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Abstract

In the management of complex systems, knowledge of how components contribute to system

performance is essential to the correct allocation of resources. Recent works have renewed

interest in the properties of the joint (J) and di¤erential (D) reliability importance measures.

However, a common background for these importance measures has not been developed yet. In

this work, we build a uni�ed framework for the utilization of J and D in both coherent and

non-coherent systems. We show that the reliability function of any system is multilinear and its

Taylor expansion is exact at an order T . We then introduce a total order importance measure

(DT ) that coincides with the exact portion of the change in system reliability associated with

any (�nite or in�nitesimal) change in component reliabilities. We show that DT synthesizes the

Birnbaum, joint and di¤erential importance of all orders in one unique indicator. We propose

an algorithm that enables the numerical estimation of DT by varying one probability at a

time, making it suitable in the analysis of complex systems. Findings demonstrate that the

simultaneous utilization of DT and J provides reliability analysts with a complete dissection of

system performance.

Keywords: Reliability, Safety; Reliability, Coherent Systems; Probability, Applications.

1 Introduction

Reliability engineers face critical operational decisions such as the determination of optimal

maintenance, inspection and replacement policies [Ozekici (1988), Dogramaci and Fraiman

(2004), Kubzin and Strusevich (2006), Chun (2008), Castro (2009)]1, the assignment of compo-

nents to graded quality assurance programs, the categorization of system structures and com-

ponents [Cheok et al (1998), Vesely (1998), Borgonovo (2008)]. These decision problems are

Key Words and Phrases: Reliability; Importance Measures; Joint Reliability Importance; Multilinear
Functions
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1One of the �rst works addressing the problem of optimal replacement policies in multicomponent systems is

Ozekici (1988). In Dogramaci and Fraiman (2004), a model is developed to understand how �a manager (should)
make replacement decisions for a chain of machines over time (p. 785).� Kubzin and Strusevich (2006) develop
a model to �initiate research on scheduling models with maintenance periods of controllable length ; Kubzin and

1



most often characterized by trade-o¤s between safety levels, system performance and economic

viability. As Dillon et al (2003) state, managers of complex systems (projects) �face a challenge

when deciding how to allocate scarce resources to minimize the risks of project ( system) fail-

ure. As resource constraints become tighter, balancing these failure risks is more critical, less

intuitive, and can bene�t from the power of quantitative analysis [Dillon et al (2003); p. 354].�

Quantitative models play a central role in the decision-making process, as they provide

analysts with crucial insights on how to achieve a given system performance. Several studies

have demonstrated that components do not contribute to system performance in the same way

[Lambert (1975), Butler (1977), El-Neweihi (1980), Vesely et al (1990), Cheok et al (1998),

Borgonovo and Apostolakis (2001), Zio and Podo�llini (2006), Lu and Jiang (2007), Gao et al

(2007)]. Thus, it is essential for analysts �to identify ... the critical components [Gao et al (2007);

p. 282].�This information is delivered by importance measures. The recent works of Zio and

Podo�llini (2006), Lu and Jiang (2007), Gao et al (2007) and Do Van et al (2008) have renewed

interest towards the study and utilization of importance measures. In particular, they have

extended the joint and di¤erential importance measures [Hong and Lie (1993), Borgonovo and

Apostolakis (2001)] so as to capture higher-order interactions. An examination of the literature

(see Section 2) shows that the research on these importance measures has sofar proceeded on

two parallel but almost independent tracks, with works addressing the properties of either one

of the importance measures. The lack of a comprehensive framework limits the insights analysts

can obtain from the decision-support model. In fact, as we are to show, it is the simultaneous

utilization of the two importance measures that allows analysts to exploit the reliability model

information at best.

Our purpose is to build a uni�ed framework for the utilization of the joint and di¤erential re-

liability importance measures. In this respect, we observe that the distinction between coherent

or non-coherent system marks a quite net partition in the literature. For instance, the works of

Barlow and Proschan (1965), Birnbaum (1969), Lambert (1975), Agrawal and Barlow (1984),

El-Neweihi (1980), Ball and Provan (1988), Hong and Lie (1993), Armstrong (1995), Cheok

et al (1998), Borgonovo and Apostolakis (2001), Giglio and Wynn (2004), Zio and Podo�llini

(2006), Borgonovo (2007), Gao et al (2007), Do Van et al (2008) assume coherent systems, while

Inagacki and Henley (1980), Andrews and Beeson (2003), Beeson and Andrews (2003), Lu and

Jiang (2007) address non-coherent systems. Thus, we set up our analysis so that our �ndings

hold independently of the system type. For each �nding, however, we discuss whether/how

the �nding is a¤ected by the coherency (or non-coherency) of the system. We begin with the

properties of multilinear functions. In particular, we address the coincidence of a multilinear

function with its Maclaurin and Bernstein polynomials. By showing that the reliability function

of any coherent and non-coherent system is multilinear, we prove that the Maclaurin (or Taylor)

expansion of any system reliability function is exact and can be arrested at a �nite order T ,

where T � N (see Table 1 for notation and symbols used in this work).

We discuss how this �nding relates to classical reliability results (in particular Theorem 3.2

Strusevich (2006), p.790�. In Chun (2008), a Bayesian approach is utilized to support the determination of
optimal sequential inspection policies a complex product (as a software) �to further improve its quality and
reliability (Chun (2008); p. 235).�Castro (2009) presents a model to support maintenance policy selection when
the system is characterized by two dependent failure modes with imperfect repair.
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Table 1: Notation and list of symbols for this work

Symbol Meaning
f generic function
x (vector of) independent variables
n number of independent variables
Z vector of Boolean variables indicating component states
N number of components
(1i;x) vector with component xi set to 1 and the remaining components at x
(0i;x) vector with component xi set to 0 and the remaining components at x
�(Z) structure function
O set of prime implicants
mi number of components in a prime implicant
M number of prime implicants
MCS; MPS minimal cut set; minimal path set
q (vector of) component unreliabilities
p (vector of) component reliabilities
h reliability
h0i partial derivative of the reliability function with respect to xi
Q unreliability
G(x) reliability/unreliability function in coherent/non-coherent systems
Jki1;i2;:::;ik joint reliability importance of xi1 ; xi2 ; :::; xik
T maximum order of the Taylor expansion of G(x)
Dl di¤erential importance of xl
Bl Birnbaum importance
Dkl di¤erential importance of order k of xl
DTl total di¤erential importance of xl
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in El-Neweihi (1980)) and observe that it provides an answer to the research question opened

by Do Van et al (2008) concerning the determination of �the bounds of Maclaurin series to �nd

the minimal k for which the di¤erential importance of order k can provide the true importance

ranking [Do Van et al (2008); p. 7].� It is then possible to prove that, if the rare event

approximation applies, then for both coherent and non-coherent systems: a) the joint reliability

importance of components i1; i2; :::; ik is equal to unity, if they are a prime implicant; and b) a

group of components has null joint reliability importance if and only if it is not contained in

any prime implicant. We also o¤er an interpretation of these results in terms of the probability

of group i1; i2; :::; ik being critical to the system.

