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Abstract

In this work, we introduce a new method for the sensitivity analysis of model output in the

presence of �nite changes in one or more of the exogenous variables. We de�ne sensitivity

measures that do not rest on di¤erentiability. We relate the sensitivity measures to

classical di¤erential and comparative statics indicators. We prove a result that allows us

to obtain the sensitivity measures at the same cost of one-variable-at-a-time methods,

thus making their estimation feasible also for computationally intensive models. We

discuss in detail the derivation of managerial insights formulating a procedure based

on the concept of �Settings�. The method is applied to the sensitivity analysis of a

discrete change in optimal order quantity following a jump in the exogenous variables of

a nonlinear programming inventory model.
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1 Introduction

This work deals with the sensitivity analysis (SA) of model output in the presence of

�nite changes in the parameters.
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SA is essential in deriving insights from decision-support models in a wide range of

applications1. In budgeting, Eschenbach (1992) proposes the use of Tornado Diagrams

to convey managerial information and to identify the key-drivers of the decision-making

problem. In multi-criteria decision-making, Butler et al (1997) describe the use of sim-

ulation techniques for the SA of the decision-support models. In linear programming,

SA is tantamount in aiding managers with the interpretation of model results. � We

refer to the works of Flavell and Salkin (1975), Jansen et al (1997), and Koltai and Ter-

laky (2000) and to the references therein contained, since a complete review cannot be

contained within the scope of this manuscript. �

In inventory management, Dobson (1988) discusses the sensitivity of the classical

economic order quantity (EOQ) model (Harris, 1913 in Erlenkotter (1990)) in the presence

of imprecision in the parameter estimates. The starting point of Dobson�s analysis is the

observation that the total cost per unit in the classical model is �fairly insensitive to

the choice of Q relative to the optimal quantity Q��(Dobson (1988)) � see Table 1 for

notation. Dobson (1988) quanti�es such insensitivity proving that the �sensitivity of the

cost to parameters of the model grows as the fourth root of the uncertainty in the values

of the parameters (Dobson (1988))�. Several extensions of the classical EOQ model have

been proposed to allow the inclusion of inventory problem facets not comprised in the

original model. Such extensions are referred to as modi�ed EOQ models. The works

of Berman and Parry (2006), Huang (2007), Goyal et al, 2007, Ben-Daya and Noman

(2008), Sana and Chaudhuri (2008) and Soni and Shah (2008) represent some of the most

recent generalizations. � These works, in their turn, generalize modi�ed EOQ models

introduced in earlier literature, for which we refer to the references therein contained. �

Common feature across these works is the presence of an SA exercise that accompanies

the numerical determination of Q�. It is recognized that the value of Q� is a function

of the values assumed by the exogenous variables (denoted by x in this work; see Table

1 for notation). Attention is focused on a subset of the exogenous variables, which are

deemed relevant for the analysis. The dependence of Q� on this subset of parameters is

then obtained by plotting or tabulating the values of Q� with the parameters varying in

predetermined ranges. These type of methods are referred to as one-at-a-time methods

in the SA literature (Saltelli et al (2004)). As discussed in Saltelli et al (2004), the

advantages of these methods are the simplicity of utilization and the low computational

cost. However, from one-at-a-time methods it is not possible to derive information on

the factors on which �to focus managerial attention during implementation (Eschenbach

(1992), p. 40-41)�. In addition, one-at-a-time methods do not reveal interaction e¤ects.

From a more general standpoint, the pre-selection of the parameters on which to perform

1Oggier et al (2005) referring to the introduction and use of operations research methods in Nestlè
corporation, state: �... We developed four OR modules: sensitivity analysis, forecasting, simulation, and
optimization ...(Oggier et al, 2005, page 271)�.
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the SA is questionable. In fact, a group of exogenous variables is deemed important

before performing the SA, thus before knowing the model response. This exposes the

analyst to the risk of a-priori excluding relevant factors.

In this respect, a methodology for the identi�cation of the key-drivers of optimal

inventory policies given small variations in the exogenous variables is carried out in Bor-

gonovo (2008). The approach of Borgonovo (2008) is based on the joint utilization of the

classical technique of comparative statics (CS) Samuelson (1947) and of the di¤erential

importance measure Borgonovo and Apostolakis (2001). These techniques belong to the

family of perturbation approaches. Perturbation analysis has been employed in the works

of Glasserman and Tayur (1995), and Bogataj and Bogataj (2004) to analyse the stability

of inventory systems. By construction, perturbation techniques entail the requirements

of smoothness (di¤erentiability) in the model output and of small changes in the inde-

pendent variables. In a variety of managerial applications, however, parameters undergo

�nite variations, inducing discrete/non-smooth changes in the decision-support criterion.

We illustrate the issue by means of a sample inventory management problem.

Consider a decision-maker who is selecting an inventory policy supported by a quanti-

tative model. The optimal order quantity (Q�) is the solution of an optimization problem

involving the minimization (maximization) of a given loss (utility) function. � We do

not require that the analytical expression of the model is known to the decision-maker;

the model can be considered a black-box. � The value of Q� depends upon the numerical

values assigned to the parameters of the inventory model at hand (contractual values for

�xed and variable costs, demand, macroeconomic factors, etc.). Let Q�0 be the value of

the optimal order quantity given the values of the exogenous variables at time t = 0. The

next evaluation of the optimal order policy takes place at a di¤erent time, t = 1. The

external conditions are likely to change with a corresponding variation in the values of

the exogenous variables. The model is then updated with the new data. The optimal

order quantity shifts to Q�1. Correspondingly, actions are taken to implement the new

order policy Q�1 instead of Q
�
0. As the exogenous variables are not under the direct control

of the decision-maker, Q� can increase or decrease and the change �Q� = Q�1 � Q�0 is,
in general, �nite2. In this situation, �... �nding out what it was about the inputs that

made the outputs come out as they did (Little (1970); p. B469)�is an essential informa-

tion for management purposes. This task, however, cannot be accomplished by means of

di¤erentiation-based approaches, as they rest on the assumption of small changes. Thus,

they would be inconsistent with the managerial problem at hand.

2The previous example can be generalized to all those applications in which a decision-support model is
utilized to corroborate the decision-making process. The model estimates the decision support criterion,
y. Let y0 be the value of the criterion at a certain stage. The model is kept alive and adjourned for new
information. New numerical values are factored into the model as new data become available. Thus, at
a subsequent stage the valuation criterion assumes a new value new value, y1, which di¤ers, in general,
from y0 by a �nite jump. It is even not infrequent that the two values provide very di¤erent indications
on the decisions to be adopted.
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Our purpose is to build a methodology that allows to apportion any model output

change to the contribution of individual factors and factor groups. Towards this goal, the

�rst issue one faces is the de�nition of the mathematical background. It is, in fact, shown

in several works (among of the �rst ones is Flavell and Salkin (1975)) that a Taylor expan-

sion necessarily leads to approximate results when describing �nite changes. Therefore,

we do not resort to a di¤erential expansion, but to the integral function decomposition

of the high dimensional model representation (HDMR) theory (Rabitz and Alis (1999)).

