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Abstract

Utility function properties as monotonicity and concavity play a fundamental role in re-

�ecting a decision-maker�s preference structure. These properties are usually characterized via

partial derivatives. However, elicitation methods do not necessarily lead to twice-di¤erentiable

utility functions. Furthermore, while in a single-attribute context concavity fully re�ects risk

aversion, in multiattribute problems such correspondence is not one-to-one. We show that

Tsetlin and Winkler�s multivariate risk attitudes imply ultramodularity of the utility function.

We demonstrate that geometric properties of a multivariate utility function can be success-

fully studied by utilizing an integral function expansion (functional ANOVA). The necessary

and su¢ cient conditions under which monotonicity and/or ultramodularity of single-attribute

functions imply the monotonicity and/or ultramodularity of the corresponding multiattribute

function under additive, preferential and mutual utility independence are then established with-

out reliance on the utility function di¤erentiability. We also investigate the relationship between

the presence of interactions among the attributes of a multiattribute utility function and the

decision-maker�s multivariate risk attitudes.

Keywords: Multiattribute Utility Theory; Functional ANOVA; Multi-criteria analysis; Ultra-

modular Functions.

Acknowledgments

The authors wish to thank the anonymous referees for very perceptive and insightful comments

that have greatly helped us in improving the manuscript. We also thank the participants of the XIII

International Conference on the Foundations and Applications of Utility, Risk and Decision Theory,

IESE, Barcelona, July 2008, and of the AMASES 2007 conference for their insightful comments

and observations.

1 Introduction

The solution of several decision-making problems requires the quantitative assessment of multiat-

tribute objective (utility) functions [u(x)]. Practical advantages are registered in all those appli-

cations in which it is possible to elicit single-attribute functions and next aggregate them. Utility,
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additive and preferential independence are often assumed in the practice, since they lead to addi-

tive and multiplicative forms of the utility functions [Fishburn (1980), Keeney and Rai¤a (1993),

Keeney (2006), Baucells et al (2008).] The elicitation methods described in Fortemps et al (2008),

Greco et al (2008), Figuera et al (2009), Anginella et al (2004), Anginella et al (2010) play a central

role for obtaining quantitative results.

Monotonicity and convexity properties on the single-attribute functions are required for the re-

sulting multiattribute utility function to be in one-to-one correspondence with the decision-maker�s

preference structure and risk aversion attitudes. In the single-attribute case, non-satiation leads to

monotonically increasing utility functions; risk aversion combined with non-satiation implies utility

function concavity. In multiattribute utility problems, non-satiation still leads to monotonicity,

while the notion of risk aversion becomes more general, with several possible extensions. Richard

(1975)�s multivariate risk aversion leads to the supermodularity of u(x) [Ortega and Escudero

(2010)] while, as we are to see, Tsetlin and Winker (2009) multivariate �preferences for combining

good with bad lead to the ultramodularity�of u(x). The question is, then, whether the motoniticity

(ultramodularity) of u(x) implies the motoniticity (ultramodularity) of the single-attribute utility

functions under the various forms of preference structures. Conversely, one would need to know

whether, by eliciting single-attribute utility functions which possess a given property, She is insured

that such property is maintained in u(x).

This work introduces an approach for linking analytic and geometric properties of multiattribute

objective functions to the properties of their single-attribute constituents, without restrictions on

the preference structure.

Ideally, monotonicity, concavity and ultramodularity can all be characterized in terms of partial

derivatives (�rst and second order, respectively). However, methods for multiple criteria ranking

[Greco et al (2008), Figuera et al (2009), Jacquet-Lagrèze et al (1987)] build a set of additive value

functions compatible with the revealed preference information, which are piecewise de�ned (mostly

piecewise linear). Hence, a mathematical approach based on di¤erentiation does not possess the

required generality. We therefore shift the background to the integral expansion of a multivariate

function (f) generated by the high dimensional model representation (HDMR) theory (functional

ANOVA) [Efron and Stein (1981), Rabitz and Alis (1999), Alis and Rabitz (2001), Sobol�(2001),

Sobol�(2003).] For this expansion to hold, in fact, the sole measurability of f is required. Func-

tional ANOVA is a fundamental tool in statistics and global sensitivity analysis [Rabitz and Alis

(1999), Wang (2006) Sobol�(2003)]. However, in spite of its widespread utilization, a study of its

monotonicity and ultramodularity properties has not been o¤ered yet. We obtain necessary and

su¢ cient conditions that insure that, given the monotonicity and ultramodularity of f , these prop-

erties are preserved at the various orders of the expansion. We then specialize these general results

to the case of additive and multiplicative functions, since these two functional forms frequently

appear in MAUT.

In particular, we obtain the following results: I) Under additive utility independence: i) u

is monotonic if and only if all the corresponding single-attribute conditional utility functions are;
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and ii) u is ultramodular if and only if all the conditional utilities are; II) Under mutual utility

independence, if and only if u is monotonic and ultramodular, then all single-attribute utility

functions are; III) Letting v denote the multiattribute value function for preferences under certainty

[on the distinction between u and v, we refer to Keeney and Rai¤a (1993)], it is possible to prove

that, under preferential independence: i) if v is non-decreasing, then u is; ii) if v is ultramodular,

then u is.

Each of the previous results is also characterized in terms of a decision-maker�s multivariate risk

attitudes. In particular, it is obtained that u is ultramodular if and only if it re�ects the preferences

for combining good with bad stated in Tsetlin and Winker (2009). The presence of interactions in

the functional ANOVA representation of u is also investigated in its connection with multivariate

risk attitudes. We show that the absence of interactions in u implies multivariate risk neutrality in

the sense of Richard (1975).

The remainder of this work is organized as follows. Section 2 discusses the MAUT implications of

ultramodularity. Section 3 provides a review of functional ANOVA and HDMR. Section 4 discusses

the monotonicity properties of the functional ANOVA expansion. Section 5 derives results for

ultramodularity. Both Sections 4 and 5 apply the �ndings to separable functions. Section 6 discusses

implications of the above �ndings in MAUT. Conclusions are o¤ered in Section 7.

2 Ultramodularity in MAUT: Multivariate Risk Aversion

The mathematical properties of a multiattribute utility function must be in one-to-one correspon-

dence with the decision-maker�s preference structure. For instance, monotonicity re�ects the non-

satiation property, which states that �more of an attribute is preferred to less �[Tsetlin and Winker

(2009); p. 1944]; see also Ingersoll (1987). Such correspondence is maintained both in single-

attribute and in multiattribute problems. In single-attribute problems, given the monotonicity of

the utility function, concavity re�ects risk aversion; if, in addition, the utility function is regular,

risk aversion is univocally characterized by the Arrow-Pratt measure. In multiattribute problems,

the one-to-one correspondence between concavity and risk aversion is lost and generalizations of

concavity come into play. For instance, multivariate risk aversion as introduced in Richard (1975)

implies the submodularity of the utility function [see Ortega and Escudero (2010)]. In this section,

we investigate what types of multivariate risk attitudes are linked to ultramodularity.

