =
nX
s=1

X
i1<i2<:::<is

�si1;i2;:::;is (8)

where 8>><>>:
�i = g(x

1
i ;x

0
(�i))� g(x

0)

�i;j = g(x
1
i ; x

1
j ;x

0
(�i;j))��ig ��jg � g(x

0)

:::

(9)

Eqs. (8) and (9) states that �g for a generic (not necessarily multilinear) function is decomposed

in 2n � 1 terms. The �rst order terms [�i in eq. (9)] deliver the individual factor contributions,
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the second order terms [�i;j in eq. (9)] the contribution of the interactions of all factor pairs,

etc.. One calls a generic �i1;i2;:::;is an s-order �nite change sensitivity index [Borgonovo (2010a).]

�i1;i2;:::;is expresses the contribution to �g of the residual interaction among the group of factors

xi1 ; xi2 ; :::; xis . The total e¤ect of factor xi (�Ti ) is obtained by summing all the terms in �g

associated with a change in xi [Sobol�(1993)]. One writes

�Ti :=
nX
s=1

X
i1<i2:::<is
i2i1<i2:::<is

�si1i2:::is = �
1
i +

nX
s=2

X
i1<i2:::<is
i2i1<i2:::<is

�i1i2:::is (10)

Let us now compare eqs. (8) and (4) further. As said, they contain the same number of terms �

this coincidence is due to the multilinearity of f ; in fact, the number of terms in a Taylor expansion

is, in principle, in�nite. � Not only, but, the following holds (for the proof, see Appendix A).

Proposition 1 Let g = f , with f a multilinear function. Then, for all i1; i2; :::; is

�si1;i2;:::;is = f
s
i1;i2;:::;is�xi1�xi2 :::�xis = �

s
i1;i2;:::;is, s = 1; 2; :::; n (11)

Proposition 1 states that, when g is multilinear, each �si1;i2;:::;is in eq. (9) coincides with the

corresponding �si1;i2;:::;is in eq. (3). Proposition 1 then implies that, when f is multilinear, eqs. (4)

and (8) are term by term identical. Proposition 1 together with eqs. (4) and (7) suggests that any

�nite change in a multilinear function can be equivalently decomposed through a Taylor expansion

or through an integral expansion with the Dirac-� measure.

By Proposition 1 one obtains the interpretation of the sensitivity measures in eq. (3). �si1;i2;:::;is
represents the residual interaction e¤ect among the groups of factors xi1 ; xi2 ; :::; xis . One notes

that, because f is in�nitely many times di¤erentiable, fsi1;i2;:::;is is invariant for index permutation.

Hence, once a group of factors is identi�ed, the interaction e¤ect associated with that group is

unique. As far as the total e¤ect of a factor in a multilinear model is concerned, one can de�ne it

as the sum of all �si1;i2;:::;is in eq. (4) containing xi. Formally:

�Ti :=
nX
s=1

X
i1<i2:::<is
i2i1<i2:::<is

�si1i2:::is (12)

By Proposition 1, it is �Ti = �
T
i when g = f .

Remark 1 It is a property of multivariate functions that, if a factor is not allowed to vary, not
only its individual contribution to the change is cancelled, but all its contributions associated with

interactions with the other factors become zero. Hence, if one is able to prevent (cause) the change

in a generic factor of a multilinear model, the portion of �f which is annulled (added) is �Ti .

Because the number of interactions increases exponentially with n, the calculation of �Ti via

eq. (12) becomes unfeasible for models with a large number of factors. However, for any generic
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function, the total e¤ect �Ti of a factor can be retrieved by the following equation [Borgonovo

(2010b)]:

�Ti = g(x
1)� g(x0i ;x1(�i)) (13)

where x1 represents the sensitivity case and (x0i ;x
1
(�i)) the point obtained with all factors at the

sensitivity case, but xi. Because �Ti = �
T
i for multilinear functions, eq. (13) states that

�Ti = f(x
1)� f(x0i ;x1(�i)): (14)

Therefore, a cost of n + 1 model runs is necessary to obtain the �Ti �s of all factors. This result is

particularly relevant when n is high, because it allows one to estimate all total contributions at the

same cost of OFAT methods.

One can separate a factor�s interaction contribution from its total e¤ect, by considering the

following sensitivity measures

�Ii := �
T
i � �1i (15)

In eq. (15), �Ii represents the contribution of xi to �f due to interactions. By eqs. (12) and (15),

�Ii =
kX
s=2

X
i1<i2:::<is
i2i1<i2:::<is

�i1i2:::is . �
I
i is the sum of all terms in �f involving interactions of xi with the

other factors.

By Proposition 1, �1i = �
1
i . Thus, by eq. (9)

�1i = f(x
1;x0(�i))� f(x

0) (16)

and all �1i (i = 1; 2; :::; n) can be obtained at a cost of n+ 1 model runs. Therefore, 2n+ 2 model

runs are necessary to estimate the triplet of sensitivity measures �1i , �
I
i and �

T
i for all factors.

Let us now investigate the relationship between interactions and the structure of a multilinear

function. The next Proposition summarizes results proven in previous literature and relevant to

our study [Grabisch et al (2000), Borgonovo (2010b)].

Proposition 2 If f is multilinear, then:
1)fki (x) = 0 8x;8i; 8k � 2

2)fki1;i2;:::;ik(x) = 0 8x() there is no term in f containing
kY
s=1

xis

3)fki1;i2;:::;ik(x) = 0 8x) fk+1i1;i2;:::;ik+1
(x) = 0 8x

Item 1 in Proposition 2 states that, once a multilinear function is di¤erentiated with respect

to xi, all of its higher order derivatives are independent of xi. Item 2 in Proposition 2 implies

that, if fki1;i2;:::;ik(x) is null at all x, then there is no product term in f containing xi1 ; xi2 ; :::; xik .

The converse is also true. Item 3 implies that, if fki1;i2;:::;ik(x) is null, then any higher order partial

derivative of f with respect to a group of factors containing xi1 ; xi2 ; :::; xik , is null. Proposition 2

has the following implication.
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Corollary 1 fki1;i2;:::;ik(x) = 0 8x, implies �
s
i1;i2;:::;is = 0 8x; 8�x and 8s � k.

Corollary 1 states that, if the interaction term �ki1;i2;:::;ik is null 8x and �x, then there all higher
order interaction terms containing xi1 ; xi2 ; :::; xik are null.

In some applications, one is interested in the model response for symmetric factor changes. This

might happen, for instance, in using tornado diagrams. If f is multilinear, then the following holds

� the proof is in appendix A. �

Proposition 3 Let �x and ��x be two symmetric changes around x0 and f be a multilinear
function. Let �ki1;i2;:::;ik and �

k
i1;i2;:::;ik

denote the sensitivity measures associated with �x and ��x,
respectively. Then,

�
k
i1;i2;:::;ik

= (�1)k�ki1;i2;:::;ik 8i1; i2; :::; ik, k = 1; 2; :::; n (17)

Proposition 3 implies that, given two sets of symmetric factor changes around x0, then: i)����ki1;i2;:::;ik ��� = ���ki1;i2;:::;ik ��, namely, all sensitivity measures retain their magnitude, and ii) all odd-
order terms reverse their sign, while all even order terms do not. The implication is that the

response of a multilinear function to symmetric factor changes is not necessarily symmetric.

Let us now consider the normalized version of the sensitivity measures in eqs. (3) and (15).

One writes

D1i :=
�1i
�f

; DIi :=
�Ii
�f

; DTi :=
�Ti
�f

and Dki1;i2;:::;ik :=
�ki1;i2;:::;ik
�f

: (18)

The �rst three sensitivity measures in eq. (18) are the fraction of�f due to individual (D1i ), interac-

tion (DIi ) and total order (D
T
i ) contributions of parameter xi, respectively. The last one (D

k
i1;i2;:::;ik

)

is the fraction of �f due to the residual interaction among the group of factors xi1 ; xi2 ; :::; xik . We

observe that

DTi =
nX
s=1

X
i1<i2:::<is
i2i1<i2:::<is

Dsi1i2:::is = D
1
i +D

I
i (19)

The sensitivity measures in eqs. (18) are useful to address small changes. In fact, the following

holds (the proof is in Appendix A).