We show that any change in model output can be decomposed in a �nite number of

terms without approximations. Consistently with this result, we introduce new sensitiv-

ity measures that allow to appreciate individual contributions and the contributions of

parameter interactions and groups. We show that the new sensitivity measures allow us

to drop the smoothness requirement in the model output and the assumption of in�nites-

imal parameter changes. We prove that the measures provide the extension of classical

di¤erential approaches by showing that they converge to comparative statics indicators

when changes become small.

We next turn to the derivation of managerial insights. Several works highlight is-

sues in communicating SA results to decision-makers (Eschenbach (1992); Jansen et al

(1997); Koltai and Terlaky (2000)). Saltelli and Tarantola (2002) propose the concept

of �Setting�as the key for structuring the information contained in the SA exercise (see

Saltelli and Tarantola (2002), page 704). We formulate three Settings (without claiming

exhaustiveness) for our problem. The �rst Setting concerns the determination of the

e¤ect (direction of change) on the model output of both individual and simultaneous

variations in the parameters. The approach allows the analyst to understand whether

the interactions of pairs, triplets and any order group of factors amplify or smoothen

individual e¤ects. The second Setting leads to the identi�cation of the key-drivers of the

problem. Analysts can then single out the parameters that deserve further attention.

Decision-makers are provided with information on the factors that on which to focus

during implementation. The third Setting is of a more technical nature. It is related to

gaining information on model structure, so as to provide the model user with the indi-

cation of whether the model response is additive (i.e. governed by individual e¤ects) or

non-additive (i.e., governed by interactions).

The methodology is illustrated via a numerical case study. We tackle the explanation

of the discrete change in Q� provoked by new values of the exogenous variables of the

Luciano and Peccati (1999)�s modi�ed EOQ model. The �nite change sensitivity indices

are computed via implementation on a Matlab Subroutine. We discuss the numerical

�ndings in the light of the three Settings for the derivation of managerial insights. We

compare the results to those obtained by applying the di¤erential sensitivity approach

developed in Borgonovo (2008). As we are going to see, a relevant discrepancy appears

in the identi�cation of the key-drivers. The discrepancy is then explained both from the
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mathematical and informational viewpoints. The �ndings underline the inconsistency in

employing di¤erential approaches in managerial problems involving the �nite changes.

The remainder of the paper is organized as follows. Section 2 provides the mathe-

matical foundations of the approach to SA with �nite changes. Section 3 introduces new

sensitivity measures for SA with �nite changes and illustrates their properties. Section 4

deals with the derivation of managerial insights from the approach. Section 3 relates the

new sensitivity measures to classical di¤erential indicators. Section 6 describes the ap-

plication of the new approach and the derivation of managerial insights in the context of

an inventory decision-making problem supported by a non-linear programming modi�ed

EOQ model. Conclusions are o¤ered in Section 7.

2 The Decomposition of a Finite Change in a Finite Number of Terms

This Section deals with the technical background related to the decomposition of �nite

changes.

We consider a decision-making problem supported by the creation of a quantitative

support model. The model output estimates the decision-support criterion (y). (see

Table 1 for notation) The dependence of y on the parameters (x) is expressed by the

relationship:

y = f(x), f : X � Rn ! R (1)

where X is the parameter space. y0 denotes the value of y when the parameters are

�xed at point x0 2 X. If external conditions change and new information becomes

available (or when, in a scenario analysis, the decision-maker tests the model at new

values to corroborate model results) the parameters shift from x0 to x1 2 X and a

new value of y [y1 = f(x1) ] is obtained. We denote the corresponding changes by

h = x1 � x0 and �y = y1 � y0. In the literature, the derivation of sensitivity measures
is usually accomplished as follows (Helton (1993) provides an accurate description). The

assumption of small changes is stated (h!dx); �y is approximated through a �rst order
Taylor series; partial derivatives are selected as sensitivity measures (see also Samuelson

(1947)). However, when changes are not in�nitesimal, the information derived from

partial derivatives cannot be utilized (for an early discussion of such a problem in linear

programming see Flavell and Salkin (1975)) as Taylor series requires an in�nite number

of terms to guarantee perfect accuracy3.

3The inclusion of higher order terms in the Taylor expansion is a �rst possible way to improve the
approximation of �y Griewank et al (2000). Requiring that f 2 Cr at least, then one can approximate
�y as:

�y = y1 � y0 =
Pn

i=1 f
0
i(x

0)hi +
Pn

j=1

Pn
i=1 f

00

i;j(x
0)hihj + :::+

+:::+
Pn

s1=1

Pn
s2=1

:::
Pn

sr=1
f
r

s1;s2;:::;sr (x
0)hs1hs2 :::hsr + o(khk

r
)

(2)

However, the order r at which to stop the expansion to obtain a given numerical accuracy is not known in
advance. Thus, to inspect the e¤ect of adding a further term, one is forced to compute it. As Griewank et
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An alternative background is o¤ered by the High Dimensional Model Representation

(HDMR) theory. HDMR has been introduced in Rabitz and Alis (1999), and next consol-

idated in the works of Sobol�(2003) and Sobol�et al (2007). HDMR is the generalization

of Functional ANOVA. Historically, Functional ANOVA is related to Hoe¤ding�s work in

the 1940�s (Hoe¤ding (1948)). The so called jackknife decomposition of variance is proven

in the seminal work of Efron and Stein (1981). A generalization of such a decomposition

is next found in Takemura (1983). In 1990, Sobol�(in Russian, see Sobol�(1993)) derives

the same result via multi-dimensional nested integrations.

We present the theory in the formulation of Rabitz and Alis (1999) (see Table 1 for

notation). The parameter space X is complemented by a Borel algebra and a product

measure � the probability space is (X,A,�). � The function f is an element of a linear

space of functions, z. The following result is proven in Takemura (1983) and next in
Rabitz and Alis (1999).

Lemma 1

z = z0 �
nX
i=1

zi �
nX
i<j

zi;j � :::�z1;2;:::;n (3)

where � is the direct sum operator and the subspaces are de�ned as:8>>>>>><>>>>>>:

z0 � ff 2 z : f = a 2 Rg
zi �

�
f 2 z : f = fi(xi) with

R
fi(xi)d�i = 0

	
zi;j �

�
f 2 z : f = fi;j(xi;xj) with

R
fi;j(xi;xj)d�i = 0 and

R
fi;j(xi;xj)d�j = 0

	
::::

z1;2;:::;n =
�
f 2 z : f = f1;2;::;:n(x1;x2; :::; xn) with

R
f1;2;::;:n(x1;x2; :::; xn)d�k = 0, k = 1; 2; :::; n

	
(4)

In eq. (3), z0 is the set of functions constant over X; zi is the set of functions that
depend only upon xi and with null expectation; zi;j is the set of bivariate functions with
null conditional expectations, and so on so forth (see also Rabitz and Alis (1999)). Any

function f can then be decomposed as follows (Sobol�(1993), Rabitz and Alis (1999)).