As discussed in Marinacci and Montrucchio (2005), two alternative de�nitions of ultramodular

functions can be stated, the �rst one based on the notion of test quadruple, the second one based

on increasing di¤erences. We utilize the latter de�nition, because it is better suited to the purposes

of this paper. At the same time, we also introduce the notion of neg-ultramodular functions.

De�nition 1 A function f : X � Rn ! R is
a) ultramodular, if

f(x+ h)� f(x) � f(y + h)� f(y) (1)

b) neg-ultramodular, if

f(x+ h)� f(x) � f(y + h)� f(y) (2)
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for all x; y 2 X and h � 0 with x � y and x+ h; y + h 2 X.

By De�nition 1, one notes that, if f is ultramodular, then �f is neg-ultramodular. De�ni-
tion 1 shows that ultramodular (neg-ultramodular) functions possess the property of increasing

(decreasing) di¤erences [see Marinacci and Montrucchio (2005) p. 315].

Ultramodular functions are also known as directionally convex functions [ Ortega and Escudero

(2010)]. Marinacci and Montrucchio (2005) highlight that ultramodularity is a generalization of

scalar convexity. In fact, if and only if f : R ! R is convex, then it is ultramodular. However,

ultramodularity and convexity become distinct notions for multivariate functions [Marinacci and

Montrucchio (2005), Marinacci and Montrucchio (2008)].

In Marinacci and Montrucchio (2005), several properties of ultramodular functions are proven.

The ones relevant to this work are collected in the following Proposition.

Proposition 1 Let f; g : X � Rn ! R two ultramodular functions.

1. The sum �f + �g is ultramodular if � and � are non-negative scalars.

2. The sum f + k, k 2 R is ultramodular.

3. The product f �g is ultramodular if, in addition, f and g are both non-negative and increasing.

4. The composition h � f is ultramodular, provided f is monotonic and ultramodular, and h is
ultramodular and increasing.

Interpretations of ultramodularity have been o¤ered in Economics and Game Theory. � Mari-

nacci and Montrucchio (2005) illustrate that ultramodularity �re�ects a stronger form of comple-

mentary than supermodularity�[Marinacci and Montrucchio (2005); p. 311]. Indeed, ultramodular

functions are also supermodular while the converse is not true [see Topkis (1995), Milgrom and

Shannon (1994).] Supermodularity and ultramodularity are also relevant in the theory of pseudo-

Boolean functions [see Foldes and Hammer (2005)]. � However, a rigorous investigation of the

implications of ultramodularity in MAUT has not been o¤ered yet. The conditions that make

ultramodularity appear in multiattribute problems are discussed next.

Ultramodularity is connected with multivariate risk attitudes. Consider a two attribute (x; y)

problem for simplicity. The main di¤erence between single-attribute and multiattribute problems

is stated in Richard (1975): �a decision-maker can be risk averse for gambles on x alone or for

gambles on y alone, but still be multivariate risk seeking.� Richard (1975) then introduces the

concept of multivariate risk aversion as follows. A decision-maker is multivariate risk averse if She

�prefers getting some of the best and some of the worst to taking a chance on all of the best or all of

the worst.� Richard (1975) shows that, provided that u 2 C2, a necessary and su¢ cient condition
for multivariate risk aversion is @2u=@xi@xj � 0 for i 6= j.

Multivariate risk aversion is also characterized by Richard (1975) in terms of the signs of the

partial derivatives. The alternating sign condition of Richard (1975) implies the submodularity of

the corresponding utility function [see Ortega and Escudero (2010)].
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Tsetlin and Winker (2009) show that a decision-maker �to be consistent with preferring to

combine good with bad should have a utility function with alternating signs for successive partial

derivatives.�Theorem 1 in Tsetlin and Winker (2009) [p. 1945] states that a decision-maker prefers

to combine good with bad if and only if its utility function belongs to UBb . U
B
b is the class of all

�B-dimensional real-valued functions for which all partial derivatives of a given order up to order

b have the same sign, and that sign alternates, being positive for odd orders and negative for even

orders. [Tsetlin and Winker (2009), p. 1945].�UBb plays an important role also in the de�nition of
a new class of utility functions in Prékopa and Mádi-Nagy (2008).

In respect of Richard (1975), Tsetlin andWinker (2009) de�ne the preference for combining good

lotteries with bad lotteries as a �stronger condition, encompassing single-attribute risk aversion and

going beyond it�. This condition is expressed by the additional assumption that the decision-maker

is single-attribute risk averse, e.g.,
�@2u=@x2i
@u=@xi

� 0.

Now, we show that the assumptions u 2 UBb and
�@2u=@x2i
@u=@xi

� 0 stated in Tsetlin and Winker

(2009) imply the neg-ultramodularity of u. In Tsetlin and Winker (2009) (but also in Richard

(1975)), u is increasing in the attributes, whence @u=@xi � 0, 8i. u 2 UBb then implies that the
second order partial derivatives are negative, i.e., @2u=@xi@xj � 0, 8i; j: Note that i does not need
to be di¤erent from j due to the single-attribute risk aversion assumption. Now, by Theorem 5.5

in Marinacci and Montrucchio (2005), a function u 2 C2 is neg-ultramodular i¤ @2u=@xi@xj � 0,
8i; j. Therefore:

Proposition 2 Let u 2 C2(X1�X2� :::�Xn). If and only if the decision-maker is averse to any
multivariate risk in the sense of Tsetlin and Winker (2009), then u is neg-ultramodular.

One notes that, by de�nition of ultramodularity, the above proposition holds also if u is

monotonically decreasing, with neg-ultramodularity replaced by ultramodularity.

As far as elicitation is concerned, we refer to Tsetlin and Winker (2009) [in particular, Section

5, p. 1948], where the assessment of a utility function displaying the above-described multivariate

risk attitudes is discussed.

One notes that both our work up to this point, and the preceding literature, has characterized

monotonicity and ultramodularity in terms of �rst and second order derivatives. For this character-

ization to hold, u must be twice di¤erentiable. Quantitative elicitation methods (see, for instance

the GRIP method in Greco et al (2008) and Figuera et al (2009)), however, lead to utility functions

that are, generally, non-di¤erentiable. Hence, one needs to obtain a more general characteriza-

tion of the properties of u, not relying on di¤erentiation. In the next section, the use of functional

ANOVA as a way for expanding a multivariate function without resorting to regularity assumptions

is discussed.
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3 High Dimensional Model Representation Theory and Functional ANOVA

In this section, we describe the foundations of functional ANOVA and o¤er its interpretation as a

tool for expanding multivariate measurable functions.