Proposition 4 Let f be a multilinear function and let �x! 0. Then:

1. �f !df and interactions do not contribute to the change in f .

2. lim�x!0DTi = lim�x!0D
1
i =

dif
df

= DIMi, where DIMi is the fraction of the di¤erential of

f associated with xi.

In item 2 of Proposition 4, DIMi is called di¤erential importance of xi [Borgonovo and Apos-

tolakis (2001)]. Proposition 4 implies that, albeit formally present f , interactions might not be

numerically relevant in the application at hand, if changes are small. This result then raises the
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question of identifying the magnitudes of the changes at which interactions start to matter in

the analysis. In fact, if interactions are numerically negligible, the decision-making process does

not need to be informed about their relevance, and OFAT methods can be used. In Section 4, a

numerical procedure for identifying the threshold is proposed.

The next section discusses the extension of the sensitivity measures to groups of factors, so that

to provide �exibility in choosing the aggregation level of the analysis.

3 Extension to Factor Groups

In several instances, decision-makers are interested in the importance of groups of factors. As a

reference, in PSA and reliability applications, risk managers often need to know the importance of

systems and structures [Cheok et al (1998)], which are identi�ed by multiple components or basic

events in the model. This creates issues in the de�nition and computation of importance measures

for systems, because �there is no simple relationship between importance measures evaluated at the

single component level and those evaluated at the level of a group of components, and, as a result,

some of the commonly used importance measures are not realistic measures of the sensitivity of

the overall risk to parameter value changes [Cheok et al (1998); p. 213].�More generally, when

decision-support models contain a large number of factors, analysts might choose to communicate

results for categories of factors, rather than individual factors [an example is o¤ered in Borgonovo

et al (2010)]. One cannot omit reference to the use of factor grouping in dimensionality reduction

and screening problems. (A complete review is outside the scope of this paper; we refer to Bettonvil

and Kleijnen (1997), Wan et al (2006).) In the remaining paragraphs, we address the extension of

the sensitivity measures of Section 4 to factor groups.

At the basis of the extension is the partition of x in Q groups:

x1 x2 :: xs1| {z }

1

xs1+1 xs1+2 :: xs2| {z }

2

...
xskQ�1+1 xsQ�1+2 :: xn| {z }


Q

(20)

Then, by considering all terms in �f associated with group 
i one can de�ne the total sensitivity

index of group 
i as follows.

De�nition 2 Let 
 be a generic group of factors and f be a multilinear function. Then,

�T
 :=
X
l2

f 0l�xl +

TX
k=2

X
i1<i2;::<ik

l2i1<i2;::<ik 8l2


fki1;i2;:::;ik(x
0)

kY
s=1

�xis (21)

and

DT
i :=
�T
i
�f

(22)

DT
i represents the fraction of �f associated with the change in group 
.

The next question one faces is whether additional burden in the calculation of group importance
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measures is generated by this de�nition. The answer is found in the link between DT and �nite

change sensitivity indices [see Borgonovo (2010b) and Appendix A]. In particular, the �ndings in

Borgonovo and Peccati (2009) state that the decomposition of a generic function (g) in respect of

groups of factors has the same structure as that of individual parameters, if the parameters are

partitioned as in eq. (20). Letting 
 =
�

1; 
2; :::; 
Q

	
denote the vector of groups, then any �nite

change in g can be decomposed as follows [Borgonovo and Peccati (2009)]

�g = g(
1)� g(
0) =
QX
i=1

�
ig +

QX
i<j

�
i;
jg + :::+�
i1 ;
i2 ;:::;
iQ
g (23)

where 8>><>>:
�
ig = g(


1
i ;


0
(�i))� g(


0)

�
i;
jg = g(

1
i ; 


1
j ;


0
�(i;j))��
ig ��
jg � g(


0)

:::

(24)

In eq. (24), �
ig represents the contribution of group 
i, and is obtained as di¤erence between a)

the value attained by g when only group 
i is at the sensitivity case and b) g(

0). �
i;
jg represents

the residual interaction between groups 
i; 
j (etc.). By eq. (23), one obtains normalized sensitivity

measures for groups as follows [see also Borgonovo and Peccati (2009)]:8>>>>>><>>>>>>:
D1
i :=

�
ig

�g
=
g(
1i ;


0
(�i))� g(


0)

�g

Dk
1;
2;:::;
k :=
�
1;
2;:::;
kg

�g

DT
i :=
�
ig +

P
i6=j �
i;
jg + :::+�
1;
2;:::;
Qg

�g

(25)

Eqs. (23) and (24) are formally identical to eqs. (8) and (9), if one replaces the individual variable xi
with the group of variables 
i. Thus, once a partition of the model elements in groups is established,

each group can be formally treated as an individual factor. In particular, by the multilinearity of

f (Proposition 1) eqs. (22) and (26) coincide, and it still holds

DT
i =
f(
1)�f(
0i ;
1)

�f
(26)

Hence, the computational advantage is maintained also for factors groups. This result gives analysts

(risk managers) full �exibility in selecting the levels of investigation and result communication �

e.g., categories vs individual factors, systems or components in a reliability application, etc..�

The analysis is di¤erent in the presence of small changes. In fact, the following holds (see

Appendix A for the proof).

Proposition 5 Let f be a multilinear function and 
 = (xi1 ; xi2 ; :::; xis) a group of s factors. Then,
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if �x! 0

DT
 =

sX
r=1

DTir =

sX
r=1

DIMr (27)

Proposition 5 states that, when changes are small, the sensitivity measure of a group is given

by the sum of the sensitivity measures of the factors in the group.

The next section applies the previous �ndings to the determination of interactions in reliability

and engineering risk assessment models.

4 Interactions in Reliability and Probabilistic Safety Assessment Models

Probabilistic Safety Assessment (PSA) is �a comprehensive, structured, and logical analysis method

aimed at identifying and assessing risks in complex technological systems for the purpose of cost-

e¤ectively improving their safety and performance [Stamatelatos et al (2002)].�Consolidated by the

1975 Reactor Safety Study of the US Nuclear Regulatory Commission1 [Rasmussen et al (1975)],

PSA is nowadays employed by risk managers in the chemical [Boykin et al (1984)], nuclear [Cheok

et al (1998), Smith (1998)], energy and aviation industries. Since 2002, NASA has adopted PSA

for its standard risk assessment procedures [Stamatelatos et al (2002)].

PSA models assess the risk associated with an engineering system via a combination of fault

and event trees [Apostolakis (1990); Singpurwalla (1988); Smith (1998), Papazoglou (1998); for a

recent review on event trees, see Sherali et al (2008); for the foundation of fault trees, see Agrawal

and Barlow (1984)]. The output of a PSA model is called a risk metric (R) [Papazoglou (1998);

Smith (1998)]. R estimates the frequency of the undesired consequence. For instance, in the nuclear

industry, R can be a core damage frequency, when measuring the likelihood of events leading to

core damage in one year [typical values are 10�5 per year], or a large early release frequency, when

measuring the likelihood of events leading to the release of radioactive material to the public in one

year [Smith (1998)].

In this context an important information in resource allocation and prioritization of maintenance

programs is represented by the knowledge of how critical the performance of a given component

is in respect to system performance. This information is gained through importance measures.

