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Abstract

Moment-independent sensitivity methods are attracting increasing attention among prac-

titioners, since they provide a thorough way of investigating the sensitivity of model output

under uncertainty. However, their estimation is challenging, especially in the presence of com-

putationally intensive models. We argue that replacement of the original model by a metamodel

can contribute in lowering the computation burden. A numerical estimation procedure is set

forth. The procedure is �rst tested on analytical cases with increased structural complexity.

We utilize the emulator proposed in Ratto and Pagano (2010). Results show that the emulator

allows an accurate estimation of density-based sensitivity measures, when the main structural

features of the original model are captured. However, performance deteriorates for a model with

interactions of order higher than 2. For this test case, also a Kriging emulator is investigated,

but no gain in performance is registered. However, an accurate estimation is obtained by ap-

plying a logarithmic transformation of the model output for both the Kriging and Ratto and

Pagano (2010) emulators. These �ndings are then applied to the investigation of a benchmark

environmental case study, the LevelE model. Results show that use of the metamodel allows

an e¢ cient estimation of moment-independent sensitivity measures while leading to a drastic

reduction in computational burden.

Keywords: Global Sensitivity Analysis; Uncertainty; Meta-Modelling; Environmental Models.

1 Introduction

In environmental sciences, computer models play an essential role in guiding analysts�understanding

of natural systems behaviour. When the phenomena under investigation cover large temporal

and spatial scales, quite elaborate calculations interpose themselves between the model input and

output [Yu (2010)]. In addition, uncertainty characterizes both the model building and utilization

phases [Risbey et al. (2005)]. �To help determine when a model, despite its uncertainties, can

be appropriately used to inform a decision,� the US Environmental Protection Agency explicitly

suggests sensitivity analysis as part of best practices [US EPA, 2009; p. vii.]. Speci�cally, it

recommends that �model developers and users ... perform sensitivity and uncertainty analyses.

Sensitivity analysis evaluates the e¤ect of changes in input values or assumptions on a model�s
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results [US EPA, 2009; p. vii.]�Sensitivity and uncertainty analyses are essential ingredients of the

model quality assurance checklist [Risbey et al. (2005)]. Without a proper sensitivity analysis, one

is exposed to the so-called black-box e¤ect, namely the risk of not fully understanding the behavior

of the model on which the inference is based. Also, from the point of view of exploiting a model�s

information content, Rabitz (1989) observes that sensitivity analysis (SA) techniques �appear to be

the key ingredient needed to draw out the maximum capabilities of mathematical modelling.�

The utilization of SA methods in the environmental literature is increasing. In the analysis of the

behavior of a landscape based sediment source and transport model, Newham et al. (2003) utilize

di¤erentiation methods. Castaings et al. (2009) show that the use of adjoint sensitivity analysis

� implemented using the reverse mode of algorithmic di¤erentiation [Cacuci (1981), Griewank

(2000)] � enables a local but extensive analysis (spatio-temporal sensitivity analysis) of the input-

output mapping operated by a rainfall-runo¤ model. In Norton (2008), analytical expressions for

sensitivity measures with �nite factor1 changes for use in environmental modelling are proposed.

Norton (2008)�s algebraic approach allows one to estimate both �rst and second-order sensitivity

measures which are independent of the magnitudes of the changes. The approach also provides one

with a way for detecting interactions via the Hessian matrix. The identi�cation of interactions is

the natural bridge towards screening methods. Examples of works in the environmental literature

using screening methods are Campolongo and Braddock (1999), where the Morris method is applied

in the SA of the IMAGE model for greenhouse emissions, and Cryer and Havens (1999), where a

fractional factorial scheme based on Plackett and Burman (PB) design is used in the study of an

air pollution model. The Morris method is then re�ned in Campolongo et al. (2007) and Saltelli

and Annoni (2010) to better account for interactions.

When the goal of the SA exercise becomes assessing �the contribution of factors to uncertainties

in the model output [Kohler and Wirtz (2002), p. 613],� then global SA methods become the

appropriate ones, because exploring the input factor space at a few points is of limited value in

understanding the consequences of uncertainty [Oakley and O�Hagan (2004)]. Conversely, global

SA methods grant one with a thorough exploration of the factor uncertainty ranges [Saltelli et al.

(1993)]. Among the �rst developed and mostly employed global SA methods are non-parametric

techniques [Saltelli and Marivoet (1990), Helton (1993)]. In environmental modelling, they are

applied by Manache and Melching (2008), in the context of the uncertainty and global SA of water

quality models. Variance-based methods are used by Varella et al. (2010) in the global SA of a

crop model, by Estrada and Diaz (2010) in the global SA of eutrophication models. Confalonieri

et al. (2010) apply variance-based and screening methods in order to analyze the WARM rice

growth model. In Confalonieri et al. (2010), variance-based sensitivity measures are estimated by

the Sobol�method [Sobol� (1993)]. Confalonieri et al. (2010) compare variance-based results to

screening results obtained by the Morris method. Discrepancies are revealed in the factor ranking,

in accordance with the fact that the two types of techniques have di¤erent scopes and screening

1By factors we mean all those numerical values (parameters, coe¢ cients, exogenous variables) over which the
analyst wishes to carry out a sensitivity analysis.
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methods become only partially informative in the presence of uncertainty [Oakley and O�Hagan

(2004)].

A further way for exploring the sensitivity of a model output in the presence of uncertainty

is represented by distribution-based techniques (also called moment-independent). A technique is

distribution-based (or moment-independent) if the associated global sensitivity measures explicitly

consider the entire model output distribution (either the cumulative distribution function or the

density) instead of relying on a particular moment of this distribution (e.g., variance). They are

well-suited to address the decision-maker�s state of knowledge in the model output, especially when

distributions are skewed or multimodal. In fact, in these cases, uncertainty cannot be completely

captured by variance [Huang and Litzenberger (1988)]. Figure 1 presents the distribution of the

output of the environmental model utilized in this work.