The fact that the Taylor expansion of any system reliability function can be arrested at an

order T has the following relevant consequence: any �nite change in reliability that follows a

discrete change in component failure probabilities is exactly apportioned at an order of at most

T . We then introduce a new importance indicator, the total order importance measure, denoted

by DT . DT includes the joint di¤erential importance (Jki1;i2;::;ik) of all groups of components

(k = 1; 2; :::; T ). It is shown that DT is the exact fraction of the change in system reliability

caused by generic changes in component reliabilities/unreliabilities, both for coherent and non-

coherent systems, and both in the presence/absence of the rare event approximation. We study

the limiting properties of DT , proving that it ends to the di¤erential importance (D), when

changes become small. Furthermore, DT tends to the Birnbaum importance measure (B), if

uniform changes are assumed. Results show that, however, DT di¤ers from lower orders Dk

and from D (or B) signi�cantly as interaction e¤ects become relevant � i.e., when changes are

�nite. �

The remainder of the paper is organized as follows. Section 2 provides a literature review

and the de�nitions of Birnbaum, di¤erential and joint importance measures. Section 3 lays

out the mathematical framework of the work. Section 4 presents a general result for reliability

functions of coherent and non-coherent systems. Section 5 introduces the total order importance

measure. An algorithm for the numerical estimation of DT is presented in Section 6. Section 7

o¤ers conclusions.

2 Birnbaum, Di¤erential and Joint Reliability Importance Measures

This section investigates the de�nitions and relationships between the Birnbaum (B), Joint (J)

and Di¤erential (D) reliability importance measures.

The concept of reliability importance stems from the seminal work of Birnbaum (1969)

(Table 2).

In Birnbaum (1969) a system of N components is considered. The Birnbaum importance

of component i (Bi) is de�ned as the probability of component i being critical to the system.

Letting p be the (vector of) component success probabilities, and h(p) : [0; 1]N ! R the

reliability function of the system (see Table 1 for notation), Birnbaum (1969) proves that:

P (component i is critical) =
@

@pi
h(p) = Bi(p) (1)

B is also referred to as marginal reliability importance in later works [Hong and Lie (1993),
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Table 2: Synthesis of the lietature review on works concerning joint and di¤erential
reliability importance

Work
Importance
Measure

System
Type

Interaction
Order

Birnbaum (1969) B Coherent 1

Hong and Lie (1993) JII Coherent 2

Armstrong (1995) JII Coherent 2

Borgonovo and Apostolakis (2001) D Coherent 1

Andrews and Beeson (2003) B Non-Coherent 1

Zio and Podo�llini (2006) DII Coherent 2

Lu and Jiang (2007) JII Non-Coherent 2

Gao et al (2007) Jk Coherent k

Do Van et al (2008) Dk Coherent k

Armstrong (1995), Lu and Jiang (2007).] In Andrews and Beeson (2003), it is observed that

in a non-coherent system a component can be both failure-critical and repair-critical. Repair-

critical means that the system is in a state such that the component is repaired, then the system

fails. By utilizing the calculation procedure of Inagacki and Henley (1980), Andrews and Beeson

(2003) show that P (component i is critical) is the sum of the probabilities that component i is

critical while working and while failed. As a consequence [Andrews and Beeson (2003)], Bi in

a non-coherent system is obtained by separate di¤erentiations of the system reliability function

with respect to component i reliability and unreliability.

Birnbaum�s work has been followed by a wide literature. In the late �70s and early �80s, the

theory of importance measures has paralleled the development of reliability theory itself. We

recall the works of Lambert (1975), Barlow and Proschan (1976), El-Neweihi (1980), Boland

and Proschan (1983). In these works, �nding are devoted to the importance of individual

components, with independent failure/success in coherent systems.

The works of Hong and Lie (1993), and Armstrong (1995) introduce the joint reliability

importance of components i and s (JII) as:

JIIi;s(p) :=
@h(p)

@pi@ps
i; s = 1; 2; :::; N ; i 6= s; (2)

The motivation is to provide system analysts with �information about how component reliabil-

ities a¤ect each other [Armstrong (1995); p. 408].�This is clari�ed by the following property

of JIIi;s , proven in Armstrong (1995):

JIIi;s(p) = h(1i; 1s;p)� h(0i; 1s;p)� h(1i; 0s;p) + h(0i; 0s;p) (3)

Eq. (3) shows that in JIIi;s �rst order e¤ects h(0i; 1s;p), h(1i; 0s;p) are subtracted from h(1i; 1s;p)+

h(0i; 0s;p). JIIi;s then measures a residual (interaction) second order e¤ect. As a consequence,

by JIIi;s one does not measure the overall importance of the group formed by components i and

s. In fact, to measure such importance the sensitivity measure should also account for their

individual e¤ects [see Zio and Podo�llini (2006)].

According to Lu and Jiang (2007) the sign of JII �carries critical information for both
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coherent, and non-coherent fault trees [Lu and Jiang (2007); p. 436].�In particular, if JIIi;s > 0,

component i (or s) becomes more important when component s is perfectly reliable [synergy,

as de�ned in Armstrong (1995).] If JIIi;s < 0; the converse statement applies. If JIIi;j = 0, the

importance of i is independent of the state of component s. These properties are proven in

Armstrong (1995) for coherent systems. The extensions of B and JII to non-coherent systems

is achieved in the works of Andrews and Beeson (2003), Beeson and Andrews (2003) and Lu

and Jiang (2007).

Gao et al (2007) extend JII to groups involving more than two components de�ning the

joint reliability importance of order k as:

Jki1;i2;:::;ik(p) :=
@kh(p)

@pi1@pi2 :::@pik
(4)

Gao et al (2007) prove that formal properties of JII hold also for Jk in coherent systems.

The di¤erential importance measure (D) is introduced in Borgonovo and Apostolakis (2001)

as follows:

Di(p;dp) :=
h0i(p)dpiXN

s=1
h0s(p)dps

(5)

where h0i(p) is the partial derivative of the reliability function w.r.t. the i
th probability. D

generalizes the Birnbaum and the Criticality importance measures by accounting for the relative

changes (direction of change) in component reliabilities. In particular, if one supposes uniform

changes (dpi=dps 8i; s = 1; 2; :::; N , i.e., all component reliabilities are varied by the same

amount), then, by eqs. (1) and (5), one obtains:

D1i(p) =
Bi(p)XN

s=1
Bs(p)

i = 1; 2; :::; N (6)

Eq. (6) implies proportionality between D1i(p) and Bi(p). Hence, under the assumption

of uniform changes, D provides the same ranking as B. Conversely, by ranking components

using B, an analyst is implicitly stating the assumption of uniform changes in component

reliabilities [Borgonovo and Apostolakis (2001)]. Borgonovo and Apostolakis (2001) show that,

if the assumption of proportional changes is stated, ranking component using D is equivalent

to rank them using the Criticality and Fussell-Vesely importance measures [see also Borgonovo

(2007)].