The �rst work addressing the importance of a component in contributing to system reliability is

Birnbaum (1969). Since then, the problem has been widely addressed in the literature, with the

development of several techniques tailored to the di¤erent applications at hand. Among the most

widely employed are � the following is a non-exhaustive list:� the Fussell-Vesely [Fussell (1975)],

Criticality, Risk Achievement Worth, Risk Reduction Worth [Cheok et al (1998), Vasseur and

Llory (1999)], Di¤erential [Borgonovo and Apostolakis (2001)], joint [Armstrong (1995)] importance

measures. These techniques are extended to composite sensitivity measures for multistate systems

in Ramirez-Marquez and Coit (2005), where also the mean-absolute deviation importance measure is

1�The Reactor Safety Study was sponsored by the U. S. Atomic Energy Commission to estimate the public risks that
could be involved in potential accidents in commercial nuclear power plants of the type now in use. It was performed
under the independent direction of professor Norman C. Rasmussen of the Massachusetts Institute of Technology
[Rasmussen et al (1975); p. 1].�
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introduced. Ramirez-Marquez and Coit (2005) o¤er a thorough review of importance measures and

their utilization. Previous works addressing reviews on importance measures are Cheok et al (1998)

and Vasseur and Llory (1999). We also recall the reviews of Borgonovo and Apostolakis (2001) and

Borgonovo (2007), where it is shown that the multilinarity of the reliability polynomial allows one to

obtain analytical relations among the Fussell-Vesely, RAW, Birnbaum, Criticality, Di¤erential and

RRW importance measures. In Borgonovo (2010b), one �nds a literature review of the class of joint

reliability importance measures. This set of methods is of particular interest in this work, as joint

importance measures address the problem of interactions. From a historical perspective, research

on joint reliability importance measures has evolved towards de�ning importance measures that

account for interactions. The joint importance measure is usually attributed to the extension of the

Birnbaum importance to order 2 in Hong and Lie (1993) and Armstrong (1995) for coherent systems,

although sensitivity indices for addressing interactions in system aging are introduced in Vesely et

al (1990). Joint importance measures are extended to non-coherent systems in Lu and Jiang (2007)

[the Birnbaum importance is generalized to non-coherent systems in Andrews and Beeson (2003)

and Beeson and Andrews (2003).] Gao et al (2007) extend the Birnbaum importance up to order k.

A similar path is registered with the historical development of the di¤erential importance measure

(DIM). We recall that DIM subsumes the Birnbaum importance measure as a special case, when

component reliability changes are supposed uniform. In Zio and Podo�llini (2006), DIM is �rst

extended to order 2. Then, it is extended to order k in Do Van et al (2008) and �nally to maximum

order in the total order importance measure, DT [Borgonovo (2010b); see also Do Van et al (2010)].

We now come to connecting the mathematical framework developed in Sections 2 and 3 to the

analysis of interactions in PSA models. Let � denote the Boolean variable of the end-event. The

end-event is determined by the happening of an initiating event, followed by the failure of the

barriers (systems) that should oppose the initiating event. The triplet (initiating event, barriers,

end-event) forms an accident sequence. We let nIE denote the number of initiating events. A

system (barrier) is composed of N components. System failure is caused by the happening of one

out of M minimal cut sets (MCS). MCS k contains mk basic events. A basic event may be shared

among MCS�s. We let nBE denote the number of basic events. The PSA risk metric2 is then

written as [Stamatelatos et al (2002), Papazoglou (1998), Sherali et al (2008)]

R(�;p) =

nIEX
j=1

�jP (� = 1jIEj) (28)

where P (� = 1jIEj) is the conditional probability of the end-event given that initiating event j
(IEj) has happened, �j is the frequency of initiating event j, and � and p denote the vectors

of initiating event frequencies and conditional basic event probabilities, respectively. A generic pl
(l = 1; 2; ::; nBE) is conditional on: a) the happening of initiating event j, and b) all the basic events

that precede basic event j in the sequence.

2 In a PSA model, the risk metric of interest is the frequency of the undesired consequence. In the nuclear industry
typical risk metrics are the core damage frequency (CDF) or the Large Early Release frequency.
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The following holds (see Appendix A for the proof).

Proposition 6 R(�;p) is a multilinear function of � and p.

Proposition 6 allows one to apply the �ndings of Section 2 in the analysis of interactions in PSA

and reliability models. In the remainder, we write x = (�;p), to denote the vector of PSA model

factors. x is a vector of size n = nIE + nBE . We let �x = (��;�p) denote a change in basic

event probabilities or initiating event frequencies and �R the corresponding risk metric change.

The following property characterizes �R [see Appendix A for the proof.]

Corollary 2 The Taylor expansion of �R provoked by �x is exact and at most of order T � n,
where n = nIE + nBE:

�R = R(x1)�R(x0) =
nX
l=1

Bl(x
0) ��xl +

TX
k=2

X
i1<i2;::<ik

Jki1;i2;:::;ik(x
0)

kY
s=1

�xis (29)

In reliability and PSA, the derivatives in eq. (29) are interpreted as importance measures.

Bl(x
0) is the Birnbaum importance of xl. Bl is originally de�ned for reliability functions as the

probability that basic event l becomes critical to system failure [Birnbaum (1969)]. By a mathe-

matical property of the unreliability functions, Birnbaum (1969) proves that

Bl(x) =
@R(x)

@pl
(30)

The symbol J in eq. (29) denotes a joint reliability importance [Hong and Lie (1993), Armstrong

(1995), Vesely et al (1990)]. Given a group of k model elements, one writes [Gao et al (2007)]

Jki1;i2;:::;ik(x) =
@

@xik
(Jk�1i1;i2;:::;ik�1

(x)) (31)

Jki1;i2;:::;ik(x) has the following interpretation: a positive sign of J
k
i1;i2;:::;ik

(x) implies that Jk�1i1;i2;:::;ik�1
(x)

increases given that the probability of basic event (or initiating event) ik increases. Therefore,

Jki1;i2;:::;ik(x) provides insights on how PSA model elements �interact with each other when the

probability of one event changes [Lu and Jiang (2007), p. 435].�Because R(x) is regular, its mixed

partial derivatives are continuous at every x. Therefore, Jki1;i2;:::;ik is symmetric for permutation of

the indices � it is unique, once group xi1 ; xi2 ; :::; xik is �xed. �

By eq. (29), it is possible to obtain the following relationships between the importance measures

�, B and J (the proof is in Appendix A).
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Proposition 7 Given the risk metric in eq. (28), the following relationships hold:

1) �1l = Bl(x)�xl

2) �ki1;i2;:::;ik = J
k
i1;i2;:::;ik

��xi1 ��xi2 ::: ��xik

3) �Tl = Bl(x)�xl +

TX
k=2

X
l<i2;:::;<ik

Jkl;i2;:::;ik ��xi1 ��xi2 ::: ��xik
(32)

The properties of generic multilinear functions discussed in Section 2, lead to the following

results for Bl and Jki1;i2;:::;ik in PSA models (see Appendix A for the proof).

Proposition 8 1) Bj = P (� = 1jIEj)
2) The joint importance of any group of PSA model elements which includes two or more initiating

event frequencies is null.

3) Let i1; i2; :::; imk
be the set of indices of the basic event probabilities in minimal cut set Mk.

Let Ji1;i2;:::;imk denote the joint reliability importance of Mk. Under the rare event approximation,

Ji1;i2;:::;imk equals the sum of the initiating event frequencies associated with Mk. Also, there is no

interaction of higher order than the order of the largest minimal cut set plus 1.

Point 1 in Proposition 8 states that the Birnbaum importance of an initiating event equals the

conditional probability of the end-event. Point 2 allows one to exclude the presence of interactions

among initiating event frequencies. Initiating event frequencies interact only with the basic event

probabilities of the corresponding accident sequence(s). Furthermore, because JIEs;IEm;BEl;:::;BEk =

0; there are no interactions associated with groups containing both basic events and initiating events

if, in the group, there are two or more initiating events. Point 3 describes the structure of the risk

metric when the rare event approximation is used. In this case, there are no interactions of order

k > KM + 1, where KM is the order of the largest MCS. Thus, by item 2 in Proposition 2, the

multilinear polynomial of R does not contain product terms of order higher than KM + 1. Note

that in reliability functions the largest size is KM [Borgonovo (2010b)], since no initiating event

frequencies are present3.

The presence of initiating event frequencies (�) in R(�;p) [eq. (49)] also marks a second

departure of PSA models from unreliability functions. Because initiating event frequencies have

units 1=time, while basic events probabilities are pure numbers, the Birnbaum importance of a basic

event is not comparable to the Birnbaum importance of an initiating event. The same happens

to J � the joint importance of two basic events (JBEl;:::;BEk) has di¤erent units from the joint

importance of a basic event and an initiating event (JIEs;BEl). � Hence, neither B nor J can be

utilized to obtain a unique ranking of PSA model elements.