Figure 1: Conditional distributions of the LevelE model output obtained by conditioning on
di¤erent values of one of the model inputs (in this case V (1), namely water speed in geosphere�s

layer 1). Due to the large range of the model output (maximum dose) a monotonic
transformation [y1=4] was applied to generate this plot.

In Figure 1, the dotted line represents the model output density [fY (y)]2. The continuous lines

represent the set of conditional densities [fY jV (1)=v(1)(y)] obtained when one is informed that factor

2 In the remainder, we shall refer to fY (y) as "unconditional model output density", to distinguish it from the
conditional fY jXi=xi(y), when necessary.
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V (1) � namely water speed in geosphere�s layer 1 � has assumed a certain value. Figure 1 shows

that these distributions are skewed and can be multi-modal. Figure 1 reveals that the e¤ect of

�xing V (1) at v(1) is a change in the entire distribution of the model output. Sensitivity methods

that quantify a factor�s in�uence by measuring the separation between the model output density

fY (y) and the conditional densities fY jXi=xi(y) belong to the category of distributional or moment-

independent sensitivity analysis methods [Park and Ahn (1994), Chun et al. (2000), Borgonovo

(2006), Borgonovo (2007), Liu and Homma (2009)]. These methods have recently attracted the

attention of analysts and practitioners, because they allow a thorough consideration of uncertainty

and are well-posed in the presence of correlated model inputs [Borgonovo and Tarantola (2008)].

However, their estimation is a challenging task. An accurate inspection of the factor uncertainty

ranges might require large samples and several thousands of model runs. In the presence of com-

putationally intensive models, this might render moment-independent methods inapplicable. Two

ways might be envisaged to solve the problem: one is the application of a screening method, followed

by the calculation of moment-independent importance measures on a reduced number of factors.

The second consists of the substitution for the model of a metamodel (or emulator) that drastically

reduces the computational time, while allowing estimation of moment-independent measures for

all factors considered in the analysis. In this work, we investigate this second approach. In this

respect, we employ the implementation proposed by Ratto and Pagano (2010), which is related to

the ANOVA smoothing spline context [Gu (2002)].

To obtain a structured methodology for model validation and audit, based on the combina-

tion of distribution-based sensitivity measures and emulators, we proceed as follows. First, the

combination moment-independent techniques and emulator is assessed on a set of analytical test

cases: a multiplicative model with lognormally distributed model inputs, a non-additive model

with gamma-distributed model inputs, and the Ishigami test function. For the �rst two test cases

analytical estimates of the moment-independent sensitivity measures are available [Borgonovo et

al. (2011)]. They allow us to assess the performance of our method based on the joint utiliza-

tion of moment-independent techniques and emulators in a variety of model structures and factor

distributions. We then discuss the application to a complex environmental model developed by

OECD [OECD (1989), OECD (1993)] for predicting the radiologic release to humans due to the

underground migration of radionuclides from a nuclear waste disposal site. The model is known as

LevelE [OECD (1989), OECD (1993)], and, with time, has become the benchmark model in global

sensitivity analysis studies [Saltelli and Marivoet (1990), Saltelli and Tarantola (2002), Ratto et al.

(2007)]

The remainder of the paper is organized as follows. Section 2 reviews the principles of emulators

and the de�nitions and properties of distribution-based sensitivity analysis. Section 3 presents

sampling plans and the systematic procedure. Section 4 discusses numerical experiments and

results for three analytical test cases. Section 5 illustrates the application to the numerical test

case. Section 6 o¤ers conclusions and future research perspectives.
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2 Moment-independent importance measures and Model Emulation: A Review

2.1 Distributional Sensitivity Analysis: a brief Overview

In this section, we sketch the principles of distribution-based (or moment-independent) sensitivity

analysis with the ��importance measure.
Let 
X � Rn denote the set of all possible values that the factors can assume. Let x 2
X be

a possible value of the model inputs. If x is not known with certainty, we let fX(x) denote the

distribution characterizing one�s state of knowledge about the model inputs. The value x is, then,

one of the possible realizations of X. X is a random vector and the marginal distribution of one of

its components is denoted by fXi(xi). We denote by

y = g(x), g : 
X � Rn ! 
Y � R (1)

the relationship that links the model inputs to the model output. BecauseX is uncertain, y becomes

a random variable, denoted by Y . The image of g, 
Y , then coincides with the support of Y .

In order to assess the sensitivity of y to x, when x is uncertain, a global SA method needs to be

used. If one utilizes a variance-based method [Saltelli and Tarantola (2002), Oakley and O�Hagan

(2004)], then one is framing the SA quest within the following SA setting: �We are asked to bet

on the factor that, if determined (i.e., �xed to its true value), would lead to the greatest expected

reduction in the variance of Y [Saltelli and Tarantola (2002), p. 705].�The appropriate sensitivity

measures are [Iman and Hora (1990), Saltelli and Tarantola (2002)]

Si =
V [Y ]� EXi [V fY jXig]

V [Y ]
=
VXi [E fY jXig]

V [Y ]
(2)

where V [Y ] is the model output variance. A value Si > Sj implies that �xing Xi leads to a greater

expected reduction in V [Y ] than �xing Xj . Xi is, therefore, deemed as more important than Xj .

In a distribution-based sensitivity analysis, a di¤erent setting is proposed. Namely, the SA

setting is: �We are asked to bet on the factor that, if determined, would lead to the greatest expected

modi�cation in the distribution of Y [Borgonovo and Tarantola (2008).]�

Distribution-based importance measures can be originally found in Park and Ahn (1994), where

the Kullback-Leibler divergence measure is used to quantify the shift. Limitations connected with

this metric are then overcome in Chun et al. (2000) and generalized in Borgonovo (2006) and

Borgonovo (2007) � see Borgonovo et al. (2011) for further details. � The sensitivity measure of

interest in this work is de�ned as

�i :=
1

2
EXi [si(Xi)] (3)

where

si(xi) :=

Z

Y

��fY (y)� fY jXi=xi (y)�� dy (4)

si(xi) [eq. (4)] is the shift between the model output distribution [fY (y)] and the conditional model
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output distribution given that factor Xi is �xed at xi [fY jXi=xi (y)]. A visual representation of this

concept is o¤ered in Figure 2.