The origin of functional ANOVA is linked to the problem of decomposing the variance of a square

integrable statistics generated by the seminal works of Hoe¤ding in the 1940�s [Hoe¤ding (1948)].

The �jackknife�decomposition is proven in Efron and Stein (1981). The technique utilized by Efron

and Stein (1981) consists in the dissection of f via a sequence of nested conditional expectations

in accord with a Grahm-Schmidt orthogonalization process. Orthogonality is at the basis of the

results by Takemura (1983), where the orthogonal decomposition of any square integrable function

is cast in the context of tensor analysis and multilinear algebra. Rabitz and Alis (1999) introduce

an alternative generalization of functional ANOVA, called high dimensional model representation

(HDMR) theory. Rabitz and Alis (1999) prove the functional ANOVA decomposition through the

dissection of the linear space to which the function belong. A fourth and independent way of proving

the functional ANOVA expansion is due to Sobol�(1969) and Sobol�(1993). In Sobol�(1969), the

decomposition is developed in the context of quadrature methods and called �the decomposition

into summands of di¤erent dimensions [Owen (2003); p. 2]. In Sobol�(1993), the uniqueness of

eq. (20) is proven via nested integrations1.

In this work, we utilize the framework of Rabitz and Alis (1999). Without loss of generality,

one refers to a scalar function f : In � Rn ! R, where I denotes the unit interval [0; 1], and In the
n-dimensional unitary hypercube. (In, B (In), �) is a Borel measure space. For the sake of notation
simplicity in the remainder, � denotes the Lebesgue measure [on the standard choices of In and

the Lebesgue measure, see also Rabitz and Alis (1999), Sobol�(2001), Owen (2003), Sobol�(2003),

Wang (2006) and Malliavin (1995), p. 224-227]. f belongs to a linear vector space of functions

denoted by F . We require f to be at least measurable 2. Rabitz and Alis (1999) then utilize the

following decomposition of F [a similar approach is also used in Takemura (1983)].

Lemma 1 [Rabitz and Alis (1999)]

F = F0 �
nX
i=1

Fi �
X
i<j

Fi;j � :::� F123:::n (3)

where � is the direct-sum operator and the subspaces are de�ned as8>>>><>>>>:
F0 � ff 2 F : f = a; a 2 Rg
Fi �

�
f 2 F : f = fi(xi) with

R
I fi(xi)d�i = 0

	
Fi;j �

�
f 2 F : f = fi;j(xi; xj) with

R
I fi;j(xi; xj) d�s = 0, s = i; j

	
:::

(4)

1 In the remainder, the terms functional ANOVA, HDMR and integral decomposition shall be regarded as syn-
onyms.

2Given the probability space (
;B(
); �), Lp(
;B(
); �) denotes the set of all � � p�measurable functions  :

! Rn such that

Z



k (!)kp d�(!) <1.[Malliavin (1995).]
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The following theorem then follows by projection [see Rabitz and Alis (1999)].

Theorem 1 [Sobol�(1993) and also Rabitz and Alis (1999)]. Let f : In � Rn ! R, f 2 F: Under
the above assumptions, the following decomposition of f in eq. (5) is unique:

f(x) = f0 +
nX
k=1

X
i1<i2<:::<ik

fi1;i2;:::;ik(xi1 ; xi2 ; :::; xik) (5)

with
f0 =M0f = E�[f(x)]
fi(xi) =Mif(x)� f0
fi1;i2(xi1;xi2) =Mi1;i2f(x)� fi1(xi1)� fi2(xi2)� f0
:::

(6)

and

Mi1;i2;:::;ik [f ]=E� [f jxi1 ; xi2 ; :::; xik ] (7)

In eq. (5),Mi1;i2;:::;ik are the conditional expectations of f given xi1 ; xi2 ; :::; xik , and are referred

to in Rabitz and Alis (1999), Alis and Rabitz (2001), Sobol�(2003) as projection operators. In the

remainder, the notation

mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik) = E� [f jxi1 ; xi2 ; :::; xik ] (8)

shall display the dependence of Mi1;i2;:::;ik [f ] on xi1 ; xi2 ; :::; xik . We call the functions mi1;i2;:::;ik in

eq. (8) non-orthogonalized terms. The functions fi are referred to as �rst order terms [in Rabitz

and Alis (1999), Alis and Rabitz (2001), Sobol�(2003)] or main e¤ects [ in Huang (1998), Wang

(2006) Hooker (2007)], the functions fi1 ;i2 ; :::;ik as interaction terms or interaction e¤ects.

One needs to recall the crucial role played by the independence assumption in granting unique-

ness to the functional ANOVA expansion. In fact, it is proven by Bedford (1998) that, if correlations

are present, the decomposition depends on the initial lexicographical ordering of the random vari-

ables. The same f then shares multiple representations and eq. (5) looses its uniqueness.

Without claiming exhaustiveness, one can group the numerous applications of functional ANOVA

into three interrelated �elds: high-dimensional integration, high-dimensional model representation

and global sensitivity analysis. In Wang (2006), functional ANOVA is utilized as a dimension-

reduction technique for integration problems in �nancial applications. Functional ANOVA in high-

dimensional integration has been studied also in [Sobol�(1969), Sobol�(1993), Sobol�(2001), Sobol�

(2003), Owen (2003), Sobol�et al (2007)]. In Rabitz and Alis (1999), Alis and Rabitz (2001) and Li

et al (2001), functional ANOVA is employed �for improving the e¢ ciency of deducing high dimen-

sional input�output system behavior (Alis and Rabitz (2001); p.1).�In these works, the functional

ANOVA expansion is utilized as an interpolation method, in a meta-modelling scheme, and origi-

nates the so-called HDMR theory (Rabitz and Alis (1999)). In particular, Rabitz and Alis (1999)

and Alis and Rabitz (2001) introduce the cut-HDMR expansion, which provides as one of the
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most useful tools for complex model output interpolation and dimension reduction. A third and

interrelated �eld where functional ANOVA has been widely applied is global sensitivity analysis

of model output (Wagner (1995); Homma and Saltelli (1996); Saltelli et al (2000); Saltelli et al

(1999); Saltelli and Tarantola (2002); Borgonovo (2006); Borgonovo (2010)). Indeed, the �rst ap-

plication of functional ANOVA in OR is in global sensitivity analysis, by Wagner (1995). Notable

e¤orts have since then been performed towards re�ning the numerical estimation of the terms in

the functional ANOVA expansion, especially in connection with the of Sobol� global Sensitivity

indices [see Homma and Saltelli (1996); Saltelli et al (1999) introduce the use of Fourier Amplitude

Sensitivity Test to estimation main e¤ects]. A common feature across all the above mentioned

work is the assumption of independence among the random variables. Bedford (1998) shows that

this assumption is central to obtain the uniqueness of the functional ANOVA representation. The

work by Hooker (2007) provides a generalization of functional ANOVA for the diagnostics of high

dimensional models in the presence of dependent variables.