3The rare event approximation does not hold in general, and has to be adopted on a case-by-case basis, to avoid
introducing distortions in the estimation of R. Indeed, it will not be utilized in the numerical application of this
work.
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Example 1 Consider a PSA model composed of one initiating event and one barrier. The corre-
sponding expression of the risk metric is

R(�;p) = �p (33)

where � is the frequency of the initiating event and p the probability of the barrier failure. Let

� = 0:1 [1=year] and p = 0:1. The Birnbaum importance measures are

B� =
@R

@�
= p = 0:1 and Bp =

@R

@p
= � = 0:1 (34)

However, by the above result one is not allowed to infer that the basic event and initiating event

are equally important. In fact, B� and Bp are not comparable, because they have di¤erent units.

The problem is not present if one utilizes the sensitivity measures in eq. (18). Proposition 6

and Corollary 2 guarantee the formal extension of the sensitivity measures introduced in Section 2

to PSA models as follows.

� DTl :=
�Tl R

�R
(l = 1; 2; :::; n), with �Tl R being the sum of all terms in the Taylor expansion

of �R associated with �xl (being xl a basic event probability or an initiating event fre-

quency). By DT one ranks PSA model elements based on their fractional contribution to the

risk change, in consideration of both their individual and interaction e¤ects. We note that

this de�nition extends to PSA models the concept of total order importance introduced in

Borgonovo (2010b) for reliability models.

� D1l :=
�lR

�R
, where �lR = R(x1l ;x

0
(�l))�R(x

0). By D1l one obtains the fraction of �R

associated with the individual variation of xl.

� DIl := DTl � D1l . By DIl one is informed about the fraction of �R contributed by xl in its

interactions with the other basic or initiating events.

BecauseDTBEi andD
T
IEj

have the same units, DT overcomes the dimensionality issues associated

with B and J .

Example 2 (Example 1 continued) Let �x = (��;�p) denote a change in the factors of Ex-
ample 1. The corresponding change in risk metric is �R = ��p+ p�� +���p. The importance

measures are

DT� =
p�� +���p

�R
and DTp =

��p+���p

�R
(35)

By DT� and D
T
p one can compare the importance of basic and initiating events, because they have

the same units. For instance, if �� = 0:07 and �p = 0:08, one obtains DT� = 0:61 < D
T
p = 0:66.

Similar considerations hold for D1BEi and D
1
IEj
, and DIBEi and D

I
IEj
.
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As far as the computational cost of the sensitivity measures is concerned, Proposition 6 has

the following implication. By construction, D1l is obtained via n + 1 model runs. Because R is

multilinear, by eq. (13)

DTl =
R(x1l ;x

0
(�l))�R(x

0)

�R
(36)

and DTl can be retrieved by n + 1 model runs. Hence, the overall cost for estimating DTl , D
1
l ;

and DIl is 2n+2 model runs. This cost coincides with the cost for obtaining importance measures

that are commonly estimated by standard PSA software [Smith et al (2008)] as Risk Achievement

Worth (RAW) and Risk Reduction Worth (RRW) [Cheok et al (1998)]. As we mentioned, it is also

the cost of tornado diagrams. However, these OFAT techniques do not convey information about

interactions.

Proposition 8 has the following implications: it allows one to exclude certain types of interactions

a-priori, based on the sole structure of the risk metric. However, because R is a multilinear function

of � and p, Proposition 4 applies. Thus, albeit present in the risk metric, interactions might not

be numerically relevant in the application at hand, if changes are small. This raises the question of

determining the magnitudes of changes �x = (��;�p) that can be considered small. The proof

of Proposition 4, suggests the following procedure.

1. De�ne an increasing sequence �kx, k = 1:::Usteps (e.g., �kx <�k+1x, 8k).

2. At step k, estimate DTl ; D
I
l and D

1
l ; l = 1; 2; :::; n.

3. At step k, compare DIl to D
T
l ;8l: If DIl << D1l 8l, then individual e¤ects prevail. Then,

go to step k + 1 and repeat. The step k at which the condition DIl << D1l 8l is violated,
determines the size of changes (c�x) such that, if �x > c�x, interactions cannot be neglected
in the analysis.

The decision on whether the inequality DIl << D1l is violated can be left to experts�opinion

(as we are to see in our example, this information is readily obtained by result inspection), or can

be made quantitative and automated. A possible automation procedure is illustrated here. At step

k, consider the quantities

"l =

��DIl ����DTl �� , l = 1; 2; :::; n (37)

"l is the ratio of the contribution of xl to the risk change due to interactions to its overall contri-

bution (or, "l is the percentage of the importance of xl associated with interactions.) Then, set an

interaction threshold b" (in the practice, b" needs to be tailored to the application at hand and set
by analysts and experts�opinion.) If, "l � b" for some l, then DI << D1 is violated at step k.

In Section 6.3, the procedure is illustrated in a quantitative fashion. In the next section, we

discuss the graphical representation of results and the derivation of managerial insights.
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5 Managerial Insights and Graphical Representation

In this section, we address general aspects concerning interpretation and communication of results

obtained with the sensitivity measures of Section 2.

We base our discussion on the concept of sensitivity analysis setting. Settings have been �rst

introduced in Saltelli and Tarantola (2002). A setting is a way of formulating the sensitivity analysis

quest so that the goals of the sensitivity exercise are established beforehand and the insights are

consistently inferred [Saltelli and Tarantola (2002)].

Because the example used in this section is a belief-network model, let us start with a brief

digression about the use of sensitivity analysis in Bayesian networks. Bayesian networks are �a

compact representation of a probability distribution [Chan and Darwiche (2002); p. 265].� They

map the model inputs [conditional probability tables and instatiators in Darwiche (2003)] into the

model output (a probabilistic query) through a multilinear polynomial [Darwiche (2003)]. The

works of Blackmond Laskey (1995), Chan and Darwiche (2002), Chan and Darwiche (2004), Dar-

wiche (2003), Park and Darwiche (2004), Chan and Darwiche (2005), Brosnan (2006) show that

sensitivity analysis is essential in both the model building and inference-making phases. We refer

to Chan and Darwiche (2005) for a thorough review of approaches to the sensitivity analysis of

Bayesian networks. Brosnan (2006) comparison these alternative methods in the context of a mili-

tary application. These works demonstrate the use of alternative methods as responses to several

sensitivity questions. A �rst setting is to determine the �amount of belief-change that occurs when

moving from one distribution to another [Chan and Darwiche (2005); p. 149].�For answering this

setting, Brosnan (2006) applies sensitivity measures based on Shannon entropy and the Kullback-

Leibler divergence. In Chan and Darwiche (2005), an alternative distance-based sensitivity measure

is presented for overcoming limitations in the Shannon entropy and the Kullback-Leibler divergence.

A second goal of the sensitivity is to �bound the change in a probabilistic query in terms of the cor-

responding changes in a network parameter [Chan and Darwiche (2002); p. 268].� This setting is

addressed in Chan and Darwiche (2002), where the sensitivity method based on the di¤erentiation

of the belief-network polynomial. The methodology is extended for addressing changes in multiple

parameters in Chan and Darwiche (2004).

Di¤erentiation plays an important role in making inference through Bayesian networks, and

thanks to the multilinearity of belief-network polynomials partial derivatives assume relevant se-

mantics in terms of probabilistic queries [see Darwiche (2003) for a thorough overview]. In this

respect, we note that, from eq. (3), it is possible to obtain the algebraic relationship between partial

derivatives and the �nite-change sensitivity measures introduced in this work (see also Proposition

7). However, the sensitivity measures introduced in Section 2 correspond to di¤erent sensitivity

analysis settings in respect to the sensitivity measures described above. In particular, rephrasing

the statement by Chan and Darwiche (2002), the sensitivity measures in eqs. (3) and (12) allow

one to explain the change in the output of a belief-network provoked by changes in the network

parameters. The following three settings can be envisioned to guide the inference of managerial

insights through the � sensitivity measures [see also Borgonovo (2010a); Borgonovo (2010c)]:

17



Setting 1 Model structure: understanding whether model response is governed by interactions or by

individual e¤ects;

Setting 2 Direction of change: determining whether the changes in factors (groups of factors) have a

positive or negative impact on the decision-support criterion;

Setting 3 Key-drivers: identifying the most relevant factors.