Figure 2: sV (1)(v
(1)) between fY jV (1)=v(1) (y) and fY (y) the output of the model of interest in

this work. The two shaded areas represent the separation between two conditional densities
obtained by �xing a model input (the same as in Figure 1) at two di¤erent values.

Figure 2 portrays fY (y) and two of the conditional distributions [fY jV (1)=v(1) (y)] obtained by
�xing one factor (V (1) as in Figure 1) at two di¤erent values. It also shows the areas (shaded regions)

between the conditional and unconditional densities. Geometrically, in fact, si(xi) coincides with

the area enclosed between fY (y) and fY jXi=xi (y). From a technical viewpoint, si(xi) is a separation

measurement in the sense of Glick (1975). Because the area between fY (y) and fY jXi=xi (y) depends

on the value at which Xi is �xed, the separation needs to be averaged over the possible values of

Xi. This is captured by the expectation operator EXi [si(xi)] in eq. (3).
The properties of �i of particular interest in this work are: i) individual and joint normalization

[Borgonovo (2007)]; and ii) invariance for monotonic transformation [Borgonovo et al. (2011)].

As far as i) is concerned, it can be shown that 0 � �i � 1. In particular, if Y and Xi are

independent, �i = 0. Consider then the joint importance of all factors. Let us denote it by �1;2;:::;n.

By de�nition,

�1;2;:::;n =
1

2
EXi [

Z

Y

��fY (y)� fY jX1=x1;X2=x2;:::;Xn=xn (y)�� dy] (5)
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In eq. (5), fY jX1=x1;X2=x2;:::;Xn=xn (y) is a Dirac ��function3 centered at (x1; x2; :::; xn). �1;2;:::;n is,
therefore, the expected distance between the current state of uncertainty and the state in which

all factors are known. It can be shown [Borgonovo (2007)] that �1;2;:::;n = 1 (independently of the

point (x1; x2; :::; xn)). This results indicates that the distance one travels between the current state

and the state in which all model inputs are known is unity, when measured with the L1 norm.

As far as property ii) is concerned, consider the model output y and a monotonic transformation

t(y): t(y) can be, for instance, the result of a rescaling of y. Then, it can be shown that �i is invariant

if estimated on y or on their transformed t(y). As underlined by Iman and Hora (1990), in the

presence of long tail input/output distributions robustness problems might emerge in the estimation

of statistical quantities as, for example, variance-based sensitivity measures. To circumvent this

problem, Iman and Hora (1990) propose to use a logarithmic transformation, which indeed leads to

an improvement in the computational robustness of the analysis. However, as underlined by Saltelli

and Sobol�(1995) and investigated in detail for rank transformation, the outcomes of a sensitivity

analysis drawn using data transformation cannot be easily transferred back to the original model.

Moment independent importance measures are not a¤ected by this limitation because they are

scale invariant.

2.2 Model Emulation

The ��importance measure can be a very e¤ective tool in situations that involve nonlinear and
non-monotonic relationships between inputs and outputs. However, its implementation requires

a large number of model evaluations. Therefore, its use risks to be restricted to models where

thousands of model evaluations are possible in a reasonable computer time.

Sometimes the relationship between input and output can only be evaluated numerically, solv-

ing systems of non-linear di¤erential equations, and its form remains usually unknown to the ana-

lyst, while some sort of direct representation would make the model�s properties more transparent

[Saltelli et al. (2008)].

Metamodelling techniques can mitigate the potential problems indicated above. In the principles

of metamodelling, the relationship [g in eq. (1)] that binds the model inputs to the model output

is considered as a black box [Sacks et al. (1989), Santner et al. (2003), Oakley and O�Hagan

(2004); see Bayarri et al. (2009) for a recent overview]. A metamodel, then, is a mapping that links

the model inputs to the model output through a known relationship. The mapping reproduces (or

emulates) the original model but is less computationally demanding. A vast literature exists on this

subject. Besides local approximation methods, which make use of the Taylor expansion formula to

construct a simple function that �ts the model in the neighborhood of a nominal point in the input

space, parametric regression techniques (either linear or non-linear, stepwise or based on ranks)

are also able to produce a metamodel, though it is necessary to provide a prior speci�cation of its

exact algebraic form. This speci�cation is required to hold across the entire mapping from inputs

3Given a function t(y); the Dirac-� function centered at y0 is a function �(y) such that
+1R
�1

t(y)�(y � y0)dy = y0.

In the theory of distributions, �(y) is the derivative of the Heaviside function.
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to outputs, making the representation of the local behavior di¢ cult [Storlie and Helton (2008)].

With non-parametric regression techniques (often referred to as smoothing techniques) an iter-

ative construction procedure is used to build an approximating function that can represent local

patterns [Storlie and Helton (2008), Storlie et al. (2009).] Popular smoothing procedures include

locally weighted regression (LOESS) [Simono¤ (1996)], generalized additive models (GAM) [Hastie

and Tibshirani (1992)], projection pursuit regression [Friedman and Stuetzle (1981)], recursive

partitioning regression (also known as regression tree) [Breiman et al. (1984)], multivariate adap-

tive regression splines [Friedman (1991)], gradient boosting regressions [Friedman (2001)] and the

adaptive component selection and shrinkage operator (ACOSSO) [Storlie et al. (2010)].

In all the aforementioned works, as well as in Ratto et al. (2007), Sudret (2008) and Ziehn and

Tomlin (2009), the starting point of the metamodel building process is the representation of g in

eq. (1) in terms of the ANOVA model:

g(x) = g0 +
nX
i=1

gi(xi) +
X
i<j

gi;j(xi; xj) + :::+ g1;2;:::n(x1; x2; :::; xn) (6)

where 8>>>><>>>>:
g0 = E[g] =

R
���
R
g(x)dx

gi(xi) = E[gjxi]� g0 =
R
���
R
g(x)

Q
k 6=i dxk � g0

gi;j(xi;xj) = E[gjxi; xj ]� gi(xi)� gj(xj)� g0
:::

(7)

In eq. (6), g0 is the expected value of g, the functions gi(xi) account for the factors individual e¤ects,

the second-order terms [gi;j(xi;xj)] account for the residual cooperation of all factor pairs, the third-

order terms for the cooperation of all triplets, etc. Then, one looks for the proper truncation order

at which the original model can be accurately mapped by the metamodel. One speaks about a

�rst, second, third-order metamodel, depending on the order at which eq. (6) is truncated.