In this work, we utilize functional ANOVA as a function expansion method, namely emphasis

is posed on eq. (5). In many works related to functional ANOVA, f is required to be square

integrable, i.e., f 2 L2(
;B(
); �), since the variance of f is the goal of the analysis. In our work,
because we are concerned with eq. (5), the assumption can be softened to f 2 L(
;B(
); �). As
we are to see, this allows us to obtain links between properties of u(x) and those of its conditional

utilities, bypassing requirements on the regularity of u(x) implied by a methodology based on �rst

or second order partial derivatives. Such need stems from the fact that, generally, an elicited utility

function is not di¤erentiable [see the GRIP method in Greco et al (2008) and Figuera et al (2009).]

However, in spite of the widespread utilization of functional ANOVA, properties as ultramod-

ularity and monotonicity have not been studied via this type of integral expansion yet. It is then

the purpose of the next sections to investigate how-whether these properties are maintained in

functional ANOVA. We start with monotonicity.

4 Monotonicity Properties in Functional ANOVA

The de�nition of non-decreasing function of interest for our work is as follows.

De�nition 2 f : In ! R is non-decreasing on In, if, 8x and 8y 2 In such that x � y, then

f(x) � f(y) (9)

If the strict inequality holds, one says that f is increasing. Similarly, f is non-increasing if 8x and
8y 2 In such that x � y

f(x) � f(y) (10)

If the strict inequality holds, one says that f is decreasing.

Let us assume that eqs. (5) and (6) hold, e.g., f is at least measurable. The following result

holds (see Appendix A for the proof).
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Lemma 2 If f is non-decreasing, then all non-orthogonalized terms mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik) in

its ANOVA expansion are.

By recalling the de�nition of mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik), Lemma 2 states that conditional expec-

tation preserves the monotonicity of f .

The following result concerns the monotonicity of the main e¤ects of the functional ANOVA

expansion (see Appendix A for the proof).

Theorem 2 If f is non-decreasing, then all �rst order terms in its ANOVA expansion are non-

decreasing.

Given De�nition 2, it is readily seen that results similar to Lemma 2 and Theorem 2 hold in the

case of f increasing, non-decreasing and strictly decreasing. Hence, monotonicity is preserved by the

main e¤ects (�rst order terms) of the functional ANOVA expansion. For higher order projections,

this property does not hold, in general. The terms fi1;i2;:::;ik are the result of an orthogonalization

process involving the di¤erence between f and lower order terms. As an example, second order

terms are given by:

fr;l(xr; xl) = mr;l(xr; xl)� fr(xr)� fl(xl)� f0 (11)

In spite of the fact that mr;l(xr; xl); fr(xr); fl(xl) are all non-decreasing individually, � if f is, �

the subtraction of fr(xr) and fl(xl) does not insure that

fr;l(xr; xl) < fr;l(xr + hr; xl + hl), 8hr; hl (12)

However, the inequality in (12) is satis�ed if3:

�fr +�fl � �mr;l (15)

Ineq. (15) states that fr;l(xr; xl) is non-decreasing when the change in f given the simultaneous

changes in xr and xl averaged over all possible values of the remaining variables (�mr;l) is greater

than the sum of the average changes due to the variations in xr and xl individually (�fr +�fl).

The above result can be extended to higher-order terms as follows (see Appendix A for the proof).

Theorem 3 (Su¢ cient condition for monotonicity) If f is non-decreasing, then the generic
kth order term fxi1 ;xi2 ;:::;xik (xi1 ; xi2 ; :::; xik) (1 < k � n) in its ANOVA expansion is non-decreasing

3Starting with the inequality

mr;l(xr; xl)� fr(xr)� fl(xl)� f0 � mr;l(xr + hr; xl + hl)� fr(xr + hr)� fl(xl + hl)� f0 (13)

one obtains:
fr(xr + hr)� fr(xr) + fl(xl + hl)� fl(xl) � mr;l(xr + hr; xl + hl)�mr;l(xr; xl) (14)
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if the following condition holds:

�mi1;i2;:::;ik �
k�1X
s=1

X
i1<i2:::<is

�fi1;i2;:::;is (16)

where

�mi1;i2;:::;ik = mi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik)�mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik)

�fi1;i2;:::;ik = fi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik)� fi1;i2;:::;ik(xi1 ; xi2 ; :::; xik)
(17)

and h � 0:

Theorem 3 states the conditions on f such that higher order terms in the functional ANOVA

expansion retain the monotonicity of f .

In the elicitation of multiattribute utility functions, however, it is often assumed (required) a

separable form of the utility function. In particular, additive independence results in an additive

form of the utility function, while mutual utility independence results in a multiplicative form

[Keeney and Rai¤a (1993)]. We recall that separable multiattribute utility functions play also a

relevant role in simplifying the algorithms for solution of multiattribute decision-analysis problems

represented in the form of in�uence diagrams, as discussed in Tatman and Shachter (1990).

Let us then investigate monotonicity properties of additive and multiplicative functions via

functional ANOVA. We have the following results (the proofs are in Appendix A.)

Corollary 1 Let f : In � Rn ! R be additive [f(x) =
Pn
i=1 zi(xi).] It is then true that f is

non-decreasing if and only if zi(xi) are non-decreasing, 8i.

Corollary 2 Let f : In � Rn ! R be of the form f(x) =
Y
zi(xi) with zi � 0 8i. Assume that f

is continuous on In. Then, f is non-decreasing, if and only if zi(xi) 8i are non-decreasing.

Corollaries 1 and 2 set forth the conditions under which the monotonicity of the univariate

functions zi(xi) insure the monotonicity of f , when f is additive or multiplicative.

In the next section, we are to address ultramodularity properties.

5 Ultramodularity in Functional ANOVA

This section is devoted to the functional ANOVA expansion of ultramodular functions. In particu-

lar, we investigate what are the conditions under which ultramodularity is preserved at the various

orders of the expansion.

The next result characterizes �rst order terms.

Theorem 4 If f is ultramodular, then the �rst order terms of eq. (5), fi; i = 1; 2; ; :::; n, are

ultramodular.

10



Theorem 4 states that the ultramodularity of f is a su¢ cient condition for the ultramodularity

of the �rst order terms of the integral decomposition. To insure the ultramodularity of higher

order terms [e.g., fi1;i2;:::;ik(xi1 ; xi2 ; :::; xik)], however, a further assumption on the �strength� of

the ultramodularity of f must be added. We start with proving the following result for the non-

normalized terms in eqs. (5) and (6).

Lemma 3 If f is ultramodular, then all non-orthogonalized terms mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik) (2 �
k � n) in its ANOVA expansion are ultramodular.