Setting 1 allows one to obtain information on whether the model response is additive or driven by

interactions. In the latter case, the decision-making process needs to be informed by the relevance

of interactions. Setting 2 is the general comparative statics question of understanding the direction

of change in the output following a change in the exogenous variables [Samuelson (1947); p. 20].

Setting 3 corresponds to Eschenbach (1992)�s question of identifying the factors on which to focus

managerial attention during implementation. These three settings can be seen as three questions

that explode in greater detail the general sensitivity quest of [Chan and Darwiche (2005), p. 158]:

what can we say about the e¤ect of changing some parameter x to a new value x0?

In the belief-network context, eq. (4) represents the decomposition of the change in f due to

a change in some of the network parameters. In general, these can possibly belong to di¤erent

conditional probability tables and be groups of parameters [Chan and Darwiche (2004)]. In certain

instances, groups are represented by entire conditional probability tables [Chan and Darwiche

(2004)]. Because the sensitivity measures here introduced maintain the same properties also when

extended to factor groups [Section 3], analysts can apply them at the aggregation level deemed

appropriate.

Let us now come to results communication. Two graphical representations of sensitivity analysis

results are widely employed: Pareto charts and tornado diagrams. Pareto charts are bar charts

displaying the sensitivity measures of factors, ordered from the most to the least important [Hart

and Hart (1989)]. They enable a direct identi�cation of the factors on which to focus managerial

attention. Subroutines for their creation is available in popular software.

Tornado diagrams can be attributed to Howard (1988). A tornado diagram is a graphical

representation of a series of OFAT sensitivities. They are built as follows [Eschenbach (1992)]. A

variation range identi�ed by a lower and an upper limit is assigned to each factor [Eschenbach

(1992)]. This is equivalent to determining three points in the input parameter space, namely the

base case, x0, the lower limit, x�, and the upper limit, x+. One then shifts the factors one-at-a-

time �rst from x0 to x+, and next from x0 to x�. The corresponding model output changes are

registered and displayed as horizontal bars ranking from the most to the least in�uential. It is

readily seen that the bars of a tornado diagram coincide with the �rst order sensitivity measures in

Section 2 (�1i in general, or �
1
i for multilinear models.) Thus, a tornado diagram does not contain

information about interactions.

Let us now illustrate how the sensitivity measures introduced in Section 2 can be cast in the

form of a Pareto Chart and/or of a Tornado Diagram for inferring the sensitivity analysis insights
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discussed above. To support the illustration, we utilize the sample belief-network of Park and

Darwiche (2004) (Figure 1).

Figure 1: Belief-network from Park and Darwiche (2004), p. 199.

In Park and Darwiche (2004), the probability of getting evidence BC in the network of Figure

1 is related to the net parameters by the following multilinear equation:

fbc = x1x2x3 + (1� x1)(1� x2)x4 (38)

where x1 = P (A) = 0:6, x2 = P (BjA) = 0:2, x3 = P (CjA) = 0:2; and x4 = P (CjA) = 0:85.
Consider now a uniform shift in the probabilities with �xi = 0:1, i = 1; 2; 3:4. One has

�fbc = �0:0335. The sensitivity measures (�1i ,�Ii ,�Ti ) can be estimated by eqs. (16) and (14), via
10 model runs. We display them in Figure 2.

Figure 2: �1i , �
I
i and �

T
i arranged in the form of a Pareto Chart for the four factors. The �rst

columns in each triplet represent �1i , the second column �
I
i and the third �

T
i .

In Figure 2, factors are ordered from the most to the least relevant, according to
���Ti ��. Figure
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Table 1: Finite change decomposition results

�11 �12 �13 �14 �23;4 �22;4 �23;2 �24;1 �23;1 �22;1
x0 ! x+ �0:064 �0:022 0:012 0:032 0 �0:004 0:006 �0:008 0:002 0:0105

�31;2;3 �31;2;4 �31;3;4 �32;3;4 �41;2;3;4
x0 ! x+ 0:001 0:001 0 0 0

2 allows us obtain information corresponding to the three sensitivity settings as follows. Setting

1: by comparing the values of �1i and �
T
i , one notes that the model response cannot be attributed

solely to individual e¤ects. Setting 2: by referring to the signs of the sensitivity measures, one

observes that the variations in x1 and x2 impact fbc negatively, while the variations in x1 and x2
impact fbc positively. The model is, therefore, not a monotonic function of the input factors. Also,

one notes that interactions have an opposite direction in respect of individual e¤ects for x1, x4 and

x2. For these factors, then, �Ti < �1i . Interactions, instead, augment the relevance of factor x3.

Setting 3: the most important factor is x1, followed by x4,x3 and x2.

The small number of factors allows one to obtain the complete decomposition of �fbc in accor-

dance with eq. (8) with 15 model runs (24 � 1). The sensitivity measures are reported in Table
1.

The sum of the sensitivity measures in Table 1 equals �fbc. To obtain a tornado diagram, one

creates a second set of changes (x0 ! x�) and computes the corresponding sensitivity measures.

We choose the symmetric changes (�xi = �0:1, i = 1; 2; 3; 4). By this choice, the sensitivity

measures are obtained without additional calculations. In fact, Proposition 3 insures that all

sensitivity measures maintain their magnitude, with the odd-order ones reversing their signs, and

the even-order retaining their signs. The result is the diagram in Figure 3.

The �rst four bars in Figure 3 form the usual tornado diagram, as they convey the factors

individual e¤ects. The remaining eleven bars display interaction e¤ects. In the x0 ! x+ shift

(dark bars in Figure 3), the sum of the �rst order sensitivity measures equals �0:042. Thus,

individual contributions account for 125% of the change. This indicates that interactions tend

to oppose individual e¤ects, compensating the 25% exceedance. The converse happens in the

x0 ! x� shift, where individual e¤ects account for around 90% of the change and interaction

e¤ects contribute the remaining 10%. The most important interaction is the one between x1 and

x2, with �22;1 one order of magnitude higher than the remaining. Finally, note that because there

is no term in eq. (38) containing the product of factors 3 and 4, �23;4 = 0 (see item 2 in Proposition

2) and, in accordance with Corollary 1, all higher order terms containing these two factors are null

(�31;3;4 = �
3
2;3;4 = �

4
1;2;3;4 = 0.)

The next section presents the application of our �ndings in an operational case study charac-

terized by a complex numerical code.
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Figure 3: �i1;i2;::;ik arranged in an Extended Tornado graph for the decomposition of the �nite
change �fbc. Light-coloured bars refer to the shift from x0 to x�, dark bars refer to the shift

from x0 to x+.

6 Case Study: A PSA model for Space Missions

This section demonstrates the use of the previous �ndings and methodology in the context of a

complex operational decision-problem: the design and planning of a lunar space mission.

The National Aeronautics and Space Administration (NASA) has adopted probabilistic safety

assessment (PSA) as part of its risk management procedures since 2002. The PSA exercise discussed

in this section is part of the comprehensive investigation launched by NASA within its program

for the next generation of space missions. Speci�cally, the model was developed for providing

decision-makers with insights to be used for improving risk management and enhancing both mission

performance and safety. The PSA model is the result of the work of two teams. The teams worked

together to develop consistent modeling and data analysis methods, and to produce an approach

to be used as a basis for an Agency-wide PSA for the entire life-cycle of the missions.

The model building process utilizes NASA�s Probabilistic Risk Assessment Procedures Guide as

the technical basis for the approach [Stamatelatos et al (2002)]. A mission is evaluated according

to two aspects: performance and safety. The modeling process starts by representing the launch

formulation stage. Following launch, two di¤erent end states are considered: loss of crew (LOC), as

a safety measure, and loss of mission (LOM), as a performance measure. LOC addresses conducting

the mission and returning the crew safely (or not) to earth. LOM addresses performance required

to successfully (or not) carry out the lunar activities. Each key part of the mission is decomposed
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into a fault tree with its top-event representing either LOM or LOC. Note that LOM and LOC

are not mutually exclusive. A LOM might result in an attempted return-to-Earth. If the abort

or return-to-Earth and landing fail, the LOM leads to an LOC. The details of what has to fail in

order to cause either LOM or LOC are addressed in the fault tree for each phase.