This representation, based on smoothing splines ANOVA models Gu (2002), is at the basis of

the metamodels of Ratto et al. (2007), Ziehn and Tomlin (2009), Sudret (2008) [see also Blatman

and Sudret (2010)]. The metamodels of Ziehn and Tomlin (2009), Ratto et al. (2007) and Sudret

(2008) di¤er in the way the component functions in eq. (6) are approximated. Sudret (2008) and

Ziehn and Tomlin (2009) use orthonormal polynomials, while the emulator by Ratto et al (2007)

employs a di¤erent approach based on State-Dependent Regression (SDR), and recursive Kalman

smoothing [Young (2001)]. SDR utilizes piecewise-de�ned polynomials (cubic splines) to construct

approximating functions that are only piecewise smooth. The simplest example of smoothing spline

estimation of an input/output mapping z(x) is the additive model:

g(x) = g0 +
nX
j=1

gj(xj) (8)

which can be estimated using a multivariate cubic smoothing spline minimization problem with a
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penalized residual sum of squares

1=N

NX
i=1

[zi � g(xi)]2+
pX
j=1

�j

Z 1

0
g00(xj)

2dxj (9)

where fzg is the data set obtained running the simulation model N times and �j are the smoothing

hyper-parameters to be estimated. This minimization problem has a unique solution. The �j can

be estimated in various ways; in particular, in the SDR recursive form, the Maximum Likelihood

estimator is applied, whose nice properties are reviewed in Ratto and Pagano (2010).

The recursive least-squares implementation of Ratto et al. (2007) provides great �exibility in

adapting to discontinuities, heavy nonlinearity and heteroskedastic error terms. Recently, Ratto

and Pagano (2010) propose a uni�ed approach for a more accurate and e¢ cient identi�cation of

smoothing spline ANOVAmodels that combines the best of SDR and ACOSSO. The routines for the

emulator of Ratto and Pagano (2010) are available at: http://eemc.jrc.ec.europa.eu/Software.htm.

This approach provides direct estimation of ANOVA-based sensitivity indices up to order 2, i.e.,

including second-order terms in eq. (8), namely

g(x) ' g0 +
nX
i=1

gi(xi) +
X
i<j

gi;j(xi; xj) (10)

As far as eq. (10) is concern, Li et al. (2001) note that a cut in the functional ANOVA

expansion is necessary to obtain quantitative information in real-life problems, because the size

of the expansion is exponential in the number of factors � for n = 20, one obtains more than 1

million terms in the full functional ANOVA expansion [eq. (6)]. � Li et al. (2001) also observe

that in many real-life studies the �rst or the second order approximations are enough to capture

the model behavior [see also Ziehn and Tomlin (2009) and Borgonovo and Smith (2001), where a

393-factor-model describing a complex system is analyzed and no interactions of order higher than

2 emerge.] In fact, the terms gi;j;k(xi; xj ; xk) [we consider a third order term for simplicity] account

for the residual interaction of order three, after the individual and second order e¤ects have been

removed

The metamodel building phase requires running the model on N training points (obtaining

fzg). Once identi�ed, estimated and parametrized the metamodel provides a direct, though ap-
proximated, algebraic expression of the input/output relationship, which incorporates direct esti-

mation of sensitivity indices. Alternatively, these latter can be estimated more precisely running

the nearly-costless metamodel on a set of points much larger than N .

All the above mentioned methods can be classi�ed as regression techniques. Complementary to

this class is the class of interpolation procedures. Interpolation procedures look at functions that

pass through a set of data points spanning the whole domain of the input/output mapping. The

approximation is obtained by estimating the p parameters of the interpolator (e.g. the coe¢ cients

of the polynomials) using p data points. Examples of interpolating metamodels are the Gaussian

emulator [see for instance Oakley and O�Hagan (2004)] and the kriging procedure [Krige (1951),
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Kleijnen (2008), and Kleijnen (2009)]. As opposed to smoothing-splines, which operate on truncated

ANOVA terms, Gaussian emulators try to interpolate and predict the input/output mapping using

a Gaussian kernel that has the same dimensionality n as the factor space. For large n, the number

of hyper-parameters linked to the covariance structure of the Gaussian kernel grows rapidly, leading

to problems with their identi�cation.

3 Sampling plans and numerical estimation procedure

In this section, we discuss sampling designs at the basis of the estimation of �i. Approaches to the

numerical estimation of �i can be found in Borgonovo and Tarantola (2008) and Liu and Homma

(2009). However, the �rst work o¤ering a systematic view to sampling strategies in distributional

sensitivity analysis is Castaings et al. (2010).

Eq. (3) is composed of two integrals, one internal, namely
R

Y

��fY (y)� fY jXi=xi (y)�� dy = si(xi),
and one external. The internal integral assesses the distance between the unconditional density of

Y and the conditional density of Y when Xi is �xed at xi. The external integral is the average

of si(xi) and can be seen as
R

Y
fXi(xi)si(xi)dxi, where fXi(xi) is the marginal density of Xi.

The ingredients needed to compute si(xi) are fY (y) and fY jXi=xi (y). To obtain them numerically,

one proceeds as follows. First step is the generation of an unconditional sample bX of size N . By

construction, bX is a matrix of size N � n, where N is the number of Monte Carlo runs and n the

number of model inputs. bX is a set of possible realizations of the random vector X. The model

is then evaluated at bX with N model runs. One obtains a corresponding vector of model output

of size N , which we denote by bY. By bY the unconditional model output density is estimated via

kernel-density [Parzen (1962)].