The su¢ cient condition under which all the orthogonalized terms in eq. (5), (e.g., the functions

fi1;i2;:::;ik(xi1 ; xi2 ; :::; xik); 2 � k � n) are ultramodular is given below.

Theorem 5 (Su¢ cient condition for ultramodularity of higher order terms) If f is ul-
tramodular, then the generic kth order term fxi1 ;xi2 ;:::;xik (xi1 ; xi2 ; :::; xik) (1 < k � n) in the decom-
position is ultramodular provided that the following condition holds:

�mi1;i2;:::;ik(y)��mi1;i2;:::;ik(x) �
k�1X
s=1

X
i1<i2:::<is

�fi1;i2;:::;is(y)�
k�1X
s=1

X
i1<i2:::<is

�fi1;i2;:::;is(x) (18)

where

�mi1;i2;:::;ik(y) = mi1;i2;:::;ik(yi1 + hi1 ; yi2 + hi2 ; :::; yik + hik)�mi1;i2;:::;ik(yi1 ; yi2 ; :::; yik)

�mi1;i2;:::;ik(x) = mi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik)�mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik)

�fi1;i2;:::;is(y) = fi1;i2;:::;is(yi1 + hi1 ; yi2 + hi2 ; :::; yis + his)� fi1;i2;:::;ik(yi1 ; yi2 ; :::; yis)
�fi1;i2;:::;is(x) = fi1;i2;:::;is(xi1 + hi1 ; xi2 + hi2 ; :::; xis + his)� fi1;i2;:::;ik(xi1 ; xi2 ; :::; xis)

(19)

Theorem 5 states the conditions under which all terms in the integral expansion of a ultramod-

ular function are ultramodular. In this respect, it parallels Theorem 3. The conditions implied by

Theorem 5 can be softened in the case the utility function is separable.

Concerning the ultramodularity of additive functions, we prove in Appendix A the following

results.

Corollary 3 Let f : In � Rn ! R be additive [f(x) =
Pn
i=1 zi(xi).] f is ultramodular if and only

if zi(xi) are ultramodular 8i.

Corollary 3 allows us to extend a result in Proposition 4.4. in Marinacci and Montrucchio

(2005), where a su¢ cient condition for an additive function f to be ultramodular and convex is

given by the convexity of each zi 8i.

Corollary 4 Let f(x) be of the form
Pn
i=1 zi(xi), f(x) is ultramodular if and only if it is convex.

The next result concerns the ultramodularity of multiplicative functions.

11



Corollary 5 If f =
nY
i=1

zi(xi) is ultramodular and zi(xi) > 0, then zi(xi) is ultramodular 8i =

1; 2; ::; n. If, in addition, zi(xi) is increasing 8i = 1; 2; ::; n, the converse is also true.

Corollary 5 states that, if f(x) is multiplicative, then its ultramodularity insures the ultramod-

ularity of its univariate functions. However, the ultramodularity of the univariate functions does

not insure the ultramodularity of f , unless the univariate functions are also increasing.

The �ndings of the present section and of Section 4 concern a generic multivariate f . In the

next two sections, we discuss the MAUT implications of these �ndings.

6 Functional ANOVA of Multiattribute Utility Functions

In this section, we discuss the multiattribute utility theory implications of the �ndings of Sections

3, 4 and 5.

Theorem 1 has the following implication.

Corollary 6 Any measurable multiattribute utility function u(x) : X1 � X2 � :::Xn ! R, can be
written as:

u(x) = u0 +

nX
i=1

ui(xi) +
X
i<j

ui;j(xi; xj) + :::+ u1;2;:::n(x1; x2; :::; xn) (20)

Corollary 6 [eq. (20)] states that any multiattribute utility function can be expanded in a series

of terms in which �rst order terms concern preferences over individual attributes, the second order

terms concern interactions among pairs of attributes, the third order terms interactions among

triplets, etc..

We observe that eq. (20) applies without reference to any particular preference structure. Let us

investigate this aspect further. We start by an observation of Rabitz and Alis (1999) (p. 198). The

observation concerns complex mathematical models and addresses the �curse of dimensionality,�

namely the presence of high-order interactions: �a dramatic reduction in this scaling [the number of

interactions] is often expected to arise [...] due to the presence of only low-order correlations amongst

the input variables having a signi�cant impact upon the output.� In applications of functional

ANOVA to complex numerical models [Wang (2006), Rabitz and Alis (1999), Li et al (2001)], one

can cut eq. (20) at a pre-determined order to reduce model complexity. For instance, in a second

order cut, one assumes

u(x) ' u0 +
nX
i=1

ui(xi) +
X
i<j

ui;j(xi; xj) (21)

When �nancial, physical or chemical systems are concerned, the only way to ascertain the accuracy

of the approximation in eq. (21) is by performing numerical experiments. In MAUT, however,

one can utilize assumptions on the preference structure of the decision-maker to determine a-priori

the order of the expansion. This marks a notable departure between the traditional utilization of

functional ANOVA and its utilization in MAUT. Furthermore, as we are to see, the presence or

absence of interactions in u(x) is linked to the multivariate risk attitudes of the decision-maker.
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In many applications of multiattribute decision-making, it is desirable to quantify u via the elic-

itation of the conditional utilities in each attribute (Keeney and Rai¤a (1993), Keeney (2006), Bau-

cells et al (2008), Greco et al (2008), Figuera et al (2009)). In other words, one assesses u(xijx0(�i))
for di¤erent levels of xi, with the remaining attributes (x0(�i)) �xed at a given level x

0
(�i). In these

applications, a separable form for u is often assumed [Greco et al (2008), Figuera et al (2009), Bau-

cells et al (2008).] In the remainder of the work, we address the questions of whether, given that

u is monotonic/ultramodular, all the conditional utilities need to be monotonic/ultramodular and

whether the converse statement needs to be true. A positive answer, would insure that, if all the

elicited conditional utilities are monotonic/ultramodular, then the decision-maker is characterized

by a monotonic/ultramodular utility functions. The converse statement would imply the following.

If one assume that a decision-maker is characterized by a monotonic/ultramodular utility function,

then none of the elicited conditional utilities can be non-monotonic/non-ultramodular, without

contradicting the hypothesis on the decision-maker�s preferences.

In the next sections, we show that, using functional ANOVA to decompose u, it is possible to

�nd exact relations between the form of u(x) and the conditional utilities, without relying on the

regularity of u(x).

6.1 Additive Independence, Ultramodularity and Monotonicity

Additive independence is invoked by many works in multiattribute decision-making [see Keeney

and Rai¤a (1993), Zopounidis and Doumpos (2002); Baucells et al (2008).]