We recall that the introduction of D is motivated by the need of computing the importance

of simultaneous changes in component reliabilities, issue raised by the work of Cheok et al

(1998). In applications as the evaluation of changes in maintenance policies and graded quality

assurance programs, groups of components are simultaneously a¤ected by the changes. By

utilizing D, the importance of a group of components is found as sum of individual importances

of the components in the group [Borgonovo and Apostolakis (2001)]:

Di1;i2;:::ik(p;dp) =
kX
s=1

Dis(p;dp), 8i1; i2; :::ik, k = 1; 2; :::; N (7)
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Eq. (7) is particularly relevant in the presence of large reliability models as it allows to obtain

component importance without further model evaluations. � This is often the case in safety

applications, Epstein and Rauzy (2005). �

By comparing Di1;i2;:::ik to J
k
i1;i2;:::ik

, one notes that Jki1;i2;:::ik does not deliver the overall

importance of the group formed by components i1; i2; :::ik, but measures the e¤ect of their

(residual) interaction. Conversely, Di1;i2;:::ik measures the overall importance of the group as

the sum of their individual e¤ects. Zio and Podo�llini (2006) then introduce a second order D,

(DII), to determine component importance including second order interactions. The de�nition

is as follows. Given the second order Taylor expansion of a reliability change,

�IIh =

NX
i=1

Bi(p)dpi +

NX
i=1

NX
s>i

Ji;s(p)dpidps, (8)

Zio and Podo�llini (2006) consider the fraction of �IIh associated with component i:

�IIhi = Bi(p)dpi +
NX
s 6=i

Ji;s(p)dpidps (9)

Then, DIIi is de�ned as:

DIIi (p;dp) :=
�IIhi
�IIh

=
Bi(p)dpi +

XN

s 6=i
Ji;s(p)dpidpsXN

s=1
Bs(p)dps +

XN

t=1

XN

s>t
Jt;s(p)dptdps

(10)

By this de�nition, DII captures second order interaction e¤ects in determining component i

importance. However, as Zio and Podo�llini (2006) point out, DII looses the additivity property.

We observe that eq. (10) can be regarded as o¤ering the relationship between DII , B and JII .

D and DII are extended to order k (k < N) by Do Van et al (2008). Letting

�kh =

kX
s=1

X
r1<r2<:::<rs

hsr1;r2;:::;rs(p)dpr1dpr2 :::dprs (11)

denote the Taylor approximation of order k < N of the change in system reliability and denoting

with

�khi =

kX
k=1

X
i2r1;r2;:::;rk

hsr1;r2;:::;rs(p)dpr1dpr2 :::dprs (12)

the fraction of the right-hand-side in eq. (11) associated with component l, one has [Do Van et

al (2008)]:

Dki (p;dp) =
�khi
�kh

=

PN
k=1

P
i2r1;r2;:::;rk h

s
r1;r2;:::;rs(p)dpr1dpr2 :::dprsXk

s=1

P
r1;r2;:::;rs

hsr1;r2;:::;rs(p)dpr1dpr2 :::dprs
(13)

As in the case of DIIi (p;dp), also D
k
i (p;dp) does not share the additivity property. Eq. (13)

can also be regarded as de�ning the relationship between Dkl , B and Jsr1;r2;:::;rs , s = 2; 3; :::; k.
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One of the questions that Zio and Podo�llini (2006), Lu and Jiang (2007), Gao et al (2007)

and Do Van et al (2008) leave open is the order k at which one needs to stop the Taylor

expansion. In the next sections, we derive a result that allows to answer such question for

coherent and non-coherent systems.

3 Multilinear Functions and Maclaurin (Taylor) Expansion

Reliability theory originates with the seminal works of Barlow and Proschan (1965), Birnbaum

(1969), Barlow and Proschan (1975), Lambert (1975) [see also Block (2001).] Core of the theory

is the representation of a system as a set of N components, each of which can be in two possible

states [Birnbaum (1969), Ball and Provan (1988), Boros et al (2000), Giglio and Wynn (2004),

Khachiyan et al (2007).] In these instances, multilinear functions play a crucial role and many

reliability results are a consequence of the properties of Boolean functions [Birnbaum (1969),

Agrawal and Barlow (1984), Ball and Provan (1988), Fishman (1989), Boros et al (2000),

Khachiyan et al (2007).] In this section, we discuss the properties of multilinear functions that

are essential in studying the relationship between Jk and Dk.

Multilinear functions have been extensively studied in set-function theory [Hammer and

Rudeanu (1968), Grabisch et al (2000), Foldes and Hammer (2005)], game-theory [Grabisch et

al (2003), Lambert III et al (2005), Alonso-Meijide et al (2008)], multiattribute decision-making

[Bordley and Kirkwood (2004), Kirkwood and Sarin (1980)] and optimization [Russell-Philbrick

and Kitanidis (2001), Sherali and Driscoll (2002), Floudas and Gounaris (2009).] In set-function

language, let E = [1; 2; :::; n] and P(E) the associated �nite power set. A map m : P(E) ! R
is called a set function. Hammer and Rudeanu (1968) (see Theorem 6, p. 21) prove that �every

pseudo-Boolean function is represented by a unique multilinear polynomial [Foldes and Hammer

(2005); p. 453].�The following statement by Bordley and Kirkwood (2004) (p. 823) well de�nes

the interdisciplinary relevance of multilinear functions: �In some situations, the target-oriented

preference conditions are analogous to reliability theory conditions for series or parallel failure

modes in a system�. For a thorough discussion of alternative representations of multilinear

functions, we refer to Grabisch et al (2000). We highlight that, from a strictly mathematical

viewpoint, a function is multilinear, if it is separately a¢ ne in each variable [Marinacci and

Montrucchio (2005)]. We utilize the following representation:

f : Rn ! R

y = f(x) =
Xn

k=1

Xk

i1<i2<:::<ik
�i1;i2;:::;ik � xi1 � xi2 � ::: � xik

with �i1;i2;:::;ik 2 R, k = 0; 1; :::; n

(14)

One notes that f in eq. (14) is a homogeneous function and satis�es Euler�s equation of order

1:

x �rf = f (15)

In the form of eq. (14), f also coincides with its Bernstein polynomial of order 1 [Marinacci

and Montrucchio (2005)].

The next example illustrates eq. (14).
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Example 1 f : R3 ! R, with

f(x1; x2; x3) = 10x1x2 � 5x1x3 (16)

is multilinear. Using the representation of eq. (14), one has:

�0 = �1 = �2 = �3 = �2;3 = �1;2;3 = 0 , �1;2 = 10 and �1;3 = �5 (17)

We note that eq. (14) can be regarded as a multilinear function (or Bernstein polynomial)

centered at the origin. However, one can translate eq. (14) by centering it at x0, as the next

Remark discusses.

Remark 1 Consider the function

f : Rn ! R

f(x;x0) =
Xn

k=0

Xk

i1<i2<:::<ik
�i1;i2;:::;ik � (xi1 � x0i1) � (xi2 � x

0
i2
) � ::: � (xik � x0ik)

with �i1;i2;:::;ik 2 R, k = 0; 1; :::; n

(18)

It is not di¢ cult to see that eq. (18) satis�es Euler�s equation under the boundary condition

f(x0) =
nX
k=1

kX
i1<i2<:::<ik

�i1;i2;:::;ik � (�1)k
kY
s=1

x0is (19)

When referring to eq. (18), we shall say that f is a multilinear function centered at x0. In fact,

by shifting the origin of the coordinate system from (x = 0; f(0)) to (x0; f(x0)) with f(x0) as

per eq. (19), eq. (18) reduces to eq. (14).