The second ingredient, namely the conditional density, can be found by forming a conditional

sample cXji utilizing elements of bX. Consider a generic factor, Xi. The element bxji of bX represents

the value assumed by Xi in the jth Monte Carlo run. Substituting bxji in the ith column of bX is

equivalent to conditioning on Xi = bxji . At this stage, if the factors are dependent one re-samples
the values of the remaining model inputs given Xi = bxji , and obtains the conditional sample cXji . If
the factors are independent resampling is not necessary [Borgonovo et al. (2011)]. By evaluating

the model at cXji one obtains the conditional model output vector bYXi=bxji . By this vector, the
density f

Y jXi=bxji (y) is estimated via kernel density [Silverman (1986)]. Once both the conditional
and unconditional densities of Y are obtained, one estimates si(bxji ), by eq. (4). The procedure
can be repeated for all columns of bX, leading to nN2 model runs (N blocks of size N for Xi,

i = 1; � � � ; n).
Using the above procedure (brute force approach), the number of points over a conditional

value and the number of conditional values (for the external integral) explored are both �xed at

N . Overall, the cost is (N + nN2) model runs. However, given that the external integral is one-

dimensional, a quadrature formula can be applied. Castaings et al. (2010) have shown that this

substituted column sampling plan combined with a Gauss-Legendre quadrature method [Davis and

Rabinowitz (1984)] is e¢ cient and reliable. In this contribution, the authors also show that using
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Table 1: Steps for the estimation of the delta-importance measure via emulators (steps which
are speci�c to the use of meta-modelling are marked by a star)

Nr. Step
1 Generation of the base sample of size N (denoted bX)
2 Evaluation of original model output at bX (denoted bY)
3� Calibration of metamodel using

�bX; bY�
4� Evaluation of metamodel output at eX (denoted eY)
5� Estimation of the metamodel unconditional model output distribution (using eY)
6 Estimation of quadrature points bQ for all Xi (i = 1; � � � ; n)
7 Generation of conditional samples (grouped in eXc) by column substitution (using eX and bQ)
8� Evaluation of metamodel output at eXc (model output denoted fYc )
9� Estimation of the metamodel conditional model output distributions (using fYc)
10 Estimation of si(xi) and �i (i = 1; � � � ; n)

permuted column sampling plans, performances are comparable (or slightly better) for ranking but

produce biased estimates for the moment-independent sensitivity measures. If the number of points

used for the quadrature is denoted by Next, Next blocks of size N are necessary for the estimation

of conditional densities for each Xi (i = 1; � � � ; n). Therefore, the overall number of model runs is
reduced to N(1 + nNext) with Next < 10.

Using real models with a long computational time (T ), the overall time required for estimating

the sensitivity measures is T � [N(1 + nNext)]. This �gure can still be considerably high and make
an accurate estimation of �i impractical. However, if the model is replaced by the emulator, then

the computational time can be notably reduced. To appreciate the reduction, it is �rst necessary

to introduce a systematic procedure for the estimation of � via emulator. The steps are reported

in Table 1.

The �rst step consists in generating the base sample bX. The second step is the evaluation of
the model output at bX. The model output vector bY is obtained. In this third step, the metamodel
model is calibrated on bX! bY. This metamodel is subsequently evaluated at a second sample eX.
Because the emulator running time is negligible, the size of eX can be arbitrarily large. One can then
accurately estimate the unconditional density (steps 4 and 5). In steps 6 and 7, the conditional

samples are generated by column substitution using quadrature points. Then the metamodel is

evaluated on conditional samples in order to estimate the required conditional probability density

functions (steps 8 and 9). The �nal step consists in using all those ingredients for the estimation

of si(xi) and �i.

Let us now denote by � the time required for a metamodel evaluation. Then, the overall time

for implementing the steps in Table 1 is given by:

T �emul = N � T + nNextN � � (11)

This time needs to be compared against the computational time required for direct estimation of
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�i with the original model, which equals

T �direct = N � T + nNextN � T: (12)

Therefore, the gain (or reduction) is

G =
N � T + nNextN � T
N � T + nNextN � � (13)

which can be notable if � << T . In particular, if � <<
T

nNext
(i.e., if the cost of the metamodel

is much lower than the model�s one), then N � T >> nNextN � � . In this case, eq. (13) reduces to
G ' 1 + nNext. Thus, (1 + nNext) represents an upper bound for the potential gain. Because the
same sample N is used for training the metamodel and obtaining the unconditional distribution of

Y , then the cost of the analysis is potentially reduced from N(1 + nNext) to N model runs.

In the next section, we address the application of the procedure in Table 1 to three analytical

test cases.

4 Analytical test cases

In this section, the performance of metamodelling for moment-independent sensitivity analysis is

assessed for a set of analytical test cases. These models allow us to explore a variety of structures

and factor distributions.

For the �rst and third case studies moment-independent sensitivity measures can be computed

analytically using the approach proposed by Borgonovo et al. (2011). The analytical values rep-

resent a direct benchmark for the comparison of results obtained numerically. Their knowledge

allows us to utilize the root mean square error (RMSE) as a measure of convergence. The RMSE

at sample size N obtained by r replicates of the calculations is given by:

RMSEi(N) =

vuuuut
rX
l=1

[b�i;l(N)� �i]2
r

(14)

where b�i;l(N) is the estimate of �i at replicate l. If RMSE(N) tends to 0 as N tends to in�nity,

the estimation strategy is correct. Conversely, some error (or bias) is present.

In all test cases of this section, the steps in Table 1 are followed. The Improved Substituted

Column Sampling plan [Castaings et al. (2010)] is utilized for estimating �i, with Next = 4. An

SDR second-order metamodel is constructed based on the approach by Ratto and Pagano (2010)

using N evaluations of the original model. The metamodel is then employed in the estimation of

�i in further nNextN metamodel runs. For each test case, results are compared to the estimates

obtained using the original model in all (N + nNextN) runs.