The notion of additive independence originates in Fishburn (1965) and refers to the case in which

there is no interaction of preference among a set of attributes. For the sake of notation simplicity,

let us refer to the two-attribute case. X and Y are additive independent if the comparison of two

arbitrary lotteries de�ned by two joint probability distributions on X � Y depends only on their

marginal probability distributions (Keeney and Rai¤a (1993)). As proven in Fishburn (1965), X

and Y are additive independent if and only if the utility function u(x; y) is additive, i.e., if and

only if

u(x; y) = u(x0; y) + u(x; y0) (22)

where u(x0; y) and u(x; y0) are called conditional utility functions. All the utility functions are

normalized.

The �ndings in Sections 4 and 5, in particular Corollaries 1 and 3, allow us to derive the following

results concerning the monotonicity and ultramodularity of u(x; y) [the proof is in Appendix A].

Theorem 6 Consider a utility function under additive independence. Then:

1. u(x; y) is non-decreasing if and only if u(x0; y) and u(x; y0) are.

2. u(x; y) is neg-ultramodular if and only if u(x0; y) and u(x; y0) are.

3. if u(x; y) is neg-ultramodular, then it is concave.

13



Point 1 in Theorem 6 implies that, if in an elicitation problem, additive independence is assumed,

then non-satiation in each attribute implies multivariate non-satiation of the decision-maker.

Points 2 implies that a decision-maker who is single-attribute risk averse, is also multivariate

risk averse in the sense of Tsetlin and Winker (2009). In fact, if and only if the conditional utility

functions are concave (one recalls that for univariate functions neg-ultramodularity and concavity

coincide), then the multiattribute utility function is neg-ultramodular.

Point 3 states that if a decision maker is multivariate risk averse, then, under additive in-

dependence, She is also globally risk averse (in fact, her multiattribute utility function, when

neg-ultramodular is also concave). We recall that, in general, single-attribute risk aversion or

multivariate risk-aversion are not su¢ cient for global risk aversion.

Keeney and Rai¤a (1993) [p. 253] suggest additive independence as way for approximating

utility functions. This idea can be read through eq. (20) as follows: additive independence is

equivalent to a cut at order 1 of the functional ANOVA expansion of a generic u:

u(x) '
nX
i=1

ui(xi) (23)

Under this cut, no interactions are present in the utility function. We recall that by Theo-

rem 9 in Richard (1975) [p. 20] the decision-maker is multivariate risk neutral if and only if

u(x) =
Pn
i=1 ui(xi). Hence, multivariate risk-neutrality is associated with the absence of interac-

tions among attributes.

In the next section, we explore the case in which interactions among attributes are present,

namely the case of utility independence.

6.2 Mutual Utility Independence, Ultramodularity and Multi-Attribute Risk
Aversion

In multiattribute theory, the assumption of additive independence may result too restrictive [Hogart

and Karelaia (2005)]. A �rst relaxation of such assumption is represented by utility independence.

Utility independence has attracted a widespread attention in literature for several reasons. On

the one hand, the utility independence assumptions are appropriate in many realistic problems

[Keeney (2006)]. On the other hand, utility independence helps in structuring the problem and in

performing sensitivity analysis.

Utility independence allows the multiplicative representation of the utility function u(x; y).

If X and Y are mutually utility independent, then u(x; y) can be expressed by the multilinear

representation [Fishburn (1980); see also Keeney and Rai¤a (1993), Theorem 5.2, p. 234]

u(x; y) = u(x; y0) + u(x0; y) + ku(x; y0)u(x0; y) (24)

where u; u(x; y0), u(x0; y) are based on the same common origin and consistently scaled by the

constant k 2 R. By algebraic manipulation, one obtains [Keeney and Rai¤a (1993), p. 238, eq.
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5.31]

ku(x; y) + 1 = [ku(x; y0) + 1] [ku(x0; y) + 1] (25)

The above procedure is extended to the n�attribute case [Keeney and Rai¤a (1993), eq. (6.21), p.
291], and leads to

ku(x) + 1 =
nY
i=1

�
ku(xi; x̂

0) + 1
�

(26)

where (xi; x̂0) = (x01; x
0
2; :::; xi; :::; x

0
n). We also recall the equivalent multiplicative representation

u(z) = a+ b

nY
i=1

ui(zi) (27)

(b > 0) studied in Richard (1975).

In summary, under utility independence the multiattribute utility function is multiplicative.

Its monotonicity and ultramodularity properties can, then, be derived by exploiting the results

of Sections 4 and 5 on the monotonicity and ultramodularity properties of generic multiplicative

functions [Corollaries 2 and 5 are utilized in the Appendices to prove the next results.]

The following result holds.

Theorem 7 Let u be increasing in the attributes. Then, u(x) is ultramodular (neg-ultramodular)
if and only if ui(xi) is ultramodular (neg-ultramodular).

We recall that, by Proposition 2, a decision-maker associated with a multiattribute ultramodular

function displays the multivariate risk attitudes of Tsetlin and Winker (2009). By comparing eqs.

(22) and (24), one notes that interactions are present in eq. (24). For simplicity, consider a 3

attribute case. In this case, the functional ANOVA expansion of u(x) writes:

u =
3X
i=1

ui(xi) + u1;2(x1; x2) + u1;3(x1; x3) + u2;3(x2; x3) + u123(x1; x2; x3) (28)

The terms u1;2(x1; x2) + u1;3(x1; x3) + u2;3(x2; x3) + u123(x1; x2; x3) are null if u is additive, and

the decision-maker is multivariate risk-neutral. Conversely, they all appear as soon as interactions

among attributes are present. In this latter case, the decision-maker is no more multivariate risk

neutral. In fact, given any twice-di¤erentiable function f , then a non-additive form of f implies

non-null mixed partial derivatives.

In the next section, we present results for a second relaxation of the additive utility assumption,

namely, preferential independence.

6.3 Preferential Independence, Ultramodularity and Monotonicity

A further relaxation of the additive independence assumption is represented by preferential in-

dependence. Keeney and Rai¤a (1993) provide the procedure for obtain a multiattribute utility

function given that an additive value function has been assessed. The corresponding utility function
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can be of an additive or multiplicative form. The next result sets forth the conditions under which,

in preferential independence framework, ultramodularity and monotonicity of the marginal value

functions insure ultramodularity and monotonicity of the multiattribute utility function. The proof

is in Appendix A.

Theorem 8 Let X = X1�X2�:::Xn, be a set of attributes over which the decision-maker expresses
preferential independence. Then, let

v(x) =

nX
i=1

vi(xi) (29)

the value function. (The additive form follows by preferential independence.) Let u(x) the corre-

sponding utility function. Let Xi be utility independent. One has

1. If vi(xi) is non-decreasing 8i, then u(x) is non-decreasing

2. If vi(xi) is ultramodular 8i, then u(x) is ultramodular.

We recall that, by theorem 6.11 (page 330 in Keeney and Rai¤a (1993)), the utility function

corresponding to the preference function in eq. (29) is either of the multiplicative type

u(x) � ecv(x) =
nY
i=1

ecvi(x) (30)

or proportional to v(x), i.e.,

u(x) � v(x) (31)

Theorem 8 then states that monotonicity and ultramodularity of the assessed value function are

transferred into the utility function, in both the multiplicative and additive representations. There-

fore, the multivariate risk attitudes of the decision-maker are characterized directly by the value

function.