Figure 4 shows that the mission is covered by eight phases from launch to earth return.

LAUNCH

T = 0.0

PHASE_1

Enter Low Earth
Orbit

PHASE_2

Depart Earth

PHASE_3

Lunar Orbit
Injection

PHASE_4

Lunar Orbit
Injection

PHASE_5

Lunar Mission

PHASE_6

Lunar Orbit

PHASE_7

Return to Low
Earth Orbit

PHASE_8

Return to Earth # End State
(Phase ­ PH1)

Working

1 MISSION_SUCCESS

2 LOSS

3 LOSS

4 LOSS

5 LOSS

6 LOSS

7 LOSS

8 LOSS

Failed
9 LOSS

Figure 4: Mission phases for the lunar mission event tree.

The phases are (Figure 4):

Phase 1 � Launches to Low Earth Orbit (LEO). The mission will launch needed materials,

vehicles, and the crew to LEO.

Phase 2 �Rendezvous of the vehicles and the crew. The earth departure vehicle is used by the

crew to start the journey to the moon.

Phase 3 �Lunar-Orbit Insertion (LOI). The vehicle performs the LOI. All members of the crew

transfer to the vehicle going to the lunar surface.

Phase 4 �Vehicle in lunar orbit. The unmanned vehicle remains in a lunar orbit.

Phase 5 �Lunar mission. The crew descends to and from the lunar surface. A typical lunar

mission will last up to seven days.

Phase 6 �Re-crew the orbiting vehicle. Following the lunar ascent, the crew docks with the

vehicle.

Phase 7 �Return to Earth. The crew returns to earth.
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Phase 8 �Earth landing. The crew lands on the Earth.

The model contains seven primary systems that perform the major functions for the mission.

These systems are typical of NASA vehicles such as those described by the Exploration Systems

Architecture Study NASA (2005) and include:

� Propulsion including the main engine, reaction control system (RCS), mechanical equipment

(pumps, valves and controllers), and the propellant/helium tanks.

� Avionics system that receives inputs from the crew, sensors and external communications;

perform navigation, guidance, and internal state calculations; and provides control and actu-

ation signals.

� Electric Power System including batteries, solar arrays and electrical distribution and control
subsystems.

� Active Thermal Control System including heaters, coolers, condensate controller and mechan-
ical equipment.

� Environmental Control and Life Support System including oxygen tanks, pressure regulators,
sensors and mechanical equipment.

� Launch Abort System.

� Pyrotechnic devices that a¤ects component separation.

Since we used a �phased�approach to decomposing portions of the mission, we needed to develop

fault trees for each system for each phase. More speci�cally, under each top event in the event tree,

a fault tree is created representing the down branch (i.e., failure) for that speci�c top event. Once a

failure is seen in any one particular phase (say, for example, during Phase 3), that accident sequence

goes directly to the LOSS end state (LOM or LOC depending on which one is under scrutiny).

The system models in this PSA (i.e., the fault trees) used typical high-level conceptual train design

for the respective systems. Included in the system modeling was the interconnected nature of the

various systems and subsystems both within a mission phase and across the mission pro�le. For

example, the thermal control system may be dependent on electric power � this dependency is

captured in the fault tree logic models. For each system, we assumed a typical operating condition

along with the de�nitions of LOC and LOM in order to create the corresponding failure logic.

In addition to representing assumed system failures via standard fault tree modeling, the model

includes dependent failures using common cause failure modeling. For the redundant components

in the system fault trees, we model the probability of experiencing a common cause failure using

the Multiple Greek Letter method [Mosleh et al (1998)]. The Multiple Greek Letter method is

an example of parametric common cause failure modeling that is an extension of the Beta Factor
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method. This method (as compared to the Beta Factor method) is used to explicitly account for

higher order redundancies and to allow for common-cause subgroups.4

The resulting model contains 150 fault trees and approximately 800 basic events. The number

of MCSs is around 4446 at a truncation of 10�15.

In the next section, we discuss how the importance measures described in Sections 4, and 3 help

us to produce insights into what are the important drivers of the overall mission design.

6.1 Interactions at the Basic Event Level

In this section, we present the results of the numerical analysis of interactions carried out at the

basic event level. The names of systems and basic events and some details of the analysis results

are not provided for in this paper to protect privacy �instead speci�c basic events are denoted by

numbers (e.g., the �rst event is 1, the second is 2, and so on).

The expression of the risk metric (R) for the PSA model described in Section 6 is obtained in

SAPHIRE 7 (Smith et al (2008)) by resolving the MCS�s. After truncation at 10�15, 393 basic

events survive. The risk metric change of interest (�R) is provoked by a �nite variation (�x) of

the PSA model elements. The variation range is assigned by analysts in such a way to be consistent

with the uncertainty in the values of the basic event probabilities and initiating event frequencies.

The actual numerical value of �R is not reported for privacy reasons.

The sensitivity measures DTl for all p�s and ��s are estimated by utilizing eq. (13) [for the

algorithm, see Borgonovo (2010b) and Borgonovo (2010c)]. The algorithm is then augmented so

that by additional n + 1 model runs, one obtains DI and D1. Overall, 788 model evaluations

are performed to compute DT ; DI and D1 for all PSA model elements taking a few seconds on

a personal computer. The corresponding Pareto chart is reported in Figure 5. Because of space

constraints, only the DTl ; D
I
l and D

1
l of the �rst ten most important basic events are displayed in

Figure 5.

Let us now utilize Figure 5 to address the three sensitivity analysis settings of Section 5. Con-

cerning setting 1, model structure, an examination of the interaction contribution of all 393 factors

(as said, not displayed due to space constraints), with an interaction threshold b" = 10% [eq. (37)],

shows that the condition DIl << D1l is violated in 342 instances. This means that only 51 basic

events impact the risk change individually. Therefore, interactions play a crucial role in the risk

change. In particular, Figure 5, show that out of the ten most important basic events, seven have

their importance driven by interactions (DIl << D
1
l ).

Concerning setting 2, direction of change, by the sign of the importance measures in Figure 5,

4As an example, the failure probability of a component in a group of three due to individual and common cause
failures is written as [Mosleh et al (1998), p. 263, eq. (8)]

xc = x1 + 2x2 + x3 (39)

where x1; x2 and x3 are the probabilities of individual failure, common cause failure with either one of the other two
components and failure due to common cause of all the three components, respectively. In turn, x1, x2 and x3 are
estimated as x1 = (1 � �)xc, x2 = (1 � 
)�xc, x3 = 
�xc, where � and 
 represent conditional failure probabilities
given that one or two (respectively) of the other components in the group have failed.
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Figure 5: Pareto Chart for the most important PSA model elements. Left bars: D1i . Central
Bars: DIi . Right Bars: D

T
i .

one notes that all individual, interaction and total contributions, are positive. This testi�es the

monotonicity of R as a function of the basic event probabilities, which stems from the coherency

of the system under investigation.

Concerning setting 3, namely, key-driver identi�cation. The proper sensitivity measure for this

task is DTl . The values of D
T
l of the ten most important basic events are reported in the dark

bars at outmost right in each triplet of Figure 5. The most important factor is basic event 152,

which contributes to around 35% of the change in risk metric. The contribution is mainly driven

by its interactions with the other PSA model elements, as testi�ed by the very low value of its �rst

order sensitivity measure (D1152 = 0:0034). The second most important factor is basic event 143,

that accounts for � 33% of the change. Note that its individual contribution is only the 0:6% of

the risk change (DT143 = 0:006). The third most important basic event, basic event 374, instead,

contributes individually to the change in risk, with DT374 = D1374 = 0:168. Let us now come to

the risk management implications of these values. By Remark 1, DTl is the fraction of the risk

change that would be prevented, if basic event probability (or initiating event frequency) l is not

allowed to change. Thus, a policy that focusses on basic event 152 has the potential of preventing

a risk increase of 34:5%. The second most important basic event on which to focus attention,

would be basic event 143, for a potential prevention of 33% of the risk change. Conversely, if one

were to select the main risk contributor by the individual sensitivity measures, D1l (as in a tornado

diagram), one would indicate basic event 374 as the factor on which to focus managerial attention.