In the remainder, for the sake of notation simplicity, we shall refer to eq. (14). However, by

Remark 1, all results applicable to eq. (14) are readily extended to eq. (18).

Before coming to the properties of multilinear functions relevant for this work, we intro-

duce some notation. x = (x1; x2; :::; xn) denotes the n-dimensional vector of independent

variables, x 2Rn. (1i1 ; 1i2 ; :::; 1ik ;x) [(0i1 ; 0i2 ; :::; 0ik ;x)] indicates that the groups of variables
xi1 ; xi2 ; :::; xik has been set to unity [zero], while the remaining variables are at x. As an example,

in eq. (16), f(1; 1;x) = 10� 5x3.
In the next Proposition, we collect a set of results concerning multilinear function properties

relevant in the remainder of our work. They can be found in set-function and Boolean function

theory [see Grabisch et al (2000) and Foldes and Hammer (2005)].

Proposition 1 Let f : Rn ! R be a multilinear function. Then:

1. The kth mixed partial derivative with respect to xi1 ; xi2 ; :::; xik of f in eq. (14)-(18) is equal to

[El-Neweihi (1980); Foldes and Hammer (2005)]:

fki1;i2;:::;ik = f(1i1 ; 1i2 ; :::; 1ik ;x) +

kX
s=1

(�1)s
X

i1i2:::is

f(0i1 ; :::; 0is,1is+1 ; :::; 1ik ;x) (20)
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2. The kth-order partial derivative of f with respect to any variable is null [Foldes and Hammer

(2005)].

We now turn to the Maclaurin expansion of f (Taylor expansion, if eq. (18) is of concern).

For this work, it is relevant to demonstrate that the Maclaurin (Taylor) expansions of a multi-

linear function coincides with the function itself. We o¤er an autonomous proof of this result.

We start with the following observation.

Proposition 2 Let f be multilinear and i1; i2; :::; ik, k � n, be a given group of indices. Then,

fki1;i2;:::;ik = 0 8x; if and only if there is no term in eq. (14) containing
kY
s=1

xis.

Proof. Point 1. The su¢ cient condition is immediate. For the necessary condition, let S be
set of indices of interest, S = (i1; i2; :::; ik). Then, eq. (14) is partitioned as follows:

f =
Xk�1

s=0

X
i1<i2<:::<is

iu2S u=1;2;:::;s

�i1;i2;:::;is � xi1 � xi2 � ::: � xis + �i1;i2;:::;ik � xi1 � xi2 � ::: � xik+

+
Xk

s=0

X
l1<l2<:::<ls

lm =2S m=1;2;:::;s

�l1;l2;:::;ls � xl1 � xl2 � ::: � xls

+
Xn

s=k+1

X
i1<i2<:::<is

iu2S u=1;2;:::;s

�i1;i2;:::;is � xi1 � xi2 � ::: � xis

(21)

When di¤erentiating w.r.t. xik the terms
Xk�1

s=0

X
i1<i2<:::<is

iu2S u=1;2;:::;s

�i1;i2;:::;is �xi1 �xi2 � ::: �xis drop

out. Similarly, all terms in eq. (14) not containing xi1 ; xi2 ; :::; xik (
Xk

s=0

X
l1<l2<:::<ls

lm =2S m=1;2;:::;s

�l1;l2;:::;ls �

xl1 � xl2 � ::: � xls) drop out. Thus, one obtains

fki1;i2;:::;ik(x) = �i1;i2;:::;ik +
nX

s=k+1

X
i1<i2<:::<is

iu2S u=1;2;:::;s

�i1;i2;:::;is � xi1 � xi2 � ::: � xis (22)

One then notes that fki1;i2;:::;ik(x) is the sum of all and only the terms in f that include S. Thus,

if fki1;i2;:::;ik(x) = 0 8x, there is no term in f containing S.

Note that fki1;i2;:::;ik = 0 8x () fk+ri1;i2;:::;ik;ik+1;:::;ik+r
= 0 8x, for any function. Thus, for

multilinear functions, fki1;i2;:::;ik = 0 8x implies that there are no terms of order higher than k
containing S. As an example, in eq. (16), f 0001;2;3 = 0 as there is no term containing all three

variables.

Proposition 2 leads to the following properties.

Proposition 3 Let f : Rn ! R be a multilinear function. Then:

1. The Maclaurin expansion of f is exact and at most of order T .

2. T is min(n; rlargest) where rlargest is the size of the largest product in f .

3. f coincides with its Maclaurin polynomial.

Proof. A multilinear function is C1(Rn). Then, the Taylor/Maclaurin series can be, in

principle, extended to in�nity. However, let k = n in Proposition 2. Then, no partial derivative

10



of order s > n can be di¤erent from zero. There follows that all terms in the Taylor expansion of

order higher than n are null. Furthermore, T = min(n; rl arg est), where rl arg est is the maximum

size of the terms in eq. (14). This proves points 1 and 2. We now prove point 3. By Maclaurin

expansion, one has:

�f = f(x)�f(0) =
nX
i=1

f 0i(0)�xi+
X
i1<i2

f 00i1;i2(0)�xi1 �xi2+:::+
X

i1<i2;::<ikmax

fki1;i2;:::;irmax (0)�xi1 �xi2 :::�xikmax

(23)

By observing that f(0) = 0 and that by eq. (22), one obtains the thesis.

Before coming to the reliability implications of the above results, we state the following

observation.

Remark 2 By property 3 in Proposition 3, a multilinear function coincides both with its Maclau-
rin and Bernstein polynomials.

We also observe that, if the expansion is centered at x0, then Proposition 3 holds for Taylor

expansion rather than Maclaurin expansion. Remark 2 would then be true for a Bernstein

polynomial centered at x0.

In the next section, we investigate the implications of the above �ndings in the reliability

theory of coherent and non-coherent systems.

4 Finite Changes in Reliability Functions of Coherent and Non-Coherent Systems

In this section, we show that the reliability (unreliability) function of any coherent and non-

coherent system is multilinear.

Consider a system of N components (notations and symbols are listed in Table 1). Each

component can be working or failed. Let Zi =

(
1

0
denote the state variable of component i,

Z = (Z1; Z2; :::; ZN ) the state vector, and �(Z) the structure function of the system. �(Z) is a

Boolean function and �(Z) = 1 denotes system success/failure. A structure function is coherent

if �(Z2) > �(Z1) when Z2� Z1, and �(0) = 0 and �(1) = 1. Conversely, it is non-coherent. Let
O = (O1; O2; :::; OM ) be the collection of prime implicants (M denotes the number of prime

implicants). In general, a prime implicant involves the success or failure of mi components.

We utilize the notation Oi = (Zi1 ^ Zi2 ^ ::: ^ Zimi ); where Zis represents the state variable of
the sth component in prime implicant i. In the fault tree terminology, if system failure is of

concern, one would say that Oi is a minimal cut set (MCS) and Zis is one of the basic events

in MCSi; if system success is of concern, then Oi is a minimal path set (MPS) and Zis is one

of the basic events in the MPS [Meng (2000)]. If the system is non-coherent, a prime implicant

may be including some negations, e.g., Oi = (Zi1 ^ Zi2 ^ ::: ^ Zik ^ ::: ^ Zimi ): Thus, a prime
implicant is true for some Zil = 1 and some Zis = 0 [Inagacki and Henley (1980), Andrews and

Beeson (2003), Beeson and Andrews (2003), Lu and Jiang (2007).] In reliability applications,

one usually utilizes h to denote system reliability and Q to denote system unreliability, i.e.

