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Abstract

Moment independent methods for the sensitivity analysis of model output are attracting

growing attention among both academicians and practitioners. However, the lack of benchmarks

against which to compare numerical strategies forces one to rely on ad-hoc experiments in

estimating the sensitivity measures. This paper introduces a methodology that allows one to

obtain moment independent sensitivity measures analytically. We illustrate the procedure by

implementing four test cases with di¤erent model structures and model input distributions.

Numerical experiments are performed at increasing sample size to check convergence of the

sensitivity estimates to the analytical values.

Keywords: Global Sensitivity Analysis; Importance Measures; Moment Independent Sensi-

tivity Analysis; Uncertainty Analysis; Density Function Distance.

1 Introduction

In complex risk assessment problems, quantitative models become central towards risk-informing

the decision-process [Dillon et al (2003)]. However, both the model building and result inter-

pretation phases need to cope with di¤erent sources of uncertainty [Kaplan and Garrick (1981),

Apostolakis (1990), Paté-Cornell (1996), de Rocquigny et al (2008), Helton et al (2010), Aven

(2010), Garrick (2010)]: i) aleatory uncertainty, namely the uncertainty provoked by the intrin-

sic randomness of the phenomena under investigation; ii) model uncertainty, namely uncertainty

related to the structure of the prediction model itself; and iii) epistemic uncertainty, namely un-

certainty deriving from our lack of knowledge about the numerical values of the model inputs. The

above-mentioned works have established the awareness that proper uncertainty quanti�cation is

essential to inform decisions. Examples of this attitude can be found in several �elds. The Florida

Commission on Hurricane Loss Projection Methodology (FCHLPM) �has established a professional

team to perform onsite (con�dential) audits of computer models developed by several di¤erent com-

panies in the United States that seek to have their models approved for use in insurance rate �lings

in Florida. . . . an important part of the auditing process requires uncertainty and sensitivity analy-

ses to be performed with the applicant�s proprietary model [Iman et al (2005a); p. 1277].�The US

Environmental Protection Agency recommends both model developers and model users to perform
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proper sensitivity and uncertainty analysis to determine �when a model, despite its uncertainties,

can be appropriately used to inform a decision [US EPA, 2009; p. vii].�Saltelli et al (2010) (p. 1)

reports a statement from the White House�s O¢ ce of Management and Budget underlying the role

of SA as a �a minimum, necessary component of a quality risk assessment report.�

Sensitivity analysis (SA) methods have evolved towards the creation of techniques capable of

taking uncertainty into account so as to re�ect a decision-maker�s state of information [Saltelli

(1999), Saltelli (2002b), Borgonovo (2006)]. Local SA techniques prove ine¤ective when �there

is uncertainty about the true values of the inputs that should be used for a particular application

[Oakley and O�Hagan (2004)].�Global methods, instead, account for the entire model input and

output distributions. Among global methods, non-parametric methods [McKay et al (1979), Saltelli

and Marivoet (1990), Helton and Davis (2003), Helton et al (2006), Storlie et al (2009)] and

variance-based methods [Saltelli and Tarantola (2002), Saltelli et al (2000), Saltelli (2002a), Owen

(2003), Oakley and O�Hagan (2004), Saisana et al (2005), Saltelli et al (2010)] are widely studied

and employed. However, variance is sometimes considered as fully representative of uncertainty,

assuming �that this moment is su¢ cient to describe output variability [Saltelli (2002b)].� It is

not uncommon that variance-based sensitivity indices are interpreted as �the expected percentage

reduction in the uncertainty ... that is attributable to each of the input variables [Iman et al

(2005b); p. 1299].�Nonetheless, several recent works have pointed out that identifying variance

with uncertainty leads to misleading conclusions. Huang and Litzenberger (1988) underline that

variance is su¢ cient to characterize uncertainty under normality assumptions. In applications,

however, distributions can be skewed or, even, multi-modal. Cox (2008) and next Huber (2010)

illustrate the pitfalls encountered by decision-makers, if they rely on variance as a measure of risk.

Borgonovo (2006) shows an example in which a model output variance increases while �xing a

model input at a certain value.

These limitations have contributed to renewing interest towards the utilization of moment inde-

pendent approaches1 for two main reasons. First, by removing the dependence on a single moment,

the associated sensitivity measures thoroughly accounting for a decision-maker�s uncertainty about

the decision criterion. Second, the properties of moment independent importance measures are not

a¤ected by the presence of correlations.