7 Conclusions

In this work, we have presented a formal approach for connecting the properties of a multiattribute

utility function to those of its conditional utilities, without relying on regularity assumptions.

In the quantitative assessment of multiattribute utility functions, procedures involving elic-

itation by aggregation of conditional utilities play a central role. The elicited univariate util-

ity functions are not necessarily regular. As a consequence, the characterization of non-satiation

(monotonicity) and risk aversion (concavity, ultramodularity) properties of u by �rst and second

order partial derivatives is not possible. We have seen that the high dimensional model represen-

tation theory, by requiring the sole measurability of u, provides the required generalization of the

mathematical framework. However, in spite of the widespread utilization of functional ANOVA, its

monotonicity and ultramodularity properties have not been formalized yet. It has then been neces-

sary to investigate monotonicity and ultramodularity properties for generic multivariate functions
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(f) �rst. As far as non-orthogonalized terms in the integral expansion of f are concerned, �ndings

show that they possess the same monotonicity (ultramodularity) properties of f . As far as orthog-

onalized terms are concerned, main e¤ects (fi) always possess the same monotonicity properties of

f . However, this is not the case for higher order terms due to the orthogonalization procedure. We

have then derived the su¢ cient conditions on f that insure that all terms in the ANOVA expansion

possess the same monotonicity (ultramodularity) properties of f .

The di¤erences between the traditional utilization of functional ANOVA and its utilization in

MAUT have been investigated next. In particular, in MAUT, it is possible to determine a-priori

the order of the expansion by the assumptions on the decision-maker preferences.

The link between the presence of interactions in the functional ANOVA expansion of u and

the multivariate risk attitudes of the decision-maker has also been discussed. We have seen that

multivariate risk neutrality is equivalent to a cut of order 1 in the expansion, i.e., it implies the

absence of interactions among attributes. When some degree of interactions is allowed, we have

shown that multivariate risk attitudes of Tsetlin and Winker (2009) � preferences for combining

good with bad � imply the neg-ultramodularity of the utility function.

The �ndings have then been specialized to the cases of separable (additive and multiplicative)

utility functions. We have seen that under utility independence, u is monotonic (ultramodular) if

and only if all the corresponding single-attribute conditional utility functions are. Under mutual

utility independence, if u is increasing, then it is ultramodular (monotonic) if and only if all the

conditional utility functions are. Under preferential independence, letting v denote the multiat-

tribute value function for preferences under certainty, we have seen that if v is non-decreasing, then

u is; if v is ultramodular, then u is. The above results hold without restrictions on the regularity

of u.

8 Appendix A: Proofs

Proof of Lemma 2. Let y = x+ h. Then, 8h � 0, (i.e., hi � 0, i = 1; 2; :::; n), by (9), we have:

f(x) � f(x+ h) (32)

In particular, when h=
h
0 ::: hi1 ::: hik ::: 0

i
, with his � 0, s = 1; 2; :::; k (k < n), eq. (32) holds.

Let us then integrate both sides of eq. (32) with respect to all xi�s but xi1 ; xi2 ; :::; xik . By the

monotonicity property of the integration operation, we get:Z
In�k

f(x)
Y

i6=i1;i2;:::;ik

dxi �
Z
In�k

f(x+ h)
Y

i6=i1;i2;:::;ik

dxi (33)

which implies:

mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik) � mi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik) (34)
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Proof of Theorem 2. Let y = x+ h. Then, by (9), we have:

f(x) � f(x+ h) (35)

8h � 0, (i.e., hi � 0, i = 1; 2; :::; n). Eq. (32) holds, in particular, when h=
h
0 ::: hi ::: 0

i
, with

hi � 0. Let us then integrate both sides of eq. (32) with respect to all xk�s but xi. We get:Z
In�1

f(x)
Y
k 6=i
dxk �

Z
In�1

f(x+ h)
Y
k 6=i
dxk (36)

which implies:

mi(xi)� f0 � mi(xi + h)� f0 (37)

which proves the assertion.

Proof of Theorem 3. By eq. (6), we have:

fi1;i2;:::;ik(xi1 ; xi2 ; :::; xik) = mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik)�
k�1X
s=1

X
i1<i2:::<is

fi1;i2;:::;is(xi1 ; xi2 ; :::; xis)� f0

(38)
fi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik) =

= mi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik)�
k�1X
s=1

X
i1<i2:::<is

fi1;i2;:::;is(xi1 + hi1 ; :::; xis + his)� f0

(39)

Thus:

fi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik) � fi1;i2;:::;ik(xi1 ; xi2 ; :::; xik) (40)

is equivalent to

mi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik)�
k�1X
s=1

X
i1<i2:::<is

fi1;i2;:::;is(xi1 + hi1 ; :::; xis + his)� f0 �

mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik)�
k�1X
s=1

X
i1<i2:::<is

fi1;i2;:::;is(xi1 ; xi2 ; :::; xis)� f0

(41)

which, rearranged leads to:

mi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik)�mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik) �
k�1X
s=1

X
i1<i2:::<is

[fi1;i2;:::;is(xi1 + hi1 ; :::; xis + his)� fi1;i2;:::;is(xi1 ; xi2 ; :::; xis)]
(42)

Proof of Theorem 4. Let y = x+h. Then, eq. (1) holds for any h, and, therefore, in particular
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when h=
h
0 ::: hi ::: 0

i
, with hi � 0. Thus, it holds that

f(xi + hi; bx)� f(xi; bx) � f(yi + hi; bx)� f(yi; bx) (43)

where bx = x=xi = (x1; x2; :::; xi�1; xi+1; :::; xn), hi > 0, xi � yi. Let us then integrate both sides

of (43) on all xk, but xk = xi. Since the component of the Sobol� decomposition are given by

mi(xi) = f0 + fi(xi) =

Z
In�1

f(x)
Q
k 6=i dxk, it holds

mi(xi + hi)�mi(xi) � mi(yi + hi)�mi(yi)

Since fi(xi) = mi(xi)� f0, by point (b) of Proposition 1, we get

fi(xi + hi)� fi(xi) � fi(yi + hi)� fi(yi) (44)