(h = P (� = 1)success;Q = P (� = 1)failure). p is used to denote the vector of component

reliabilities and q = 1 � p their unreliabilities. If a system is coherent, then h and Q are

11



functions only of p (h = h(p)) and q (Q = Q(q)), respectively. When a system is non-coherent,

h and Q become functions of both p and q (i.e., h(p;q), Q(p;q)). Since the results we are going

to prove hold for both failure and success logics and for coherent and non-coherent systems,

we utilize the symbol x to denote the generic p or q and G to denote h or Q. Thus, we write

P (� = 1;x) = G(x).

As discussed in Section 2, throughout the theoretical development of importance measures

[from the works of Birnbaum (1969), Barlow and Proschan (1976), El-Neweihi (1980), Boland

and Proschan (1983), Beeson and Andrews (2003), Borgonovo and Apostolakis (2001), Zio

and Podo�llini (2006), Lu and Jiang (2007), to Gao et al (2007)], the assumption of indepen-

dent component failures has been stated. Under this assumption, a unique pi=qi describes the

reliability/unreliability of component i in all prime implicants. Thus, there is a one-to-one

correspondence between Bi, Di, Jki1;i2;:::;ik and component i; hence, Bi, Di, J
k
i1;i2;:::;ik

convey

the importance of components. In the case dependencies are present, pi=qi become conditional

probabilities and vary with the prime implicant in which component i is included. Hence, the

one-to-one correspondence between Bi, Di, Jki1;i2;:::;ik and component i is lost. Bi, Di, J
k
i1;i2;:::;ik

then assume the interpretation of importance of the conditional failure of component(s) i or,

equivalently, of the basic event associated with component i in the given prime implicant.

We let x denote the vector of conditional reliabilities/unreliabilities. Then, the following

holds.

Theorem 1 Consider a coherent or non-coherent N component system, with dependent or

independent failures. Let x denote the vector of all conditional component (success/failure)

probabilities. Then, G(x) is a multilinear function of x.

Proof. By a fundamental result of Boolean logics [Boros et al (2000)]:

� =

M_
i=1

Oi (24)

Since � is a Bernoulli variable, then

E[�] = P (� = 1) = E[O1 _O2 _ ::: _OM ] = P ([Mi=1Oi = 1) (25)

There follows that

P (� = 1) =
MX
s=0

P (Os = 1)�
X
i<s

P ((Oi = 1) \ (Os = 1)) + :::+ (�1)MP (\Mi=1(Oi = 1)) (26)

Then, for each prime implicant, we have:

P (Oi = 1) = P (Zi1 = 1 \ Zi2 = 0 \ ::: \ Zimi = 1) =
= P (Zimi = 1jZimi�1 = 1 \ ::: \ Zi2 = 0 \ Zi1 = 1) � P (Zimi�1 jZimi�2 = 1 \ ::: \ Zi1 = 1)

�::: � P (Zi2 = 0jZi1 = 1) � P (Zi1 = 1)
(27)

Eq. (27) is, in general, a product of conditional probabilities. Let P (Zi1 = 1) = xi1 ; P (Zi2 =
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0jZi1 = 1) = xi2 ... and P (Zimi = 1jZimi�1 = 1; :::; Zi2 = 0; Zi1 = 1) = ximi :

P (Oi) =

miY
s=1

xis (28)

This formalism applies to all the terms in eq. (26) (i.e., to higher order intersections as well).

By idempotency he same Zis cannot appear twice in Oi \ Oj \ :::). Hence eq. (26) then takes
on the form

G(x) = P (� = 1) =
MX
r=1

X
mi1

<mi2
<:::<mir

m1Y
s1=1

xis1

m2Y
s2=1

xis2
6=xis1

xis2 � ::: �
mrY
sr=1

xisr 6=::: 6=xis2 6=xis1

xisr (29)

which is multilinear.

We illustrate Theorem 1 by an example.

Example 2 Consider the non-coherent system in Andrews and Beeson (2003). The prime

implicants for system failure are (Z1 ^ Z2); (Z1 ^ Z3); (Z2 ^ Z3). Correspondingly:

Q = P [(Z2 = 1 \ Z1 = 1) [ (Z3 = 1 \ Z1 = 1) [ (Z2 = 1 \ Z3 = 1)] (30)

Noting that (Z1 ^ Z3)^ (Z2 ^ Z3) is necessarily false, and assuming independence, one has:

Q(p;q) = P (Z2 = 1 \ Z1 = 1) + P (Z3 = 1 \ Z1 = 1) + P (Z2 = 1 \ Z3 = 1)�
�P [(Z2 = 1 \ Z1 = 1 \ Z3 = 1)]� P [(Z1 = 1 \ Z2 = 1 \ Z3 = 1) =

= q2q1 + q3q1 + q2p3 � q2q1q3 � q1q2p3
(31)

which is a multilinear function of 4 variables (three variables, if one considers that p3 = 1� q3;
however, in non-coherent systems it is usually preferable to keep p and q distinct, as discussed

in Andrews and Beeson (2003), Beeson and Andrews (2003) and Lu and Jiang (2007).)

One of the research questions left open by Zio and Podo�llini (2006) and Do Van et al

(2008), is the order at which to arrest the Maclaurin expansion of a system reliability function.

The combination of Theorem 1 with Proposition 3, provides the answer to this question.

Proposition 4

1. The Taylor expansion of the reliability/unreliability function of any system is exact. Let T be

the highest order of the expansion. Then, T � N .

2. Any �nite change in reliability/unreliability associated with any change in component reliabil-

ity/unreliability (�x = x� x0) in a coherent or non-coherent system is given by:

�G = G(x)�G(x0) =
NX
i=1

Bi(x
0) ��xi +

TX
k=2

X
i1<i2;::<ik

Jki1;i2;:::;ik(x
0)

kY
s=1

�xis (32)
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Proof. Proof of Point 1. The term of largest size in eq. (26) is the last term [P (\Mi=1(Oi = 1))].
This term contains the intersection of all prime implicants. By de�nition of prime implicant:

P (\Mi=1(Oi = 1)) = E[O1 ^O2 ^ ::: ^OM ] (33)

We have the following cases. Consider �rst a coherent system and suppose that all components

are contained in the prime implicants. Then, by idempotency,

E[O1 ^O2 ^ ::: ^OM ] = E[Z1 ^ Z2 ^ ::: ^ ZN ] (34)

There follows that

P (\Mi=1(Oi = 1)) = P (Z1 = 1 \ Z2 = 1 \ ::: \ ZN = 1) (35)

is the product of N conditional probabilities. Thus, rlargest = N . Alternatively, if some of the

components is not contained in any of the prime implicants, rlargest < N . Thus, T � N for

coherent systems. For non coherent systems the following happens. If at least one component

appears in a prime implicant in a working state and in some other prime implicant in a failed

state, then O1 ^ O2 ^ ::: ^ OM = 0: This implies T < N . However, a component might appear

in only one prime implicant only and in a negated state. Then, T � N .