Theorem 1 Let f 2 L1 (X) and d� =
nY
i=1

d�i. Then, the following decomposition of f

al (2000) underlines, one cannot compute the rth term of the expansion by itself, but needs to estimate all
orders s < r. For each added term, the computational cost is not constant but increases exponentially
with s Griewank et al (2000). Thus numerical complications may arise, especially in application to
large models. In addition, the use of higher order di¤erentials is applicable only when f possesses the
required regularity (e.g., f 2 Cr(X)). Furthermore, deriving sensitivity measures from eq. (2) is not
straightforward, as one cannot combine partial derivatives of di¤erent orders (see Helton (1993)) �
observe that this problem is not there within a �rst order approximation framework, as only �rst order
partial derivatives are there. �
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is unique (Sobol�(1993), Rabitz and Alis (1999))4:

f(x) = f0 +
nX
i=1

fi(xi) +
X
i<j

fi;j(xi; xj) + :::+ f1;2;:::n(x1; x2; :::; xn) (5)

where 8>>>><>>>>:
f0 = E�[Y ] =

R
���
R
f(x)d�

fi(xi) = E�[Y jxi]� f0 =
R
���
R
f(x)

Q
k 6=i d�k � f0

fi;j(xi;xj) = E�[Y jxi; xj]� fi(xi)� fj(xj)� f0
:::

(6)

As proven in alternative ways in Efron and Stein (1981), Sobol� (1993), Takemura

(1983) and Rabitz and Alis (1999), the functions fi1;i2:::;ik(xi1;xi2 ; :::; xik) are orthogonal.

Orthogonality implies that the �rst order terms in eq. (5), fi(xi), represent the individual

e¤ects of the parameters; the second order terms, fi;j(xi;xj), represent the residual e¤ect of

the interaction between xi and xj; similarly, higher order terms in the expansion represent

the synergies of the corresponding parameter groups. When f is square integrable (i.e.,

f 2 L2(X)), the orthogonality of the terms in eq. (5) enables the complete decomposition
of the output variance Efron and Stein (1981)5:

V =
nX
i=1

Vi +
X
i<j

Vi;j + :::+ V1;2;:::n =
nX
k=1

X
i1<i2:::<ik

Vi1;i2;:::;ik (7)

with

Vi1;i2;:::;ik =

Z
� � �
Z
[fi1;i2;:::;ik(xi1 ; xi2 ; :::; xik)]

2
Y

m=i1;i2;:::;ik

d�m (8)

The terms Vi1;i2;:::;ik (k = 1; 2; :::; n) [eq. (8)] are called partial variances. Eqs. (7) -

(8) have been extensively studied in global SA (Sobol�(1993), Wagner (1995), Homma

and Saltelli (1996)), both from the computational and theoretical viewpoints. In par-

ticular, Homma and Saltelli (1996) introduce the global sensitivity indices of order k

(k = 1; 2; :::; n):

Ski1;i2;:::;ik =
Vi1;i2;:::;ik
V

(9)

Ski1;i2;:::;ik is the fraction of the variance associated with the interaction of parameters

xi1 ; xi2 ; :::; xik . An application of the global sensitivity indices to a modi�ed EOQ model

can be found in Borgonovo and Peccati (2007).

Theorem 1 allows to achieve the decomposition of a �nite change in a �nite number

of terms. In fact, the following result holds.

4For the notation in the last equality of eq. (5), see Sobol�(2003).
5For eq. (7) to hold, the assumption f 2 L2 (
) is required ( Sobol�, 1993; Efron and Stein, 1981).

Such an assumption can be relaxed to f 2 L1 (
) if the existence of the sole function decomposition [eq.
(5)] is required. Thus, throughout this paper, the only requirement on f is its integrability.
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Theorem 2 Let (X;A; �) a measure space and f 2 L1(X) a measurable function. Then,
for any x0 and x1 = x0+h belonging to X and for any measure � satisfying the assump-

tions of Theorem 1, the following holds:

�y = f(x1)� f(x0) =
nX
i=1

�fi +
X
i<j

�fi;j + :::+�f1;2;:::n (10)

The proof is in Appendix A. Some observations on Theorem 2 follow.

1. In eq. (10), the summands are the changes in the terms of the function decomposi-

tion in eq. (5). There are, therefore, 2n�1 terms. Through eq. (10), one overcomes
the limitations of Taylor expansion [eq. (2)], which involves an in�nite number of

terms to describe a �nite change.

2. Theorem 2 requires measurability of f (f 2 L1(X)) while for an exact Talyor
decomposition one would need f 2 C1(X). Thus, Theorem 2 applies to a vaster

class of models (even models with discontinuous output) than Taylor expansion.

In the next Section, we describe the derivation of sensitivity measures for �nite changes

that stem from Theorem 2.

3 Sensitivity Measures for Finite Changes

In this Section, we derive sensitivity measures that descend from eq. (10) and that

describe the model sensitivity to �nite changes in the parameters.

Theorem 2 holds for any product measure. In this respect, it is a generalization of

a result proven in Rabitz and Alis (1999) and next reported in Sobol�(2003) [eq. 7, p.

188]. In those works, the decomposition of a �nite change is obtained with reference to

the sole Dirac ��measure. The choice of the Dirac-� measure has, however, important
operational consequences. The following Corollary holds (the proof is in Appendix A).

Corollary 1 Let x0 and x1 = x0+h be any two points in X. Under the assumptions of

Theorem 2, consider the Dirac-� measure d� =
nY
i=1

�(x1i � x0i )dxi. Then,

�y = f(x1)� f(x0) =
nX
i=1

�if +
nX
i<j

�i;jf + :::+�1;2;:::;nf =
nX
k=1

X
i1<i2:::<ik

�i1;i2;:::;ikf

(11)

where 8><>:
�if = gi(xi)� f(x0)

�i;jf = gi;j(xi; xj)��if ��jf � f(x0)
:::

(12)
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and 8><>:
gi(xi) = f(x

0
1; x

0
2; :::; x

0
i�1; x

1
i ; x

0
i+1; :::; x

0
n)

gi;j(xi; xj) = f(x
0
1; x

0
2; :::; x

0
i�1; x

1
i ; x

0
i+1; :::; x

0
j�1; x

1
j ; x

0
j+1; :::; x

0
n)

:::

(13)

Eq. (11) states that the change �y is the sum of terms of increasing dimensionality

(�i1;i2;:::;ikf , k = 1; 2; :::; n). The �rst order terms �if [eq.(12)] are individual contribu-

tions, with one parameter at a time varying from x0i to x
0
i + hi. They are the di¤erence

between: a) gi(xi) [eq. (13)], which represents the value of y with all parameters at their

base case value but xi [gi(xi) = f(x01; x
0
2; :::; x

0
i�1; x

1
i ; x

0
i�1; :::; x

0
n)] and b) the base case

value of the model, f(x0). The second order terms �i;jf account for the additional por-

tion of the change caused by the interaction of all parameters pairs. They are computed

as the di¤erence between: a) gi;j(xi; xj) [eq. (13)], which is the value that y attains when

xi and xj are moved to x1i and x
1
j , while all other parameters are �xed at their base

case value and b) the changed caused by xi and xj individually (respectively the �rst

order terms �if and �jf) and c) y0. The third order terms account for the additional

contribution coming from the interaction of triplets and are computed in a similar way.