12



For the �rst test case, the model is

Y =
X1

X1 +X2
(15)

with X1 � �(�; �) and X2 � �(�; �), independently distributed. By a classical result of statistics
[see Kotz et al. (2000)], Y is Beta distributed with density

fY (y) =
y��1(1� y)��1R 1

0 s
��1(1� s)��1ds

(16)

The conditional distributions given X1 and X2 are given by [Borgonovo et al. (2011)]

fY jX1=x1(y) =
(1� y)��1

y�+1
x�1
e
�x1

�
(
1� y
y

)

��� (�)
and fY jX2=x2(y) =

(y)��1

(y � 1)�+1x
�
1

e
�x2

�
(
1� y
y

)

��� (�)
, respectively.

(17)

Then, by eq. (17)

s1(x1) =

Z 1

0
j y��1(1� y)��1R 1
0 s

��1(1� s)��1ds
� (1� y)

��1

y�+1
x�1
e
�x1

�
(
1� y
y

)

��� (�)
jdy (18)

�1 follows by taking the expectation of s1(x1) over the marginal density of X1: One obtains

�1 =

Z 1

0
x��11

e�
x1
�

��� (�)

Z 1

0
j y��1(1� y)��1R 1
0 s

��1(1� s)��1ds
� (1� y)

��1

y�+1
x�1
e
�x1

�
(
1� y
y

)

��� (�)
jdy (19)

A similar procedure allows one to �nd �2. In Borgonovo et al. (2011), it is shown that �1 = �2 if

� = �. In fact, the marginal densities of X1 and X2 and the conditional model output densities

given X1 or X2 become equal if � = �. Thus, even if the model does not depend on them in the

same form, if � = � the two factors are equally important (also using variance-based importance

measures). Given � = � = 3 and � = 1, one obtains �1 = �2 = 0:315:

Figure 3 reports the convergence results obtained using the steps described in Table 1.

Figure 3 displays the RMSE in the estimation of � using the original model and the emulator

(square and triangles, respectively.) In both cases, the average root mean square error (average

across 20 replicates) declines rapidly with the number of model runs. The advantage of using model

emulation leads to a gain G [eq. (13)] around 8 or 9. The accuracy of the convergence shows that

the model structure is well captured by the emulator. We note that, while the model in eq. (15)

is structurally non-additive, the model response is additive. In fact, in Borgonovo et al. (2011),

it is shown that the sum of the �rst order variance-based indices covers around 99% of the model

output variance. Thus, interactions play a minor role in eq. (15).

We then investigate the emulator performance further by considering a numerical test case,
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Figure 3: RMSE (r = 20) as a function of N for the non-additive model with Gamma inputs in
eq. (15). Emulator (triangles), original model (squares).

widely utilized in SA, namely the Ishigami function:

Y = sin(X1) + 7 sin(X2)
2 + 0:1X4

3 sin(X1) (20)

Each factor is uniformly distributed in [��; �]. This test case is well known for its non-linear and
non-monotonic behavior but also for the presence of a strong interaction of order 2 between X3
and X1. For this test case, an explicit expression of the distribution-based importance measures is

not available. We therefore cannot base convergence analysis on the RMSE as de�ned in eq. (14).

Instead, the average estimates (across the 20 replicates) for �i (i = 1; 2; 3) as produced by the direct

utilization of the model or by the emulator are considered.

Figure 4 shows the convergence of the estimation via emulator (triangles) and with direct

estimation (squares). The result shows that the emulator proivides an accurate estimation of �: In

turn, this implies that the model structure is correctly reproduced by the emulator. In fact, we are

in the presence of an interaction of order 2.

As observed in Section 2.2, a cut of the functional ANOVA expansion at order 2 is often su¢ cient

for accurately reproducing the behavior of realistic systems [Li et al. (2001), Ziehn and Tomlin

(2009); see also a recent study by Borgonovo and Smith (2011)]. However, let us challenge the

emulator performance by considering a model with a strong interaction of order 3. In particular,
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Figure 4: Average value of �i (i = 1; 2; 3), average across 20 replicates) for Ishigami function in
eq. (20). Emulator (triangles), original model (squares).

let

Y =
3Y
i=1

Xai
i (21)

with ai 2 R�f0g, with Xi (i = 1; 2; 3) lognormally independently distributed factors, with density

fX(x;�; �) =
nY
i=1

fi(xi; �i; �i) =
nY
i=1

1p
2��ixi

e

�1
2

24 ln (xi)� �i
�i

352
. (22)

By the model structure and the choice of the factor distributions, it is possible to obtain the

importance �i (i = 1; 2; 3) analytically [see also Proposition 5 in Borgonovo et al. (2011)]:

�i =

= EXi [LN(ey1 ; �Y ; �
2
Y )� LN(ey2 ; �Y ; �2Y ) + LN(ey2 ; �Y jxi ; �

2
Y jxi)� LN(e

y1 ; �Y jxi ; �
2
Y jxi)]

= EXi [N(y1; �Y ; �
2
Y )�N(y2; �Y ; �2Y ) +N(y2; �Y jxi ; �

2
Y jxi)�N(y1; �Y jxi ; �

2
Y jxi)]

(23)
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where LN(�) denotes the lognormal distribution,

�2Y =
nP
i=1
a2i �

2
i

�2Y jxi =
nP
s=1
s 6=i

a2s�
2
s

�Y = a
T�

�Y jxi = �Y � ai�i + ai lnxi

(24)

and where

y1;2=
1

�2Y � �2Y jxi

0@�2Y �Y � �2Y jxi�Y jxi �
vuut�2Y �2Y jxi

"
(aixi)2 + (�

2
Y � �2Y jxi) ln(

�2Y
�2Y jxi

)

#1A (25)

Eq. (23) is readily implemented via a numerical software as Mathcad (used by the authors) or

Matlab. Let us assign a1 = a2 = a3 = 1; �1 = �2 = �3 = 1 and �1 = 4; �2 = 2; and �3 = 1.

The output probability distribution is lognormal, with parameters �Y = 3 and �2Y = 21. This

distribution is highly skewed. By eq. (23) one obtains the values of the importance measures:

f�1; �2; �3g = f0:47236; 0:15567; 0:07166g.
These values allow us to evaluate the performance of the emulator. Numerical results are plotted

in Figure 5.