Proof of point 2. One notes that G(x) is multilinear by Theorem 1. Applying eq. (23) to G(x),

and centering at x0, one obtains the thesis.

In terms of previous results, Proposition 4 extends Theorem 3.2. in El-Neweihi (1980) to

the case of non-coherent systems. In addition, eq. (32) extends eq. (1) in Vesely (1998) [see

also Vesely et al (1990)], removing the assumptions of coherent systems and rare events. In this

respect, in real life applications the size of a system can be considerable, with N = 103 or more.

However, such a high number of terms might not be needed in the practice for two reasons.

The �rst reason is as follows. In classical reliability theory, failures are regarded as arrivals of a

stochastic process: �Barlow and Proschan examined components as they fail sequentially in time

[Lambert (1975); p. 180)].�This assumption is at the basis of the seminal works of Barlow and

Proschan (1976) and many others. The failure of two components at the same time is excluded,

as two events cannot happen in the same dt. When applied to system failure, such assumption

is equivalent to state that two prime implicants cannot occur at the same time. If system failure

is observable, then, when Oi = 1, the system undergoes repair. Then, the system is failed due

to at most one prime implicant at a time. In other words, P (Oi = 1\Os = 1) = 0. Conversely,
system failure might not be observable, as for hot standby systems. However, and here is the

second reason for simpli�cation, in the practice of most industrial systems the intersection of two

prime implicants is considered a rare event [Vesely et al (1990), Cheok et al (1998), Borgonovo

and Apostolakis (2001), Zio and Podo�llini (2006), Borgonovo (2007).] In other words, it is

assumed that the probability of two prime implicants being true at the same time is negligible:

P (Oi = 1\Os = 1) ' 0 (the rare event approximation). We note that this option is available in
reliability software used for the probabilistic risk assessment of complex systems as SAPHIRE

[Smith et al (2008).] In both situations (i.e., sequential and observable failures and rare events),

14



only the �rst order terms in eq. (26) are retained. In this case, it is possible to obtain further

results.

Proposition 5 Suppose, P (Oi = 1 \ Os = 1) ' 0, 8i; s = 1; 2:::;M (i 6= s): Then, for both

coherent and non-coherent systems:

1.

T = max
i=1;2;:::;M

(mi) (36)

2.

8t > T J ti1;i2;:::;it = 0 (37)

t � T J ti1;i2;:::;it = 0 8x 6= 0 () i1; i2; :::; it =2 Om, m = 1; 2; :::;M (38)

3.

�G =
TX
s=1

X
i1;i2;::;is

Jki1;i2;:::;ik(x
0)�xi1�xi2 :::�xis (39)

4. Let JOi denote the importance of a prime implicant. Then:

JOi = 1 (40)

Proof. 1) If the rare event approximation holds, then eq. (26) becomes:

P (� = 1) '
MX
s=0

P (Os = 1) (41)

As a consequence, eq. (29) contains only the terms related to individual prime implicants and

not to their intersections. One obtains:

G(x) = P (� = 1) =
MX
s=0

P (Zi1 = 1 \ Zi2 = 0 \ ::: \ Zimi = 1) =
MX
r=1

mrY
s=1

xis (42)

Each summand in G(x) is the probability of a prime implicant. Let mmax be the size of the

largest largest prime implicant (mmax = maxr=1;2;:::;M (mr)). Then, T = mmax.

2-Eq. (37). Eq. (37) follows by Theorem 1 and Proposition 3.

2-Eq. (38). By the rare event approximation, only the summands corresponding to prime

implicants appear in eq. (42). Thus, if the set i1; i2; :::; it is not contained in a prime implicant,

then there is no term with the corresponding variables in G(x). This implies JTi1;i2;:::;iT = 0.

Conversely, suppose J ti1;i2;:::;it(x
0) = 0. Then, G(x) does not depend on the xi1 ; xi2 ; :::; xit , i.e., it

does not depend on the failure/success probabilities of components i1; i2; :::; it. Then, i1; i2; :::; it
are not included in any prime implicant.

3) Eq. (39) follows from point 1 of this Proposition and Point 3 in Proposition 4.

4) Eq. (40) follows by application of eq. (20) to eq. (42).

Let us illustrate the meaning of Proposition 5. Given the rare event approximation: 1) Eq.

(36) states that, under the rare event approximation, no terms of order higher than the size of

the largest prime implicant appear in the expression of the system reliability/unreliability; 2) Eq.
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(37) implies that no joint reliability importance of order higher thanmaxi=1;2;:::;M (mi) is present;

this also implies that the highest order of Taylor approximation is T = maxi=1;2;:::;M (mi); 3)

Eq. (38) states that, if a group of components is not included in a prime implicant, then the

corresponding joint reliability importance is null, and the converse statement is also true; 4) Eq.

(40) states that the joint reliability importance of a prime implicant is unity, if the rare event

approximation holds. We note that this holds both for coherent and non-coherent systems.

In this respect, for coherent systems let us investigate the meaning of eq. (40) in the light of

Lemma 3.1 in El-Neweihi (1980). In order to allow this comparison, we need to resume the

independence assumption. One has [El-Neweihi (1980)]:

JOi = E[�i1;i2;:::;imi�(Z)] (43)

where

�i1;i2;:::;imi�(Z) = �(1i1 ; 1i2 ; :::; 1imi ;Z)�
mi�1X
s=1

(�1)s
X

i1<i2<:::<is

�(0i1 ; :::; 0is ; 1is+1 ; :::; 1ik ;Z)

(44)

As � is a Bernoulli variable, then

JOi = E[�i1;i2;:::;imi�(Z)] =

P [�(1i1 ; 1i2 ; :::; 1imi ;Z)�
mi�1X
s=1

(�1)s
X

i1<i2<:::<is

�(0i1 ; :::; 0is ; 1is+1 ; :::; 1ik ;Z) = 1]
(45)

Eq. (45) states that JOi is the probability that the group of events Zi1 = 1; Zi2 = 1; :::; Zimi = 1

is critical to the system [El-Neweihi (1980).] Then, JOi = 1 implies that this is indeed the case

when Zi1 ; Zi2 ; :::; Zimi is a prime implicant and P (Oi = 1 \Os = 1) = 0.
For non coherent systems eq. (40) is obtained as a consequence of the �ndings in Andrews

and Beeson (2003) and Lu and Jiang (2007), i.e., by treating p and q independently �to retain

the physical meanings of the respective basic events [Lu and Jiang (2007); p. 437].� Let us

illustrate this concept by an example.

Example 3 Consider again Example 2. Recall that the prime implicants are (Z1 ^ Z2); (Z1 ^
Z3); (Z2 ^ Z3). Under the rare event approximation eq. (31) becomes:

Q(p;q) = q2q1 + q3q1 + q2p3 (46)

Then, joint reliability importance of the prime implicants is Jq2;q1 = 1, Jq3;q1 = 1 Jq2;p3 = 1.

In the next section, we formalize further the relationship between J and D.

5 The Total Order Importance Measure

This Section introduces a new importance measure. The new indicator provides the relationship

between joint and di¤erential reliability importance of all orders.