Continuing in the decomposition, higher order terms represent the contributions of higher

order interactions, till the residual term of order n.

To introduce sensitivity indicators that capture individual and interaction e¤ects, we

propose the following de�nitions.

De�nition 1 We call the quantity

'ki1;i2;:::;ik = �i1;i2;:::;ikf (14)

�nite change sensitivity index of order k.

'ki1;i2;:::;ik is the contribution to the �nite change in y of the interaction of parame-

ters xi1 ; xi2 ; :::; xik . This follows from the orthogonality of the terms in eqs. (5) and

(11). 'ki1;i2;:::;ik plays for a �nite change the same role as Vi1;i2;:::;ik [eq.(8)] for variance

decomposition.

As we are to learn shortly, it is also informative to consider the normalized version of

the indices:

�i1;i2;:::;ik =
�i1;i2;:::;ikf

�f
(15)

�i1;i2;:::;ik is the fraction of the �nite change associated with the interaction among para-

meters xi1 ; xi2 ; :::; xik . �i1;i2;:::;ik compares to S
k
i1;i2;:::;ik

, as 'ki1;i2;:::;ik compares to Vi1;i2;:::;ik .

From De�nition 1, one can then introduce the �rst and total order sensitivity indices:

De�nition 2 The �rst order �nite change sensitivity indices are de�ned as

'1l = �lf (16)
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and, in normalized version:

�1l =
�lf

�f
(17)

'1l [eq.(16)] is the contribution to �f of the change in xl alone. �
1
l [eq.(17)] is the

fraction of the change in f due to the variation of xl alone.

De�nition 3 the total order sensitivity indices are de�ned as:

'Tl = �lf +
X
l 6=j

�l;jf + :::+�1;2;:::nf =

nX
k=1

X
l2i1;i2;:::;ik

'ki1;i2;:::;ik (18)

and

�Tl =
�lf +

P
l 6=j �l;jf + :::+�1;2;:::nf

�f
=

Pn
k=1

P
l2i1;i2;:::;ik '

k
i1;i2;:::;ik

�f
(19)

where the sums are extended to all terms in eq. (11) involving xl.

'Tl [eq.(18)] is the contribution to �f of the change in xl by itself and together with

its interactions with all other parameters and parameter groups. �Tl [eq.(19)] is the

corresponding fraction of the change.

The following Proposition helps in clarifying the meaning of the total order sensitivity

indices ('Tl ) and shares a direct numerical implication (the proof is in Appendix A).

Proposition 1 The total order sensitivity indices are equal to

'Tl = �y ��y(�l) = f(x1)� f(x1(�l)) (20)

where �y(�l) is the jump in model output when all parameters vary but xl, and x1(�l) is

the point obtained by shifting all parameters at the new value, while keeping only xl at

the base case value [x1(�l) = (x
1
1; x

1
2; :::; x

1
l�1; x

0
l ; x

1
l+1; :::; x

1
n)].

According to eq. (20), 'Tl is the di¤erence between the change in y realized when all

parameters vary and the change in y realized when all parameters vary but xl. This gap

disappears as soon as xl moves from x0l to x
1
l . As eq. (19) and the Proof of Proposition 1

in Appendix A show, this gap is exactly equal to the sum of all terms in the decomposition

of�y [eq. (11)] containing xl, i.e., it equals 'Tl : Thus, '
T
l is the portion of�f is generated

by the change in xl. 'Tl [or its normalized version �
T
l ] represents the total e¤ect on the

decision-support criterion of a change in an exogenous variable.

Proposition 1 has also a signi�cant computational consequence. In fact, it allows to

estimate the total order sensitivity indices at a cost of n model runs. The total cost

for computing 'Tl and '
1
l is equal to 2n, which is the same cost of a Tornado Diagram

(Eschenbach, 1992). This result enables the estimation of the �nite change sensitivity

indices also in the presence of computationally intensive models.
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From a more general standpoint, the �rst order indices '1l are one-parameter-at-a-time

sensitivity measures and contain the same information as Tornado Diagrams Eschenbach

(1992). Our discussion shows that, when a model is non-additive, one parameter-at-a-

time techniques do not capture the �total impact� (Eschenbach (1992); p. 45) of the

independent variables, but only their individual e¤ects. The total impact is, instead,

captured by 'Tl .

In the next Section, we discuss a method to formalize the derivation of managerial

insights from the �nite change sensitivity indices. The method is based on Saltelli and

Tarantola�s �Settings�(Saltelli and Tarantola (2002)).

4 Managerial Information and SA Settings

Eschenbach (1992) highlights the need to organize information obtained from any SA ex-

ercise in order not to �overwhelm managers with data (Eschenbach (1992))�. Little (1970)

in his early work on the use of models by managers, states that �The manager should be

able to change inputs easily and obtain outputs quickly�(Little (1970), p. B470). Jansen

et al (1997) and Koltai and Terlaky (2000) point out the di¤erences between mathemat-

ical and managerial interpretation of SA information in linear programming. Wallace

(2000) and Higle and Wallace (2003) warn modelers about the risk of inconsistency be-

tween the managerial problem at hand and the employed SA method. Such issues are

recognized and addressed in Saltelli and Tarantola (2002) and Saltelli et al (2004). These

works introduce the concept of �Setting�(Saltelli and Tarantola (2002); p. 704) as a tool

to let SA information match the managerial questions. The �rst step is a clear statement

of the decision-maker/analyst�s question. This statement is called a Setting. Given a

Setting, one identi�es the SA method that delivers the proper insights.

Without the claim of being exhaustive, we state three Settings for this work. The �rst

one stems from Samuelson�s (1947) statement �... to derive de�nite qualitative restrictions

upon the response of our system to changes in certain parameters�(Samuelson (1947) p.

20). Recalling that in Samuelson (1947) changes are individual and small, while in this

work changes can be simultaneous and �nite, we then introduce the following Setting 1.

Setting 1: What is the direction of change in the model output due to individual or
simultaneous changes in the parameters?