Moment independent sensitivity measures have been applied in di¤erent sectors: Park and

Ahn (1994), Chun et al (2000), Borgonovo (2007), and Liu and Homma (2009) in probabilistic

safety assessment; Borgonovo and Tarantola (2008) in chemical system risk analysis; Borgonovo

and Peccati (2010) in investment project risk analysis. However, in all these works, the sensitivity

measures are estimated based on ad-hoc numerical experiments, because test cases against which

to compare the e¢ cacy of numerical estimation strategies are missing. In turn, this gap is linked to

the absence of a methodology for obtaining moment independent sensitivity measures analytically.

To set forth such a methodology, we proceed as follows. Our �rst step is to establish a formal

1A method is said to be moment independent, if it does not rely on any moment of the model output distribution
to de�ne the sensitivity measures [Borgonovo and Tarantola (2008)].
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connection between moment independent SA and probability density separation measurement. By

studying the properties of the distance between density functions from a global SA perspective, we

obtain two new properties for moment independent sensitivity measures. The �rst is invariance

for model output monotonic transformation, the second is computation via cumulative distribution

functions. The former property is relevant in numerical applications. Let y denote the model

output (decision criterion or risk metric). In practical applications, due to uncertainty, y may range

over several orders of magnitude. Analysts then resort to re-scaling (typically using loga(y)) for

improving numerical processing. Invariance insures that moment independent sensitivity measures

are una¤ected by any re-scaling. Thus, one can compute the sensitivity measures either, say, on

y or loga(y) without altering the SA results2. The latter property allows us to formalize a 4-step

procedure for obtaining moment independent sensitivity measures analytically.

By applying the methodology, we obtain four case studies: additive models with dependent

or independent multivariate normally distributed model inputs, power-multiplicative models with

lognormally distributed model inputs, additive models with uniformly distributed inputs, and non-

additive-non-multiplicative model with gamma random variables. These case studies cover di¤erent

model structures (from additive to completely interactive) and di¤erent model input support (from

�nite to in�nite). This yields an assessment of the behavior of moment independent sensitivity

measures in a broad variety of input-output combinations. Furthermore, by providing for each case

study the corresponding variance-based sensitivity indices, our results shed further light about the

di¤erences between moment independent and variance-based sensitivity measures.

Finally, we perform numerical experiments based on a Latin hypercube sampling strategy for

all case studies.

The remainder of the paper is organized as follows. Section 2 o¤ers a literature review on

variance-based and moment independent SA methods. Section 3 presents a methodology for ob-

taining moment independent importance measures analytically. Sections 4, 5 and 6, and 7 illustrate

the four case studies. Section 8 discusses numerical experiments. Section 9 provides conclusions

and outlines further research perspectives.

2 Variance-Based and Moment Independent Approaches in Probabilistic Sen-
sitivity Analysis

One considers a risk metric (or, more in general, a decision-support criterion) Y , which is estimated

via a model [t(X)] dependent on n uncertain inputs (the random vector X)3. In global SA, �We
assume to have information about the factors� probability distribution, either joint or marginal,

2We note that the type of monotonic transformation we are referring to is connected with the re-scaling or the
changes in units of measure of y. These changes are most often adopted for bettering numerical processing of model
output ranging over several orders of magnitudes. This type of rescaling is not related to rank transformations. We
recall the central role of rank transformation as introduced in Iman and Conover (1979) and Conover and Iman
(1981) in regression and non-parametric sensitivity analysis. However, while rank transformation �works quite well
on monotonic data [Iman and Conover (1979), p. 499],� it is a non-monotonic transformation.

3y = t(x), t : 
X � Rn ! 
Y � R, is the relationship that links the model inputs to the model output. t(�)
can be a simple expression or a complex computer code. 
Y , the image of t, coincides with the model output (y)
support. Uncertainty in x makes y a random variable, which we denote by Y .
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with or without correlation, and that this knowledge comes from measurements, estimates, expert

opinion, physical bounds, output from simulations, analogy with factors for similar species, and so

forth. [Saltelli and Tarantola (2002), p. 704].� In the light of the recent works by Aven (2010)

and Garrick (2010), the above statement is equivalent to saying that the risk-analyst has assessed

probability distributions on the random inputs consistent with her state of information about the

problem at hand: In the remainder, �X denotes the probability distribution of X.