Consider a generic system, coherent or non-coherent. Let G(x) be the system reliabil-

ity/unreliability function.
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De�nition 1 Let T be the highest order of the Taylor expansion in eq. (32). Let

�Thl := Bl�xl +
TX
k=2

X
i1<i2;::<ik
l2i1<i2;::<ik

Jki1;i2;:::;ik(x
0)

kY
s=1

�xis (47)

denote the sum of the terms in eq. (32) containing a contribution from xl. Then, we call

DTl :=
�TGl
�G

=

Bl�xl +
TX
k=2

X
i1<i2;::<ik
l2i1<i2;::<ik

Jki1;i2;:::;ik(x
0)
Yk

s=1
�xis

NX
i=1

Bi(x0) ��xi +
TX
k=2

X
i1<i2;::<ik

Jki1;i2;:::;ik(x
0)
Yk

s=1
�xis

(48)

the total order importance of xl.

We have immediately the following property of DTl .

Remark 3 DTl is the exact fraction of the change in system reliability/unreliability caused by

the change in component l reliability/unreliability (by Proposition 4, the decomposition of order

T of �G is exact.) DTl measures the in�uence of component l as a result of its individual e¤ects

and of all its possible interactions with the other components.

Eq. (48) provides the relationship between DT , B and Jk of all orders, (k = 2; 3; :::; T ):

Thus, DTl turns out to be a sensitivity measure that synthesizes in one unique indicator the

information obtained by the joint reliability importances of any order.

We prove a limiting property of DT . When changes become small, interaction e¤ects

smoothen and DT tends to the di¤erential importance measure.

Proposition 6 Let 1 < k < T . As changes become small,

DTl (x;�x)! Dkl (x;�x)! Dl(x;�x) (49)

i.e.,

lim
�x!0

DTl = lim
�x!0

Dkl = Dl (50)

Proof. Consider eq. (48). Let k < T . As �x ! 0; �Thl ! �khi ! Bldxl and �G !dG.

Thus, by the properties of the ratio of limits, as �x! 0, the ratio
�Thi
�G

and
�khi
�G

! Bldxl
dG

=

Dl.

Proposition 6 has the following consequence.

Corollary 1 Let �xl = �xs 8l; s = 1; 2; :::; N then

lim
�x!0

DTl = Dl / Bl (51)
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Table 3: Importance measures for the example as in Vesely et al (1990), p. A.5.

Importance Measure Value
B1 0:003

B2 0:006

B3 0:0002

J1;2 0:3

J1;3 0:01

J2;3 0:02

J1;2;3 1

Table 4: Importance Measures with changes in component unavailabilities of 10-̧s

Component Dl DIIl DTl
1 0:314762 0:347288 0:347393

2 0:629525 0:663099 0:663204

3 0:020984 0:024132 0:024237

Proof. From Proposition 6, when �x! 0, then DTl ! Dl. If �xl = �xs, then by eq. (6), eq.

(51) holds.

Corollary 1, states that, under assumptions of uniform and small changes, DT and B produce

the same ranking.

To illustrate De�nition 1, Remark 3 and Proposition 6, we make use of the example in Vesely

et al (1990). System failure is of concern, the prime implicant is Z1^Z2^Z3 and the component
unreliabilities are q1 = 0:02; q2 = 0:01 and q3 = 0:3. The joint reliability importance of various

orders are calculated in Table 3, following the analytical results in Vesely et al (1990).

To illustrate Proposition 6, let us write the expressions of component 1 �rst, second and

total order di¤erential importance:8>>>>>>><>>>>>>>:

D1 =
B1 ��q
�Q

DII1 =
B1 ��q + (J1;2 + J1;3 )(�q)2

�Q

DT1 =
B1 ��q + (J1;2 + J1;3 )(�q)2 + J1;2;3 � (�q)3

�Q

(52)

Figure 1 shows D1,DII1 and DT1 as a function of �q.

Figure 1 con�rms that, as �q decreases, D1, DII1 and DT1 tend to coincide [see also Zio and

Podo�llini (2006).] In particular, for �q < 10�4, their values coincide for all practical purposes.

We note that, in this case, DTl produces the same ranking as Bl, in accordance with Corollary

1. At �ql = 10�3, however, second order e¤ects start to be felt. Table 4 details the Dl; DIIl
and DTl for the three components when �ql = 10

�3 (l = 1; 2; 3).

Table 4 shows that Dl start di¤ering from DIIl and DTl at �ql = 10�3. As �ql increases,

the values assumed by DIIl and DTl remain close until �ql =
1

2
10�1. This result indicates that

second order e¤ects prevail over �rst order e¤ects, but third order e¤ects are negligible up to

�ql ' 0:05. As �ql > 0:1, third order e¤ects become relevant, and DTl starts di¤ering from Dl
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Figure 1: DT1 (� �), D21 (� �) and D1 (� � ) as a function of �q.

and DIIl signi�cantly (Figure 1).

Let us now turn the attention to the information entailed in Table 3. The system is coherent,

then Bl > 0 for all l. In particular, the component with the highest Bl is 2, followed by

component 1, and with component 3 having a very small marginal importance. JIIi;s > 0 8i; s
implies that failures reinforce each other worsening system performance. The most relevant

interaction is the one between components 1 and 2, followed by 2�3 and 1�3: JII1;2 > JII2;3 > JII1;3.
Finally, JT1;2;3 = 1 in accordance with Proposition 5. Note that Table 3 does not convey the

overall importance of a component. Rather, it details the relevance of its individual, second

and third order e¤ects. The importance of a component including all its interaction e¤ects is

obtained by computing DT [eq. (48).]. We are then lead to study how DT1 ; D
T
2 ; D

T
3 vary as �ql

varies. Figure 2 reports the values of DTl (l = 1; 2; 3) as �q varies from 0:0001 to 0:5.

From Figure 2 one notes that DTl (l = 1; 2; 3) increase with �q. Component 2 remains

the most important component across the whole variation range. One notes thatDT1 tends to

DT2 , as changes grow. However,D
T
1 tends to D

T
2 , as changes grow. This is due to the weight

of J1;2;3, i.e., to the fact that third order interaction e¤ects become dominant when changes

become �nite. To explain this result, let us write DTl (l = 1; 2; 3) explicitly:8>>>>>>>><>>>>>>>>:

DT1 =
B1 ��q + (J1;2 + J1;3 )(�q)2 + J1;2;3 � (�q)3

�Q

DT2 =
B2 ��q + (J1;2 + J2;3 )(�q)2 + J1;2;3 � (�q)3

�Q

DT3 =
B3 ��q + (J1;3 + J2;3 )(�q)2 + J1;2;3 � (�q)3

�Q

(53)

Each DTl is composed of three terms. The �rst term concerns the individual e¤ect (Bl � �q),
the second term the second order interaction e¤ects ((J1;2+J1;3 )(�q)2) and the third term the

third order e¤ect (J1;2;3 � (�q)3). Let us then observe the values of Table 3. One notes that Bl
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Figure 2: DTl ; l = 1; 2; 3. Component 2 (continuous line) is characterized by the highest
importance, followed by component 1, (��), and component 3; (��).