Setting 1 is indeed composed of two parts. The �rst one concerns individual e¤ects, the

second one concerns joint e¤ects. Answering the �rst part, the decision-maker establishes

whether the change in xl (alone) increases or decreases the value of the decision-support

criterion. Answering the second part, she/he determines whether the joint change in two

(or more) variables leads to an ampli�cation of their individual e¤ects (cooperation), or

softens their individual e¤ects (interference). Sensitivity measures for this Setting are the
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indices ' [eqs. (14), (16) and (18)]. In particular, the sign of '1l , delivers information on

the direction of change in y due to the change in xl alone; the sign of 'ki1;i2;:::;ik indicates

whether the simultaneous change results in cooperation or interference; the sign of 'Tl
provides information on the direction of change in y due to the total e¤ect of xl.

From a risk-management viewpoint, Setting 1 enables the decision-maker to know

what factors hedge each other�s variations.

The second Setting stems from the managerial question of identifying the factors on

which to focus during implementation (see Eschenbach, 1992; p. 40-41, directly quoted

in Section 1). We therefore introduce the following Setting 2.

Setting 2: What are the key-drivers of the change?

To answer Setting 2, one needs to determine the importance of the exogenous vari-

ables and to rank them. The magnitudes of the total order sensitivity indices 'Tl [or in

normalized version �Tl ] are the natural importance measures for this Setting. In fact '
T
l

or (�Tl ) convey the total e¤ect of parameter xl, synthesizing its individual contribution

and the contribution deriving from all its interactions with the other parameters (see

Proposition 1).

We �nally introduce a third Setting.

Setting 3: What is the structure of the model response?

In comparison to Settings 1 and 2, Setting 3 is of a more technical nature and aims at

providing the modeler with insights on whether the model response is the superimposition

of individual e¤ects or of their interactions. In the �rst case, one says that the model

is additive. In the second case, the model is non-additive. Setting 3 is answered by the

decomposition of f in eq. (11), i.e., by the knowledge of the �rst, second, third order

(and so on) e¤ects. The sensitivity measures for Setting 3 are, then, the magnitudes

of the terms in the decomposition of eq. (11), i.e., j'ki1;i2;:::;ik j. Conversely, in Setting 1
the sign of 'ki1;i2;:::;ik is of interest. If the complete decomposition is not achievable due

to computational complexity, one can take as indicators the di¤erences 'Tl � '1l . These
di¤erences, if null, signal that interaction e¤ects are irrelevant [see Section 3]. On the

other hand, j'Tl � '1l j >> j'1l j implies that the relevance of a parameter is attributable
to its cooperation with the others, rather than to its individual e¤ect.

We are now left with the question of determining the relationship between the �nite

change sensitivity indices of eqs. (14) - (19) and the classical indicators of di¤erential

analysis and comparative statics. This subject is discussed in the next Section.

5 Relationship to Comparative Statics

In Borgonovo (2008) a methodology for identifying the key-drivers of optimal inventory

policies in the presence of small changes is proposed. The purpose of this Section is to
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investigate the relationship between the �nite change sensitivity indices introduced in

Section 3 [eqs. (14) - (19)] and the di¤erential indicators of Borgonovo (2008).

Comparative statics has been introduced in Samuelson (1947) (for a generalization,

see Caputo and Paris (2008)) and o¤ers the most general framework for the di¤erential

SA of model output.

Let

t(y; x) = 0 t : Y �X ! T � Rm with Y � Rm, X � Rn (21)

be the relationship that links the endogenous variables y = (y1; y2; :::; ym) and the exoge-

nous variables x (see Table 1 for notation). If t 2 Cr(Y � X), the set of points x that
solves eq. (21) implicitly de�nes the Cr-functions, y = f(x) [eq. (1)]. The �rst order

sensitivity is governed by the comparative statics equation (Samuelson (1947)):

Jydy + Jxdx=0 (22)

where J denotes the Jacobian of t. The solution to this equation is the matrix CS

CS = �J�1y Jx (23)

whose elements are the partial derivatives of y with respect to x, i.e., CS = [csj;i : csj;i =

y0j;i,
j = 1; 2; ::;m

i = 1; 2; :::; n
].

The sign of csj;i indicates the directions of change in endogenous variable yj after

a small increases (dxi) in exogenous variable xi. Thus, in the case of small parameter

changes, the elements of matrix CS are the appropriate sensitivity indicators to answer

Setting 1 (see also Borgonovo (2008)). Matrix CS, however, cannot be utilized to identify

the key-drivers of the problem. Geometrically, this is connected with directionality issues.

Operationally, this is due to the fact that when parameters have di¤erent dimensions,

the corresponding derivatives are not comparable (see Borgonovo (2008) for a complete

discussion). The importance of an exogenous variable is, instead, appreciated via the

elements of matrix �, de�ned as Borgonovo (2008):

� =

266664j;i : j;i = diyj
nX
s=1

dsyj

= Dj;i,
j = 1; 2; ::;m

i = 1; 2; :::; n

377775 (24)

In eq. (24), i;j is the fraction of the di¤erential of output yj associated with the (small)

change in xi (see Borgonovo (2008)). In other words, an elements of � is the di¤erential

importance (Borgonovo and Apostolakis (2001)) of parameter xi with respect to output

yj (j;i = Dj;i). Borgonovo (2008) shows that � generalizes partial derivatives and elastic-
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ities. For optimization problems, Borgonovo (2008) proves that � can be derived by the

knowledge of the Bordered Hessian of the Lagrangian function of the problem. Matrix �

allows to identify the key-drivers of the changes in exogenous variables due to di¤erential

changes in the parameters. The magnitude of the elements of � are therefore appropriate

sensitivity indicators to answer Setting 2 in the case of small changes (see also Borgonovo

(2008)).

To investigate the relationship between the �nite change sensitivity indices and the

di¤erential sensitivity indicators, we need to study the behavior of ' and � as the mag-

nitude of the changes decreases. We also need to restrict attention to those models that

satisfy the di¤erentiability assumptions necessary to estimate CS and �. The following

result holds (the proof is in Appendix A; for notation simplicity, we consider m = 1).

Theorem 3 Let f be di¤erentiable and such that rf is not orthogonal to h: Then:

1. 8<: limh 7!0
'Tl
hl
= limh 7!0

'1l
hl

limh 7!0�
T
l = limh 7!0�

1
l

(25)

2. and: 8><>:
limh 7!0

'Tl
hl
= csl

limh 7!0�
T
l =

dlf
df

= l

(26)

Theorem 3 shares the following interpretation.

Remark 1 1) The equalities in eq. (25) state that the total order sensitivity indices tend
to the same limit as the �rst order sensitivity indices when changes becomes small. This

implies that, for di¤erentiable models, interaction terms (�i1;i2;:::;ikf) become signi�cant

only when changes are not small. Thus, a di¤erentiable model is always additive when

changes are in�nitesimal.

2) The equalities in eq. (26) show that the limits are the di¤erential indicators of compar-

ative statics derived from Taylor expansion. This implies that the �nite change sensitivity

indices extend the sensitivity measures of comparative statics analysis to the case of �nite

changes.