However, such a policy would be capable of preventing a risk change of 16% at most.
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We note that, by knowledge of the speci�c nature of the basic events, managers obtain insights

on the proper actions to be adopted for insuring that system performance is achieved. As an

example, suppose that basic event 152 were related to operator actions (the exact nature of basic

event 152 is not revealed for privacy). Speci�c training would then avoid the increase in p152 (or

even lead to its reduction), thus eliminating one of the main risk contributors.

In the next section, we presents the results of the analysis at the system level.

6.2 Interactions at the System Level

In this section, we present results at the system level. 15 systems of interest are identi�ed. The

393 basic event probabilities are aggregated in corresponding groups. Groups, therefore, di¤er in

size depending on the number of basic events that describe a given system in the model.

The number of systems (Q = 15) makes it is possible to compute all the terms in eq. (25)

according to the algorithm proposed by Borgonovo and Peccati (2009). In particular, 215 = 32768

model evaluation are necessary, taking around one hour on a personal computer. Thus, we have

available the DT
i importance of all systems, all their individual importance measures (D
T

i
), and

the interaction e¤ects (Dki1;i2;:::;ik) of all orders [eq. (25)].

Figure 6 displays the sensitivity measures of orders 1 and 2. The reason why we limit reporting

to these terms is that no signi�cant interactions of order higher than 2 are registered.

Figure 6: Importance measures up to second order interactions. The �rst 15 terms concern the
importance of each of the 15 systems individually. The terms from 15 to 120 report the

importance of the interactions between pairs.

The �rst 15 terms in Figure 6 portray D1
i the individual system contribution to the changes.

The terms from 16 to 120 concern the interactions between all possible system pairs [
�
15
2

�
= 105].
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Figure 6 shows that the most important risk contributor is an interaction of order 2, and in par-

ticular the interaction between systems 2 and 3.

The importance measure triplets DT
i ; D
I

i
; D1
i for the 15 systems are reported in Figure 7.

Figure 7: D1 (left at each column triplet), DI (middle) and DT for the 15 systems.

As far as setting 1 is concerned, Figure 7 shows that DI
i > D1
i for systems 2; 3; 8; 6; 7; 4; 11,

while DI
i < D1
i for systems 12; 5; 13; 1; 9. Thus, the contributions to the risk change of systems

2; 3; 8; 6; 7; 4; 11 are mainly driven by their interactions in the other systems, while the contributions

of systems 12; 5; 13; 1; 9 are, instead, individual. Thus, at the system level, interactions still play

an important role. As far as setting 2 is concerned, the signs of the importance measures in

Figure 7 denote that all increases in basic event probabilities or initiating event frequencies lead

to an increase in the risk metric, consistently with the fact that the system under investigation is

coherent. As far as setting 3 is concerned, the magnitudes of DT
i in Figure 7 indicate that system 2

is the most important one, followed by systems 3; 12; 5; 8; 6; 13; 1; 7; 4; 11; 9; 10; 14; 15. In particular,

system 2 is associated with around 41% of the risk change, system 3 with around 35%, system 12

with around 17% of �R (etc.). By examining the values of DT and DI for each system, one notes

that the importance of systems 2 and 3 is mainly due to their interaction, with system 3�s individual

contribution being rather small. This result has the following interpretation: deteriorations that

contemporarily a¤ect systems 2 and 3 are ampli�ed by their interactions. Conversely, interventions

that are able to �x the reliability of either system 2 or 3 would make their interaction disappear,

eliminating the main source of increase in risk.
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6.3 Determining the Interaction Threshold

Proposition 4 states that interactions do not necessarily matter in applications in which changes are

small, when the model is multilinear. In Section 4, we have set forth a procedure for detecting the

interaction threshold in PSA models. In the next paragraphs, we illustrate the numerical results

obtained by applying the procedure to the space PSA model under investigation.

Step 1. To obtain the increasing sequence �jx, we proceed as follows. We note that lognormal

distributions are utilized in the PSA to model uncertainty in the parameters (this is a typical

PSA choice). We then exploit the link between �x and the error factor (EF )5 of a lognormal

distribution, namely

�x = x0:95 � x0:05 = 2 � EF � x0:5 (40)

A small EF implies a small separation between the 5th and 95th percentiles. Consequently, �x 'dx,
and �R = R(x0:95) � R(x0:05) 'dR. As EF increases the separation between the 5th and 95th

percentile increases, �x increases and �R becomes �nite. By de�ning an increasing sequence of

EF 0s, we obtain a sequence of risk metric changes. For the model at hand, results are reported in

Figure 8.

Figure 8: �R as the error factor (EF) increases.

Figure 8 displays �R as EF is increases from 1:001 to 12 (Usteps = 14 in this case.) One notes

the monotonic increase of �R with EF .

Step 2. At each k, we obtain DTl , D
I
l and D

1
l for all 393 PSA model elements. As a reference,

Figure 9 reports the values of DT152, D
I
152 and D

1
152 as EF varies.

5The error factor is given by the ratio between the median and the 5th percentile of the distribution, which, in
the lognormal case, also equal the ratio of the 95th percentile to the median.
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By Figure 9, one notes that individual e¤ects prevail over interactions only when EF is smaller

than 1:01. For EF > 1:01, interaction e¤ects cannot be neglected, and they dominate model

behavior as soon as EF > 1:7. Conversely, individual e¤ects dominate for EF < 1:01. By setting a

threshold of b" = 10% (see Section 37), for the space mission at hand, we obtain that the condition

DIi << D
1
i is violated at k = 3; corresponding to an EF = 1:01. By eq. (40), the corresponding

changes �x are determined. On average, a change in basic event probability of 0:0040 would trigger

the presence of interactions. Hence, if the application at hand involves changes in the mission basic

event probabilities greater than (indicatively) 0:004, interactions cannot be neglected in judging the

e¤ect of the proposed change. Conversely, if the application involves changes smaller than 0:004, it

might be treated without giving explicit consideration to interactions, although they are formally

present in the risk metric expression.

7 Conclusions

We have proposed an approach for determining the relevance of interactions in operational decision

problems.

Our investigation has started with an in-depth analysis of interactions in multilinear models (f).

The equivalence of the integral and di¤erential decomposition of a �nite change (�f) has allowed

us to introduce sensitivity measures that dissect �f in the factors� individual and interaction

contributions exactly. We have shown that the sensitivity measures can be obtained at the same

computational cost of OFAT methods, what makes the approach applicable to full-�edged models.

We have investigated the implications of these �ndings in reliability and PSA models. We have

seen that the sensitivity measures allow one to obtain a unique ranking of PSA model elements (both

basic and initiating events), overcoming unit of measure limitations of traditional PSA importance

measures. They also allow one to identify the interactions that can be a-priori excluded from the

analysis.

Two issues relevant in real-life applications have been addressed next. First, we have proposed a

procedure for the identi�cation of the magnitude of changes above which decision-makers need to be

informed by the relevance of interactions. Second, we have provided a formal way of extending the

sensitivity measures to factor groups. This grants decision-makers with the �exibility of choosing

the most suitable aggregation level of analysis.

The inference of managerial insights by the aid of sensitivity analysis settings (model structure,

direction of change and key-drivers) has been illustrated next. A belief-network example has been

used to demonstrating how these insights can be obtained by casting the sensitivity measures in

the form of Pareto charts and extended tornado diagrams.

We have discussed quantitative insights by applying the methodology in the context of a complex

operational problem, namely the design phase of space missions. The sensitivity measures have been

estimated for a PSA model developed for NASA containing 399 basic events and 4446 MCSs. The

analysis has been carried out both at the basic event and at the system levels. Numerical results

reveal that the quanti�cation of interactions is crucial in providing guidance to risk managers for
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correctly identifying the systems and components on which to focus managerial attention towards

insuring that target system performance is achieved.

While our application refers to a space PSA, the methodology developed here is applicable

to the di¤erent engineering sectors where PSA is used (nuclear, chemical, energy and aeronautic

industries), and to other O.R. models possessing a multilinear structure.