Figure 5 displays the RMSE as a function of the number of models evaluation. Figure 5 shows

that convergence is obtained using the original model, while the estimation carried using the SDR

metamodel fails to converge. In fact, this test case is unfavorable to the SDR metamodel of Ratto

and Pagano (2010), because the output variability is driven by a third-order interaction, while the

metamodel is designed for interactions up to order 2.

To explore this issue further, we construct a kriging emulator using the DACE Matlab toolbox

[Lophaven et al. (2002)]. Results for the DACE emulator are reported in Figure 5 (diamonds). As

one notes, also the DACE-based estimates fail to converge.

We recall that an accurate estimation of �i implies that the emulator correctly reproduces both

the conditional and unconditional distributions of the model output. Conversely, an imprecise

estimation of �i means that some structural feature of the original model is not captured by the

emulator. This aspect is encountered here, because neither SDR nor DACE are able to emulate

the behavior of a model exclusively consisting of a third-order interaction.

However, performance can be improved using the following strategy. In this speci�c case, the

mapping to be emulated [eq. (21)] is a multiplicative function that can be transformed into an

additive linear model by applying a logarithmic transformation during the construction of the

metamodel. We recall that such a transformation leaves the estimates of �i unchanged, by the

scale invariance property. We then follow the steps in Table 1, applying a log-transformation to the

original model output when building the metamodel. The obtained results are plotted in Figure 6.
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Figure 5: RMSE (average across 20 replicates) as a function of N for the multiplicative model
with Lognormal input variables, and logarithmic transformation applied in moment independent

sensitivity analysis [for the model of eq. 21]. SDR Emulator (Triangles), DACE Emulator
(Diamonds), original model (Squares).

Figure 6 shows that the RMSE is tending to zero with both the DACE and SDR metamodels,

as well as with the direct model calculation. Furthermore, the use of the metamodel produces a

gain of around 1 order of magnitude in terms of the number of model evaluations (N) necessary

to achieve a given accuracy. [(1 + nNext) = 13 represents an upper bound for G (eq.(13))]. As a

reference, consider the estimation of �3. The combination model+metamodel makes it necessary

to evaluate the model around N = 80 times to lower the RMSE below 0:005. To obtain the same

accuracy, one needs around N = 103 direct model evaluations.

The three test cases of this section have allowed us to understand how di¤erent strategies can be

used for improving the SDR emulator performance for estimating moment-independent sensitivity

measures. We are going to apply these insights in the context of an environmental case study

known in the literature for its structural complexity.

5 Application to an Environmental Case Study: LevelE

In this section, we apply the procedure of Table 1 and the insights obtained in Section 4, to the

study of an environmental model, namely LevelE [OECD (1989), OECD (1993)].
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Figure 6: RMSE across 20 replicates as a function of N for multiplicative model in eq. (21),
with lognormal input variables, when a logarithmic transformation is applied in the construction

of the metamodel. Emulator (triangles), direct model computation (squares).

LevelE simulates the radiological dose released from a nuclear waste disposal site to humans.

The dose is due to the underground migration of radionuclides. LevelE has been widely utilized

in the literature. We recall its utilization as a benchmark for Monte Carlo calculations in [OECD

(1989), OECD (1993)], for variance-based techniques in Saltelli and Tarantola (2002), for emulators

in Ratto et al. (2007) and recently, for moment-independent methods, in Castaings et al. (2010).

While we refer to OECD (1989) for a detailed description of the model, a succinct illustration is

proposed here. The repository is represented as a point source and the one-dimensional dispersion

is tracked over geological time scales (up to 107 years). The model describes the transport of

iodine (129I), neptunium, uranium and thorium (237Np ! 233U ! 229Th) through two geosphere

layers characterized by speci�c hydro-geological properties. The governing equations account for

radioactive decay, dispersion, advection and chemical reaction between the migrating nuclides and

the porous medium. Epistemic uncertainty is driven by twelve uncertain model inputs whose

probability distributions were assigned on the basis of expert judgment (see Table 2 and OECD

(1993)).
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Table 2: Model Inputs list for the LeveE Model
Notation De�nition Distribution Range Units
T Containment time Uniform [100; 1000] yr
kI Leach rate for Iodine Log-uniform [10�3; 10�2] mols=yr
kc Leach rate for Np chain Log-uniform [10�6; 10�5] mols=yr

V (1) Water speed in geosphere�s layer 1 Log-uniform [10�3; 10�1] m=yr

l(1) Length of geosphere�s layer 1 Uniform [100; 500] m

R(1) Retention factor for I (�rst layer) Uniform [1; 5] �
R
(1)
C Retention coe¤. for Np chain layer 1 Uniform [3; 30] �

V (2) Water speed in geosphere�s layer 2 Log-uniform [10�2; 10�1] m=yr

l(2) Length of geosphere�s layer 2 Uniform [50; 200] m

R(2) Retention factor for I (layer 2) Uniform [1; 5] �
R
(2)
C Retention coe¤. for Np chain layer 2 Uniform [3; 30] �

W Stream �ow rate Log-uniform [105; 107] m2=yr

Two output of this model are analyzed in the literature. The maximum radiological dose

simulated over the time period up to 107 years and the radiological dose at given times. For the

maximum dose, the unconditional and conditional density functions have been previously reported

in Figure 1. One notes that the unconditional distribution is highly skewed (
 = 7:7841).

In order to compare the estimates provided by the moment-independent sensitivity analysis cal-

culation method using the original model or the SDR emulator, the experiments carried out for the

analytical test cases (Section 4) are repeated for LevelE. Given the skewness of the maximum dose

distribution, the results obtained in Section 4 suggest application of a logarithmic transformation

during the construction of the metamodel.4

The Steps in Table 1 are applied to LevelE and produce the results in Figure 7.