Theorem 3 has a further implication: neither matrix CS nor matrix � can be utilized

to answer Setting 3. Theorem 3, in fact, states that any di¤erentiable model responds ad-

ditively to perturbations in the parameters. Thus, no interactions e¤ects can be detected

by matrices CS and/or �.

In the next Section, we compare the use of the �nite change sensitivity indices and

of matrices CS and � in the SA of a non-linear programming inventory management

problem.
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6 Application: a modi�ed EOQ model Sensitivity Analysis

We consider a �rm that selects the optimal order quantity supported by the inventory

management model proposed in Luciano and Peccati (1999). This modi�ed EOQ model

enables the evaluation of Q� with explicit consideration of the �nancial aspects of the

problem. We refer the reader to Luciano and Peccati (1999) for the complete illustration

of the model, and to Borgonovo (2008) for its comparative statics analysis. We propose

a concise presentation of the model main aspects.

Key-features of the model are the focus on the cash �ows of the inventory system and

their aggregation through the Adjusted Present Value (APV) approach. Demand, R, is

assumed constant. This leads to the (usual) constant inventory cycle length T =
Q

R
.

Holding costs are assumed proportional to Q, through a (a is a unit order cost per unit

time and per unit quantity). Denoting the price of an inventoried good by u and the

order cost per cycle by �, the cash �ow generated by the inventory cycle is equal to�
u+

a

2

�
Q+�. In the Luciano-Peccati modi�ed EOQ model, holding costs are exclusive

of �nancial charges, which are implicitly accounted for in the discount process. Denoting

by � the cost of capital and considering an in�nite horizon, the inventory system loss

function is:

L(Q;�) =
+1X
s=0

[
�
u+

a

2

�
Q+ �]e

�s
�Q

R =

�
u+

a

2

�
Q+ �

1� e��Q=R (27)

Q� is then found by solving the �rst order condition:

L0Q(Q; x) =
�
1

2
a+ u

��
e
Q
R
� � 1

�
R� �

�
� +Q

�
1

2
a+ u

��
= 0 (28)

By eq. (28), Q� depends on the following �ve parameters:

x =
h
x1 = u x2 = a x3 = R x4 = � x5 = �

i
At t = 0 information available to the management allows to set the parameters at

x0 =

"
u0 [$ per item] a0 [$ per Item] R0 [Items] �0 [$] �0

10 1 8000 30 0:07

#
(29)

Correspondingly the modi�ed EOQ is Q�0 �= 807. At t = 1, changes in external conditions
and new information lead to the following values of the exogenous variables:

x1 =

"
u1 [$ per item] a1 [$ per Item] R1 [Items] �1 [$] �1

13 2 8538 23 0:075

#
(30)

With these values, the new modi�ed EOQ is Q�1 = 611. Hence, there is a 24% drop in
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optimal order quantity (the �nite change is �Q� = �196).
We now illustrate how the �nite change sensitivity indices enable one to explain the

fall. The numerical values of the �nite change sensitivity indices of all orders are reported

in Table 2.

[Insert Table 2 almost here]

Table 2 shows that �rst and second order sensitivity indices are relevant, while higher

order terms are negligible. The change in u alone accounts for a decrease of 95 units in

Q� ('1u = �95). Similarly the individual e¤ects of a, � and � correspond to decreases
of 19, 100 and 27 units in Q�. Conversely, the change in R provokes an increase in Q�

of 27 units. The sum of the �rst order indices equals �214. However, the change in
Q� equals �196 units. This means that individual e¤ects are contrasted by higher order
terms. Table 2 shows that the most relevant interaction is the one between unit price

(u) and order costs, �: 'u� equals +12. The positive sign means that the interaction

between u and � smoothens their individual e¤ects, and is associated with a 12 unit

increase in optimal order quantity. The second most important interaction is the one

between unit price, u, and holding costs, a. It accounts for a change equal to 6. Also in

this case, the positive sign indicates that the interaction between a and u softens their

individual e¤ects. The sum of the second order indices equals +19. Thus, �rst and second

order terms are associated with a change equal to �195. The residual unit is due to the
sole non-null third order interaction term, '3a��, which accounts for the remaining 1 unit

reduction in Q�.

The overall e¤ect of the parameter changes is captured by the total order indices ('Tl ),

which are displayed in Table 3.

[Insert Table 3 almost here]

In Table 3 the value 'Tu = �78 indicates that unit prices (u) are responsible for a
decrease in Q� of 78 units. The magnitude of the corresponding normalize index, j�Tu j =
0:4, denotes the fraction of the change in Q� associated with u. Similar considerations

hold for the remaining indices reported in Table 3.

Let us then interpret the results in the light of the Settings (Section 4).

As far as the direction of change is concerned (Setting 1), the �rst order indices

(Table 2) show that the individual changes in unit price (u), unit holding costs (a), order

costs (�) and cost of capital (�) have a negative impact on Q�. Conversely, a change in

demand (R) alone increases Q�. However, the individual e¤ects are partially softened by

interactions, which play in the opposite directions. The overall e¤ect of the parameters

is then synthesized in the total order sensitivity indices. We that 'Tu , '
T
a , '

T
� and '

T
� are
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negative, while 'TR is positive (Table 3). In terms of Setting 1, this means that the overall

e¤ect of the changes in u, a, � and �, respectively, is a decrease in Q�, while the overall

e¤ect of the change in R is an increase in Q�.

As far as the identi�cation of key-drivers is concerned (Setting 2), the (magnitudes of)

the total order sensitivity indices (j�Tl j) are the appropriate sensitivity measures (Section
4). The values of j�Tl j for the present case study are reported in the second row of Table
3. Table 3 shows that the key-drivers of the change are unit order cost (�) and unit price

(u), with the other factors playing a minor role.

Note that the reduction in order costs (� changes from 30 to 23) allows a greater

order frequency thus implying a lower value of Q�. In its turn, the increase in unit price

of the goods leads to decreasing the quantities that are purchased. Table 3 shows that it

indeed the combination of these two e¤ects explains around 80% of the change.

Finally, in terms of Setting 3, one notes that individual e¤ects prevail over interactions

e¤ects in the present application.

We compare our �ndings to the results obtained by applying matrices CS and � to

the same model. As far as Setting 1 is concerned, an overall agreement in the signs of

the elements of matrix CS and the �rst order indices is registered. Thus, the �rst order

terms preserve the sign of the comparative statics indicators, in this application. Note

that one cannot extend the comparison to higher order indices (see Section 5). As far

as Setting 2 is concerned, Table 4 compares the ranking obtained with matrix � to the

ranking obtained with the total order �nite change sensitivity indices. Note that � and u

� they ranked �rst and second by the total order sensitivity indices � are ranked only

third and fourth by matrix �. Conversely, R and � are ranked �rst and second by matrix

�, while they ranked fourth and third, respectively, with the �nite change sensitivity

indices. Thus, the key-drivers of the di¤erential change are not the key-drivers of the

�nite change. Besides the mathematical explanation (�nite vs di¤erential changes) there

is an informational aspect to be considered. Matrices CS and � are de�ned in such a

way to make their use proper in a perspective mode, i.e., when the decision-maker knows

the current value of the parameters, x0, but is not aware of what the realized change in

the parameters will be. At t = 1, however, the actual change of the parameters becomes

available: one then needs to incorporate this information into the analysis. It is, indeed,

the fact that the �nite change sensitivity indices give full consideration to actual changes,

that makes them the proper sensitivity measure for the types of problems addressed in

this work.