Table 5: First, second and third order contributions for small (0.001), and �nite (0.5)
changes in unreliabilities

�q = 0:001
Bl�q

�Q

(Js;t + Js;r )(�q)
2

�Q

J1;2;3(�q)
3

�Q
Component 1 0.3147 0.0325 1.0492�10�4
Component 2 0.6295 0.0336 1.0492�10�4
Component 3 0.0210 3.1476�10�3 1.0492�10�4

�q = 0:5
Bl�q

�Q

(Js;t + Js;r )(�q)
2

�Q

J1;2;3(�q)
3

�Q
Component 1 7.0721�10�3 0.3654 0.5893
Component 2 0.0141 0.3772 0.5893
Component 3 4.7146�10�4 0.0354 0.5893

is one or even two order of magnitudes lower than JIIi;s . Furthermore, J
T
1;2;3 = 1 > J

II
i;s >> Bl.

Therefore, when changes are small, it is the small values of (�q)2 or (�q)3, that causes second

and third order terms in eq. (53) to be smaller than the individual e¤ects Bl ��q. Conversely,
when �q increases, the individual e¤ects become negligible. Given that JT1;2;3 = 1, for discrete

values of �q, third order e¤ects will become predominant. This expectation is con�rmed by the

numerical results of Table 5.

The upper portion of Table 5 shows that for small �q, the individual contributions prevail in

determining component importance. The lower portion of Table 5, instead, shows that second

and third order e¤ects prevail when �q is �nite �when �q = 0:5 individual e¤ects are two

orders of magnitude lower than interaction e¤ects.

The above discussion can be summarized as follows. By knowledge of DT one obtains

information on the overall importance of a component including all its individual and interaction
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Table 6: Algorithm for the estimation of DT at the cost of N model runs

Step nr. Task
1 Evaluate G(x0)
2 Evaluate G(x1) = G(x0 +�x)

3
For i = 1; 2; :::; N
Evaluate G(xi;x1)

end

4 Substitute in eq. (54)

e¤ects. By knowledge of B and Jk (Table 3) one obtains information on the sign and magnitude

of the individual (Bl) and interaction (Jki1;i2;:::;ik) e¤ects. Thus, by a simultaneous use of D
T

and Jk (k = 1; 2; :::; T ) analysts obtain a complete dissection of system behavior and determine

exactly how each component contributes to system performance.

6 Algorithmic Computation of DT

In this Section, we address the numerical estimation of DT . In complex systems the number

of components (N) can be of the order of 103 or more. A brute-force estimation of DT , i.e.,

an estimation procedure based on eq. (48), would entail the computation of all mixed partial

derivatives up to T . The cost of such an algorithm grows more than linearly with N . For

instance, when N = 2, the number of model evaluations necessary to estimate all �rst and

second order partial derivatives is equal to
N +N2

2
. Hence, for large N , utilization of a brute

force approach might impair the estimation of DT .

However, DT can be obtained at a cost of N model runs without computation of the partial

derivatives, as the next result shows.

Proposition 7 Consider a system with N components and let G : RN ! R be the corre-

sponding reliability/unreliability function. Let x0 and x1 = x0 + �x denote the values of the

reliabilities/unreliabilities before and after the change. Let (xi;x1) the point obtained when all

reliabilities/unreliabilities are changed but xi. Then:

DTi =
G(x1)�G(xi;x1)

�G
(54)

Proof. By De�nition 1 [eq. (48)], DTi equals the fraction of the change in G associated with

xi. In Borgonovo (2009), it is proven that the fraction of the change in any function associated

with variable xi is equal to the total order �nite change sensitivity index (�Ti ) of xi. Hence,

DTi = �
T
i . By Proposition 1 in Borgonovo (2009) it holds that �

T
i =

G(x1)�G(xi;x1)
�G

. Hence,

eq. (54) holds.

Proposition 7 can be turned into an estimation procedure that allows to estimate DT via

the following algorithm [Table 6.]

To illustrate the procedure numerically, let us consider the example of Section 5, with

�q = 0:2. G(x0) in Table 6 becomes Q(q). Step 1 foresees to estimate the base case value of
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Table 7: Illustration of the algorithm of Table 6

i Q(qi;q
1) Q(q1)�Q(qi;q1) DTi [eq. (54)]

1 0:0021 0:021 0:91146

2 0:0011 0:022 0:95486

3 0:01386 0:00924 0:40104

the system unreliability. One obtains

Q(q0) = 0:01 � 0:02 � 0:3 = 6 � 10�5

The second step is the estimation of the system unreliability at q1 = q0 +�q:

Q(q1) = Q(q0 +�q) =
3Y
i=1

(qi +�qi) = 0:0231

The third step entails the evaluation of Q at (qi,q1), i = 1; 2; :::; N . The points (qi,q1) are

obtained by keeping qi unchanged, while the remaining unreliabilities are �xed at qi + �qi.

Table 7 reports the results for steps 3 and 4 of the algorithm in Table 6. The numerical results

in Table 7 coincide with the values of DT in Figure 2 (one needs to draw a vertical line at

�q = 0:2.) We recall that the results of Figure 2 were obtained by utilizing De�nition 1, i.e.,

with estimation of all the mixed partial derivatives, while the results in Table 7 make use of

Proposition 7, bypassing the estimation of the partial derivatives.

One notes that by Proposition 7, the computational cost of DT is equal to N + 2 model

evaluations. This cost is lower than the estimation cost of Jki1;i2;:::;ik for any order k, and equals

the cost for estimating the Risk Achievement Worth (RAW) and Risk Reduction Worth (RRW)

importance measures, which are two of the most widely utilized importance measures in the

safety analysis of complex systems.

7 Conclusions

The recent works of Lu and Jiang (2007) and Gao et al (2007) have renewed interest in reliability

importance measures. A literature review, however, reveals that the studies of the properties of

the joint and di¤erential importance measures have developed on parallel tracks, an a common

background is missing. In this work, we have proposed a uni�ed framework for the utilization

of the di¤erential and joint reliability importance measures.

We have �rst addressed the question of the order T at which to arrest the Taylor expansion

of a reliability function. By addressing the fact that a multilinear function coincides with

both its Maclaurin and Bernstein polynomials, it has been possible to prove that the Taylor

expansion of the reliability function of both coherent and non-coherent systems, with dependent

and independent failures, is exact. In addition, any �nite change in system reliability is exactly

expanded in a Taylor polynomial of order T .

We have then introduced a new importance measure, the total order importance measure

(DT ), which is the exact fraction of the change in system reliability related to a change in
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the reliability properties of component i. We have seen that DT includes all joint reliability

importance measures of orders 1 to T . DT then extends the de�nitions of Zio and Podo�llini

(2006) and Do Van et al (2008)�s of higher order di¤erential importance. Dkl delivers the

importance of a component in consideration of its individual e¤ect and of all its interactions

with the other components. We have studied the limiting properties of DT and shown that

it tends to the di¤erential importance when changes become small. If, in addition, uniform

changes in reliabilities are considered, then DT and B produce the same ranking.

We have seen that Jki1;i2;:::;ik and D
T provide a full dissection of the system behavior, with

DT o¤ering the overall importance of a component and Jki1;i2;:::;ik providing detailed information

on interactions.

Finally, we have introduced a result that allows the estimation of DT by varying one-

probability-at-a-time. By the corresponding algorithm, one estimates DT at the same compu-

tational cost of reliability importance measures utilized in the analysis of complex systems.
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