The estimates and convergence paths are quite similar for the emulator and the original model

(dotted line and continuous lines in Figure 7). However, by looking at Figure 7, one notes that stable

factor ranking is identi�ed much earlier using the emulator. For instance, in order to reverse the

ranking between factors V (1) andW , the number of model evaluations is reduced by approximately

a factor 50. Also, the ranking of the factors with low and moderate importance is correctly identi�ed

by the emulator.

As far as the computational gain [eq. (13)] is concerned, because n = 12, G is potentially at

(1 + 12 � Next) model runs, in this case. Setting Next = 4, (minimum suggested value Castaings

et al. (2010)), the potential gain is 49. At N = 1000 and with a model run of 2 secs, one needs

98000 secs (around 28hours) for the analysis. By replacing the model via the emulator, one has

the following computational time: 2000secs for building the emulator; 1000secs for performing the

additional 120000 evaluations. Thus, the total time required by the model emulation strategy is

50mins, as opposed to the initial 27 hours. From a more general standpoint, the gain becomes even

4We performed the analysis both with and without the log-transformation. The log-transformation lead to a
notable improvement of the numerical performance of the emulator.
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Figure 7: �i, i = 1; 2; ::; 12, for the maximum dose output of the LevelE model. Dotted lines
(left) represent results obtained with the metamodel. Continuous lines (right) represent results

obtained by running the original model.

more evident for models with larger computational times or in the presence of a larger number of

factors.

Let us come to the insights one obtains by Figure 7 from an environmental viewpoint. The

maximum dose is of interest for environmental safety [OECD (1989)]. The most important factors

are W and V (1), namely, stream �ow rate and water speed in geosphere layer 1. Thus, these are

the factors on which we should focus our e¤orts to eliminate the main sources of shifts in the

distribution of the maximum dose. Conversely, low ranked factors, like kC and kI , can be �xed at

any value within their range of uncertainty without altering the analyst�s state of knowledge on the

maximum dose.

In the literature, as mentioned, not only the maximum dose has been studied as an output of

LevelE, but also the time evolution of the released dose. Of particular interest is the study of the

dose simulated at t = 2 � 105 years, during the transition zone between fast and slow dynamics

(approximately between 105 and 106 years). Previous studies on LevelE [Saltelli et al. (1993),

Saltelli and Sobol�(1995), Saltelli and Tarantola (2002)] have shown that during this speci�c time

range, the mapping is non-monotonic for some model inputs (e.g. V (1)) and the variance is mainly

driven by the contribution of interactions [Homma and Saltelli (1996)]. Although the situation

is less favorable than in the case of the maximum dose, the analysis of Figure 8 reveals that the

emulator performs well in the estimation of moment-independent importance measures, even for

this very complex mapping. The values of the ��importance obtained with around N = 103 model
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runs lead to the same ranking obtained through N = 4 � 104 original model evaluations.

Figure 8: �i, i = 1; 2; ::; 12, for the dose at time 2 � 105, output of the LevelE model. Dotted lines
(left) represent results obtained with the metamodel. Continuous lines (right) represent results

obtained by running the original model.

Let us now come to the identi�cation of the most relevant factors. By comparing Figure 8 to

Figure 7, one observes that V (1) is now the factor that in�uences the model output distribution

the most. Moreover, W;L(1) and R(1)I have an intermediate in�uence on the dose at 2 � 105 years,
while the other factors have minor in�uence.

6 Conclusions and Future Research

In this work, we have analyzed the joint application of emulators and moment-independent sensi-

tivity analysis methods in the context of uncertainty analysis of environmental models.

Distribution-based (or moment-independent) SA techniques convey the importance of a factor

without relying on a particular moment of the output distribution. The estimation of moment-

independent importance measures is, however, a challenging task, because of the double integration

their de�nition implies. Recent works have proposed and evaluated sampling designs which reduce

the computational burden. However, the number of model runs required for an accurate estimation

of the importance measures can still be too high for computationally complex models.

We have then argued that, because emulators have the ability of drastically reducing compu-

tational burden, they can enable the estimation of moment-independent importance measures in

computationally intensive models. In particular, we have made use of the combination of the SDR

emulator developed by Ratto et al. (2007) and the improved substituted columns sampling plans
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developed in Castaings et al. (2010). We have set forth an eight-step procedure, which makes the

approach systematic. This has allowed us to compute the gain (in terms of reduction in computa-

tional time; eq. (13)) that the metamodel can generate. The gain can potentially be of the order

of 1 + nNext, if the computational time for running the emulator is negligible with respect to that

of the original model. We have then tested the performance of the combination emulator-moment-

independent importance measures for three test cases. The �rst two test cases (double gamma and

Ishigami) consisted of models with no interactions and interactions of order 2 respectively. Nu-

merical experiments con�rmed the ability of the SDR emulator in reproducing the model structure

and, therefore, leading to an accurate estimation of the density-based importance measures. The

third case study is a 3-factor, completely interactive model, with skewed distributions, for which

the analytical expression of �i is available. Results have shown a poor performance of the SDR

emulator in reproducing the model behavior related to the cut at order 2 of the functional ANOVA

expansion. However, we have seen that applying a logarithmic transformation to the model output

when building the emulator allows one to obtain convergence also for this case. This strategy has

then been replicated in the estimation of moment-independent importance measures for the LevelE

model replaced by the SDR emulator. Results con�rm that the emulator considerably reduces the

run time, while producing accurate estimates of the importance measures.

Results of our paper can then be interpreted as follows. Model emulation has the potential to

achieving a signi�cant reduction in the computational burden for estimating moment-independent

sensitivity measures. This achievement is, however, subject to a careful calibration of the meta-

model (this aspect is crucial to all metamodelling applications). At the same time, the ability (or

inability) of the emulator to estimate density-based sensitivity measures can be seen as an addi-

tional validation (or invalidation) of the constructed metamodel. In this respect, this work paves

the way for future research in using density-based sensitivity measures as a metamodel validation

tool, to accompany traditional model emulation performance measures for case studies in which

�i is analytically known. In fact, for a precise estimation of �, the emulator needs to accurately

reproduce the distribution of the model output, what, in turn, implies capturing all main structural

features of the original model.
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