7 Conclusions

Decision-support models are essential to the solution of managerial problems in several

areas. Numerical results are determined by the assumptions concerning the model pa-
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rameters. When the corresponding assumptions are monitored over time and numerical

values are updated, or when the parameters are varied through di¤erent scenarios to

corroborate the model results, the decision-criterion is subject to changes that are not

necessarily in�nitesimal. In these situations, the task of explaining model results cannot

be accomplished through SA techniques based on di¤erentiation.

We have presented a methodology that allows one to apportion the change in model

output to the changes in the exogenous variables. The approach rests on the HDMR

theory, which we have used as a mathematical rationale alternative to Taylor expansion.

We have �rst shown that it is possible to decompose any change in model output in a

�nite number of terms without approximations. We have introduced sensitivity measures

(��nite change sensitivity indices�) that allow to appreciate the contribution of factors

not only individually but also in groups. We have discussed the properties of the new

sensitivity measures and seen that they converge to comparative statics and di¤erential

sensitivity measures for small changes. As a result, the �nite change sensitivity indices

represent an extension of the classical comparative statics indicators. Furthermore, as

the sole regularity assumption is measurability, the method is applicable to non-smooth

models, thus broadening the class of functions that can be approached with di¤erential

SA methods.

The method allows to appreciate the e¤ect of interactions. The total order sensitivity

indices ['Tl ; eq. (18) and Table 1] synthesize the e¤ect of changes in the parameters

accounting for both their individual and interaction e¤ects. We have proven a result

that allows the estimation of the total order indices at the same computational cost of

one-parameter-at-a-time methods. This results in a notable reduction in computational

cost, which makes the approach applicable also to complex models.

The derivation of managerial insights has been discussed next. As indicated by rel-

evant SA literature in OR, we have formulated the problem in terms of �Settings�, so

as to achieve consistency between the SA method and the managerial problem at hand.

We have introduced three settings that allow the explanation of the change and the

identi�cation of the key-drivers of the problem.

We have applied the �nite change sensitivity indices to the Luciano and Peccati

(1999)�s modi�ed EOQ model. The approach has allowed us to explain the 24% fall

in Q� provoked by a discrete change in the parameters. Order costs and unit price have

been identi�ed as key-drivers of the problem. We have also been able to dissect the

change and understand the portion due to the individual changes and to the cooperation

of the exogenous variables. Results show that interaction e¤ects indeed soften individual

e¤ects in our case. We have seen that di¤erentiation-based methods do not lead to the

proper key-driver identi�cation when applied to the same problem. This result con�rms

that the presence of �nite changes makes Taylor-based approaches not consistent with

the managerial problem at hand.
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We conclude with future research perspectives. A �rst line of research concerns the

generalization of the method. Currently the method is local in nature, as it explores the

parameter space in two locations. The conjunction with scenario analysis or Monte Carlo

simulation can extend the method to obtain a quasi-global technique. A second line of

research concerns the application of the method to other inventory management models

(Borgonovo and Peccati (2008)) and to the SA of decision-support models in alternative

management areas.

8 Appendix A: Proofs

Proof of Theorem 2. Let us start rewriting eq. (5) as:

f(x)� f0 =
nX
i=1

fi(xi) +
X
i<j

fi;j(xi; xj) + :::+ f1;2;:::n(x1; x2; :::; xn) (31)

At x+h 2 X we have:

f(x+h)�f0 =
nX
i=1

fi(xi+hi)+
X
i<j

fi;j(xi+hi; xj+hj)+:::+f1;2;:::n(x1+h1; x2+h2; :::; xn+hn)

(32)

Subtracting term by term eq. (31) from eq. (32), we have:

f(x+ h)� f(x) =
Pn

i=1 fi(xi + hi)�
Pn

i=1 fi(xi)+

+
P

i<j fi;j(xi + hi; xj + hj)�
P

i<j fi;j(xi; xj) + :::+

+f1;2;:::n(x1 + h1; x2 + h2; :::; xn + hn)� f1;2;:::n(x1; x2; :::; xn)
=
Pn

i=1[fi(xi + hi)� fi(xi)] +
P

i<j[fi;j(xi + hi; xj + hj)� fi;j(xi; xj)] + :::+
+[f1;2;:::n(x1 + h1; x2 + h2; :::; xn + hn)� f1;2;:::n(x1; x2; :::; xn)]

(33)

from which, letting �fi = fi(xi + hi)� fi(xi), �fi;j = fi;j(xi + hi; xj + hj)� fi;j(xi; xj),
eq. (10) follows.

Proof of Corollary 1. If d� =
nY
i=1

�(x1i � x0i )dxi , then each of the fi1;i2;:::;ik in eq. (10)

is the value of f obtained with xi1 ; xi2 ; :::; xik at x
1
i1
; x1i2 ; x

1
ik
and the remaining parameters

at their base case value.

Proof of Theorem 3. One needs to regard each of the terms in eq. (12) as functions.

We shall let h = x � x0 and use the notation dx when h ! 0. We start re-writing eqs.
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(12) as:8><>:
mi(xi) = �if(xi) = f(x

0
1; x

0
2; :::; xi; :::; x

0
n)� f(x0)

mi;j(xi; xj) = �i;jf(xi; xj) = f(x
0
1; x

0
2; :::; xi; :::; xj; :::; x

0
n)�mi(xi)�mj(xj)� f(x0)

:::

(34)

Let us now suppose that h7! 0 and that f is smooth (i.e., it can be expanded in Taylor

series). We �rst prove that, when changes are small, the following relationships hold:8>>>><>>>>:
mi(xi) ' f 0i(x0)dxi
mi;j(xi; xj) ' f 00i;j(x0)dxidxj
mi;j;k(xi; xj; xk) ' f 000i;j;k(x0)dxidxjdxk
etc:

(35)

We �rstly note that eq. (34) implies that the functionsmij:::k have the same di¤erentiabil-

ity properties of f . The �rst order terms can be expanded as mi(xi) = f
0
i(x

0)dxi+o(dxi);

from which the �rst line in eq. (35) follows. For the second order terms, we have

mi;j(xi; xj) = f(x
0
1; x

0
2; :::; xi; :::; xj; :::; x

0
n)�mi(xi)�mj(xi)� f(x0) =

= f(x0) + f 0i(x
0)dxi + f

0
j(x

0)dxj +
1
2
[f 00i (x

0) (dxi)
2 + 2f 00i;j(x

0)dxidxj + f
00
j (x

0) (dxj)
2]+

+ o(kdxk2)�mi(xi)�mj(xi)� f(x0)
(36)