Proof of Lemma 3. Let y = x+ h, with h=
h
0 ::: hi1 ::: hi2 ::: hik :::

i
, where his > 0, s = 1; :::; k,

and 2 < k < n. Then, by eq. (1), we have:

f(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik ; bx)� f(x) � f(yi1 + hi1 ; yi2 + hi2 ; :::; yik + hik ; by)� f(y) (45)

where bx = x=xi1 ; xi2 ; :::; xik in this case. Integrating both sides of eq. (45) with respect to all xi�s
but xi1 ,xi2 ,...,xik , thanks to the monotonicity property of the integration operation, we get:Z

In�k

[f(x+ h)� f(x)]
Y

i6=i1;i2;:::;ik

dxi �
Z
In�k

[f(y + h)� f(y)]
Y

i6=i1;i2;:::;ik

dyi (46)

which implies:

mi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik)�mi1;i2;:::;ik(xi1 ; xi2 ; :::; xik) �
� mi1;i2;:::;ik(yi1 + hi1 ; yi2 + hi2 ; :::; yik + hik)�mi1;i2;:::;ik(yi1 ; yi2 ; :::; yik)

(47)

Proof of Theorem 5. Let us start with eq. (47). In order for fi1;i2;:::;ik to be ultramodular, it

must hold that:

fi1;i2;:::;ik(xi1 + hi1 ; xi2 + hi2 ; :::; xik + hik)� fi1;i2;:::;ik(xi1 ; xi2 ; :::; xik) �
� fi1;i2;:::;ik(yi1 + hi1 ; yi2 + hi2 ; :::; yik + hik)� fi1;i2;:::;ik(yi1 ; yi2 ; :::; yik)

(48)

For the sake of notation simplicity, let us rewrite this inequality as:

�fi1;i2;:::;ik(x) � �fi1;i2;:::;ik(y) (49)

19



where x and y are here intended as a more synthetic way to represent xi1 ; xi2 ; :::; xik and yi1 ; yi2 ; :::; yik
respectively. Then, recalling the de�nition of fi1;i2;:::;ik in eq. (6), i.e.,

fi1;i2;:::;ik(x) = mi1;i2;:::;ik(x)�
k�1X
s=1

X
i1<i2:::<is

fi1;i2;:::;is(x)� f0 (50)

one gets:

�mi1;i2;:::;ik(y)��mi1;i2;:::;ik(x) �
k�1X
s=1

X
i1<i2:::<is

�fi1;i2;:::;is(y)�
k�1X
s=1

X
i1<i2:::<is

�fi1;i2;:::;is(x) (51)

Proof of Corollary 1. If all zi(xi) are non-decreasing, then f is non-decreasing as it is the sum

of non-decreasing functions. Conversely, suppose that f is non-decreasing. Thanks to eq. (6), all

zi(xi) = fi + f0, where f0 is a constant. By Theorem 2 if f is non-decreasing, fi is non-decreasing,

and all zi are non-decreasing as they di¤er from the corresponding fi by a constant.

Proof of Corollary 3. Since f is additive, then zi = fi + f0, as in the previous proof. The

necessary condition is assured by Theorem 4. The su¢ cient condition follows from Proposition 1,

points (a) and (b).

Proof of Corollary 4. Since f is additive, if it is ultramodular ( convex) zi(xi) 8i are ultra-
modular (convex ) as well. As shown by ? and con�rmed in Marinacci and Montrucchio (2005), in
the scalar case ultramodularity is equivalent to convexity, provided zi is continuous. It follows that

f(x) is convex (ultramodular), since it is the sum of the convex (ultramodular) functions zi(xi).

Proof of Corollary 2. If all the zi are increasing and positive, it is immediate to see that f is

increasing. Conversely, by and Lemma 2 noting that

mi(xi)Y
j 6=i
tj
= zi(xi) (52)

where tj =
R
I zj(xj)dxj 8j and tj � 0 by assumption, the thesis follows.

Proof of Corollary 5. If f is ultramodular, by Lemma 3 the components of the integral

decomposition mi(xi) =

Z
In�1

f(x)
Q
k 6=i dxk are ultramodular. If, in addition, f is of the form

Y
zi(xi), then one can write

mi(xi) = zi(xi) �
Y
j 6=i
tj (53)

where tj =
R
I zj(xj)dxj 8j and tj � 0 by assumption. Ultramodularity of zi(xi) 8i follows.

The converse statement follows from Proposition 4.4 in Marinacci and Montrucchio (2005) [see

Proposition 1, property (c)].

Proof of Theorem 6. Point 1. Corollary 1 implies that if f =
P
zi(xi), it is non-decreasing if and
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only if all the zi are non-decreasing. Now, in the case of additive independence, u(x; y) =
P
kiui(ti),

where ki > 0:

Point 2. Corollary 3, assures that if f is of the form
P
zi(xi), then f is neg-ultramodular if

and only if all zi are neg-ultramodular. (Recall that f is neg-ultramodular if �f is ultramodular.)
Now, in the case of additive independence, u(x; y) =

P
kiui(ti), where ki > 0:

Point 3. Follows from Corollary 4.

Proof of Theorem 7. Under mutual utility independence, ku(x) + 1 = [
nY
i=1

�
ku(xi; x̂

0) + 1
�
.

If k > 0, and u is ultramodular, then ku(x)+1 is ultramodular. Hence, by Corollary 5, each of the

functions
�
ku(xi; x̂

0) + 1
�
is ultramodular. By Proposition 1, since k is positive, each u(xi; x̂0) is

ultramodular. The converse statement is proven as follows. If each u(xi; x̂0) is ultramodular and

k is positive, ku(xi; x̂0) + 1 is ultramodular for all i. Then, by the second part of Corollary 5, the

thesis follows.

If k < 0, and u is ultramodular, then ku(x) + 1 is neg-ultramodular. Hence, by Corollary 5,

each of the functions
�
ku(xi; x̂

0) + 1
�
is neg-ultramodular. By Proposition 1, since k is negative,

each u(xi; x̂0) is ultramodular. The converse statement is proven as follows. If each u(xi; x̂0) is

ultramodular and k is negative, ku(xi; x̂0) + 1 is neg-ultramodular for all i. Then, by the second

part of Corollary 5, the thesis follows.

Proof of Theorem 8. Point 1. If vi(xi) are increasing 8i, then v(x) is increasing. By theorem
6.11 (page 330 in Keeney and Rai¤a (1993)), the utility function corresponding to the preference

function in eq. (29) is either of the multiplicative type

u(x) � ecv(x) =
nY
i=1

ecvi(x) (54)

or proportional to v(x), i.e.,

u(x) � v(x) (55)

In the case of eq. (55), the thesis is, then, immediate. In the case of eq. (54), the thesis follows

from Corollary 1.

Point 2. From eq. (54), u(�) is an increasing and convex transformation of v(�). If vi(xi) is
ultramodular 8i then v(x) is ultramodular by Corollary 3 and the thesis follows by (d) of Proposition
1.
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