Acknowledgement 1 The authors wish to thank the Editor and the Associate Editor for the
careful editorial assistance. They also wish to thank the anonymous referees for very perceptive

suggestions which have greatly contributed in improving the manuscript. Financial support from

the Faculty Sta¤ Exchange program of the Idaho National Laboratory is gratefully acknowledged

by the authors. E. Borgonovo also gratefully acknowledges �nancial support from the ELEUSI

Research Center of Bocconi University.

Acknowledgement 2 (Disclaimer) This report was based upon work sponsored by an agency of
the United States government. Neither the United States government nor any agency thereof, nor

any of their employees, makes any warranty, express or implied, or assumes any legal liability or

responsibility for any third party�s use, or the results of such use, of any information, apparatus,

product or process disclosed in this report, or represents that its use by such third party would not

infringe privately owned rights. The views expressed in this report are not necessarily those of the

U.S. Department of Energy or NASA.

8 Appendix A: Proofs

Proof of Proposition 1. For notation simplicity, we discuss the equality of �2i;j and �
2
i;j . A

similar argument applies to higher order terms. We start with recalling that

f 00i;j := lim
�xi�xj!0

g(xi +�xi; xj +�xj ;x(�i;j))� g(xi +�xi;x(�i))� g(xj +�xj ;x(�j)) + g(x(�j))
�xi�xj

(41)

Given a multilinear function f , it can be reworked as a function of xi and xj as

f = a(x�(i;j) )xi + b(x�(i;j) )xj + c(x�(i;j) )xixj + d(x�(i;j) ) (42)

where a(x�(i;j) ), b(x�(i;j) ) and c(x�(i;j) ) are in general multilinear functions not depending on xi
and xj . By eqs. (41) and (42)

f 00i;j = c(x�(i;j) ) (43)

Now, we show that for a multilinear function �i;j = c(x�(i;j) )�xi�xj . By eq. (9), we have:

�i;j =

a(x�(i;j) )(xi +�xi) + b(x�(i;j) )(xj +�xj) + c(x�(i;j) )(xi +�xi)(xj +�xj) + d(x�(i;j) )

�a(x�(i;j) )(xi +�xi)� b(x�(i;j) )xj � c(x�(i;j) )(xi +�xi)xj � d(x�(i;j) )
�a(x�(i;j) )xi � b(x�(i;j) )(xj +�xj)� c(x�(i;j) )xi(xj +�xj)� d(x�(i;j) )

+a(x�(i;j) )xi + b(x�(i;j) )xj + c(x�(i;j) )xixj + d(x�(i;j) )

(44)
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Here one can simplify all the d(x�(i;j) ) terms, the terms a(x�(i;j) )xi and b(x�(i;j) )xj obtaining

a(x�(i;j) )(xi +�xi) + b(x�(i;j) )(xj +�xj) + c(x�(i;j) )(xi +�xi)(xj +�xj)

�a(x�(i;j) )(xi +�xi)� c(x�(i;j) )(xi +�xi)xj
�b(x�(i;j) )(xj +�xj)� c(x�(i;j) )xi(xj +�xj) + c(x�(i;j) )xixj

(45)

Then, by expanding and simplifying, one gets

�i;j =

a(x�(i;j) )xi + a(x�(i;j) )�xi + b(x�(i;j) )xj + b(x�(i;j) )�xj + c(x�(i;j) )xjxi + c(x�(i;j) )�xjxi + c(x�(i;j) )�xixj

+c(x�(i;j) )�xi�xj � a(x�(i;j) )xi + a(x�(i;j)�xi � c(x�(i;j) )xixj � c(x�(i;j) )�xixj
�b(x�(i;j) )xj � b(x�(i;j) )�xj � c(x�(i;j) )xixj � c(x�(i;j) )xi�xj + c(x�(i;j) )xixj

= c(x�(i;j) )�xi�xj
(46)

By eq. (43), we get �i;j = f
00
i;j�xi�xj = �i;j .

Proof of Proposition 3. Follows by eq. (3).

Proof of Proposition 4. 1) Because f is di¤erentiable, �f !df as �x ! 0. Because df is

additive, interactions do not appear in the response of f as �x! 0.

2) By eq. (2), �Ti f ! �if !dif and �f !df as �x! 0. Hence,

lim
�x!0

DTi =
dif
df

= DIMi (47)

dif
df

is the di¤erential importance of xi, namely, DIMi [Borgonovo and Apostolakis (2001)].

Proof of Proposition 5. By item 2 in Proposition 4 DTi = DIMi for small changes. By

DIM
 =
sX
r=1

DTir [Borgonovo and Apostolakis (2001)], eq. (27) follows.

Proof of Proposition 6. By the functional form of eq. (28), R(�;p) is multilinear if P (� =

1jIEj) is. LettingM = (M1;M2; :::;Mm) denote the collection of minimal cut sets (m denotes the

number of MCS�s), one writes

P (� = 1jIEj) = P (M1 [M2 [ ::: [MmjIEj) (48)

since the probability of the end-event is the probability of any of the MCS�s happening. Let

(BEs1 ; BEs2 ; :::; BEsms ) denote the collection of basic events associated with the s
th MCS (s =

1; 2; :::;m). By Theorem 1 in Borgonovo (2010b), P (� = 1jIEj) is a multilinear function of the
conditional BE probabilities. One therefore writes

R(�;p) =

nIEX
j=1

�IEj(

mX
r=1

X
mi1

<mi2
<:::<mir

m1Y
s1=1

pis1

m2Y
s2=1

pis2
6=pis1

pis2 � ::: �
mrY
sr=1

pisr 6=::: 6=pis2 6=pis1

pisr ) (49)
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By eq. (49), one concludes that the PSA risk-metric is a multilinear function of p and �IE .

Proof of Corollary 2. Follows by the multilinearity of eq. (6).

Proof of Proposition 7. Item 1 follows by the �rst order term of eq. (29) and eq. (3). Item

2 follows by the higher order terms in eqs. (29) and eq. (3). Item 3 follows by items 1,2 and eq.

(12).

Proof of Proposition 8. 1) Because BIEj =
@R

@�j
, by di¤erentiationg eq. (49), one obtains

Bj = P (� = 1jIEj).
2) Let us consider the J of two initiating event frequencies. By de�nition, it is

JIEs;IEm :=
@BIEs
@�s@�m

(50)

Consequently,

JIEs;IEm =
@BIEs
@�m

=
@2R

@�s@�m
=

@

@�m
P (� = 1jIEj) = 0 (51)

Eq. (51) states that the joint importance of two initiating events is null. By a property of multilinear

functions [see, for instance, Section 2 in Borgonovo (2010c)], if a mixed partial derivative with

respect to a given group of variables is null, then all partial derivatives of higher order containing

the same group of variables are null. Therefore, any joint reliability importance of any group of

PSA model elements containing at least two initiating event frequencies is null.

3) Let i1; i2; :::; imk
be the set of indices of the basic event probabilities in minimal cut set Mk. Let

S be the set of indices of initiating events that have Mk as minimal cut set in the corresponding

sequences. (We allow for the possibility of a MCS to appear in di¤erent sequences, as this is the most

general case). Then, let bR be the risk metric truncated by the rare event approximation and bR ' R:
Under the rare event approximation, R is substituted by bR. Hence, one computes Ji1;i2;:::;imk by
Ji1;i2;:::;imk =

@ bR
@pi1@pi2 :::@pimk

=
X
s2S

�s
@P (� = 1jIEj)
@pi1@pi2 :::@pimk

. By Proposition 5 in Borgonovo (2010b),

it is
@P (� = 1jIEj)
@pi1@pi2 :::@pimk

= 1 and one obtains Ji1;i2;:::;imk =
X
s2S

�s. This proves the �rst part of Point

3. The second part is proven as follows. Consider
@Ji1;i2;:::;imk

@xs
. If xs is a basic event probability,

then
@Ji1;i2;:::;imk

@xs
= 0, by de�nition of MCS. If xs is an initiating frequency, then

@Ji1;i2;:::;imk
@xs

= 1,

provided that s 2 S. Hence, all the partial derivatives from order Mk + 2 (J
k+2
i1;i2;:::;iKM+2

) on are

null, where KM is the order of the largest MCS.
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