As the changes dxi and dxj tend to zero, we can write:

f 0i(x
0)dxi + f

0
j(x

0)dxj +
1
2
[f 00i (x

0) (dxi)
2 + 2f 00i;j(x

0)dxidxj + f
00
j (x

0) (dxj)
2] + o(kdxk2)+

�f 0i(x0)dxi � 1
2
f 00i (x

0) (dxi)
2 � o(kdxik2)� f 0j(x0)dxj � 1

2
f 00j (x

0) (dxj)
2 + o(kdxk2)

= f 00i;j(x
0)dxidxj

(37)

The same reasoning leads to the third line in eq. (35), and one can proceed in the same

way for higher order terms. Combining eqs. (18) and (34), one gets:

'Tl = ml(xl) +

nX
j=1
j 6=l

mj;l(xl; xj) + :::+m1;2;:::;n(x1; x2; :::; xn) (38)

Utilizing eqs. (35) one can write:

'Tl = f
0
l (x

0)hl +
nX
j=1
j 6=l

f 00j;l(x
0)hjhl + :::+ f

n
1;2;::;n(x

0)h1h2:::hn + o(khkn) (39)
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Then:
'Tl
hl
= f 0l (x

0) +

nX
j=1
j 6=l

f 00j;l(x
0)hj + :::+ f

n
1;2;::;n(x

0)h1h2:::hn + o(khkn) (40)

Thus,

lim
h!0

'Tl
hl
= lim

h!0

2664f 0l (x0) + nX
j=1
j 6=l

f 00j;l(x
0)hj + :::+ f

n
1;2;::;n(x

0)h1h2:::hn + o(khkn)

3775 = f 0l (x0)
(41)

q.e.d..

Similarly for �Tl , we have:

�Tl =

f 0l (x
0)hl +

Pn
j=1
j 6=l
f 00j;l(x

0)hlhj + :::+ f
n
1;2;::;n(x

0)h1h2:::hn + o(khkn)

�f
(42)

As h7! 0, �f !df and the numerator tends to dlf , and, thus,

lim
h 7!0

�Tl =
dlf 0

df
= �l (43)

The equality of these limits with the �rst order indices is readily obtained by recalling

that the �rst term (f 0l (x
0)hl) descend from the �rst line in eq. (35), and that '1l = ml(xl).

Proof of Proposition 1. From eqs. (34) and eq. (11), we have that:

�y =
nX
i=1

�if+
nX
i<j

�i;jf+:::+�1;2;:::;nf =
nX
i=1

mi(xi)+
nX
i<j

mi;j(xi; xj)+:::+m1;2;:::;n(x1; x2; :::; xn)

(44)

Now, we have to deal with the situation in which xl stays �xed. To simplify the notation,

let us order the parameters so that xn is �xed. The change�y(�n) can be still decomposed

according to eq. (44), which becomes:

�y(�n) =

n�1X
i=1

�if +

n�1X
i<j

�i;jf + :::+�1;2;:::;n�1f (45)

Taking the term by term di¤erence between eqs. (44) and (45), one gets:

�y ��y(�n) = �nf +

n�1X
i=1

�inf + :::+
X

n2i1;i2;:::;in�1

�i1;i2;:::;in�1f +�1;2;:::;nf (46)

Now, to complete the proof, it su¢ ces to note that the right hand side of eq. (46) is
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indeed 'Tn (by De�nition 3).

We also propose an alternative proof. One can show that in eqs. (34) all terms that

contain xl become null when xl is �xed. Thus, the di¤erence between �y and �y(�l)
equals the sum of all terms in eq. (11) that contain xl, which is namely 'Tl . Thus,

we need to show that all terms containing xl become null, if xl does not vary. In fact,

evaluating ml(xl) at x0l one gets:

ml(x
0
l ) = f(x

0
1; x

0
2; :::; x

0
l ; :::; x

0
n)� f(x0) = 0 (47)

Consider then the second order terms in eqs. (34) and (11). From eqs. (12), (13) and

(47) one has:

f(x01; x
0
2; :::; x

0
l ; :::; xj; :::; x

0
n) = mj(xj) + f(x

0) (48)

Then, substituting in the second row of eq. (34), one has:

mj;l(x
0
l ; xj) = mj(xj) + f(x

0)�mj(xj)� f(x0) = 0 (49)

and similarly for the higher order terms. This completes the alternative proof.
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Table 1: Notation and list of symbols for this work
Symbol Meaning
Q� Numerical value of the Economic Order Quantity
y Decision-support criterion/model output
x = (x1; x2; :::; xn) Exogenous variables (parameters); factors in Eschenbach (1992)
X Parameter space
x0; x1 Any two sets of values the parameters can assume
h x1�x0
CS Comparative statics matrix
z Linear space of functions
� Measure
� Di¤erential importance matrix
Dj;i Di¤erential Importance of xi with respect to yj
fi1;i2;:::;ik Generic term in the HDMR expansion [eq.(5)]
Vi1;i2;:::;ik Partial Variance [eq. (8)]
Si1;i2;:::;ik Global sensitivity index of order k [eq.(9)]
�i1;i2;:::;ikf Orthogonalized change in f due to the changes in xi1 ; xi2 ; :::; xik [eq. (12)]
gi1;i2;:::;ik Value of f with parameters xi1 ; xi2 ; :::; xik shifted [eq. (13)]
'ki1;i2;:::;ik Finite change sensitivity index of order k [eq.(14)]
�i1;i2;:::;ik Normalized �nite change sensitivity index of order k [eq.(15)]
'1l /�

1
l First order �nite change sensitivity indices [eq. (16)/ normalized eq.(17)]

'Tl /�
T
l Total order �nite change sensitivity indices [eq. (18)/ normalized eq.(19)]

x1(�l) Point of X obtained by shifting all parameters at the new value but xl [eq.(20)]

Table 2: Finite change sensitivity indices for the case study
'1u '1a '1R '1� '1� '2�� '2�R '2�R '2�u '2�a '2Ra '2�u '2u�
�95 �19 27 �100 �27 3 �1 �3 1 2 �1 3 12

'2Ru '2au '3��R '3��a '3�Ra '3aR� '3��u '3�Ru '3�Ru '3�au '3a�� '3R�� '4uaR�
�3 6 0 0 0 0 0 0 0 0 �1 0 0

'4uaR� '4ua�� '4uR�� '4aR�� '5uaR��
0 0 0 0 0

Table 3: Total order �nite change sensitivity indices
u a R � �

'T �78 �11 20 �87 �21���T �� 0:40 0:06 0:10 0:44 0:11

Table 4: Key-drivers comparison
u a R � �

� 2 5 4 1 3
� 4 5 1 3 2
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