Among the most widely studied methods to assess the in�uence of X on Y are variance-based

techniques. Their theoretical aspects are developed in a vast literature, among which we recall

Cukier et al (1978), Efron and Stein (1981), Sobol�(1993), Bedford (1998), Saltelli (1999), Rabitz

and Alis (1999), Saltelli and Tarantola (2002), Saltelli et al (2000), Saltelli (2002a), Owen (2003),

Oakley and O�Hagan (2004), and Saltelli et al (2010). Applications of global SA can be found

in many areas of science (the following is a non-exhaustive list): operational research [Wagner

(1995)], macroeconomics [Saisana et al (2005)], food safety [Patil and Frey (2004)], hurricane loss

projections [Iman et al (2005a), Iman et al (2005b)], �nance [Wang (2006)], physical chemistry

[Hayes et al (2006)], probabilistic safety assessment [Aven and Nokland (2010)].

In variance-based SA, �we are asked to bet on the factor that, if determined (i.e., �xed to its

true value), would lead to the greatest reduction in the variance of Y [Saltelli and Tarantola (2002),

p. 705].�The corresponding importance measures are de�ned as [Iman and Hora (1990), Homma

and Saltelli (1996) and Saltelli and Tarantola (2002)]4

Si =
VY � EXi [VY jxi ]

VY
=
VXi(E[Y jXi])

VY
(1)

where VY is the model output variance. Si > Sj implies that, on average, �xing Xi leads to a

greater reduction in VY than �xing Xj .

Homma and Saltelli (1996) show that, if the parameters are independent, Si coincides with

Sobol�global sensitivity indices of order 1 [Sobol�(1993)]. A global sensitivity index of order r is

de�ned as

Si1;i2;:::;ir =
Vi1;i2;:::;ir
VY

(2)

where

Vi1;i2;:::;ir =

Z
t2i1;i2;:::;ird�i1d�i2 :::d�ir (3)

is a partial variance in the functional ANOVA expansion of t:

t = t0 +

nX
r=1

X
i1<i2<:::<ir

ti1;i2;:::;ir(xi1 ; xi2 ; :::; xir) (4)

In eq. (4), t0 = E[t] and the functions ti1;i2;:::;ir(xi1 ; xi2 ; :::; xir) are obtained by conditional expecta-
tions and nested subtractions following a Grahm-Schmidt orthogonalization procedure [Hoe¤ding

4 In the remainder, fY jxi(y) is used to denote the conditional density of Y given that Xi is �xed at xi. Also,
instead of Y jXi = xi; we shall adopt the shorter Y jxi.
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(1948), Sobol�(1969), Efron and Stein (1981), Takemura (1983), Owen (2003).] By subtracting t0
from t in eq. (4) and squaring, one obtains

VY =
nX
r=1

X
i1<i2<:::<ir

Vi1;i2;:::;ir (5)

By eqs. (3) and (4), Si1;i2;:::;ir [eq. (2)], is the fraction of VY associated with the interaction among

factors Xi1 ; Xi2 ; :::; Xir . As Oakley and O�Hagan (2004) (p. 754) note, eqs. (3) and (4) grant �a

tidy decomposition of the total variance into component variances that are directly related to model

structure.�This correspondence is synthesized in the concept of function dimension distribution by

Owen (2003).

The numerical estimation of global sensitivity indices has been extensively studied and con-

stantly improved since the work of Sobol�(1993). Relevant results from the computational side are

achieved in: a) Sobol�(1993), Homma and Saltelli (1996) and Saltelli (2002a) developing the sample

and re-sample matrix strategy; b) Saltelli et al (1999) formalizing the use of the Fourier amplitude

sensitivity test; c) Oakley and O�Hagan (2004) proposing a Bayesian approach to variance-based

importance measures.

However, in the presence of correlated model inputs, much of the computational advantages

connected with the previous methods are lost; for instance, the sample and re-sample strategy

becomes no more applicable. Methods for computing variance-based sensitivity indices in the

presence of correlations are proposed in Bedford (1998), Saltelli and Tarantola (2002), Lewandowski

et al (2007) and Rabitz (2010). The method of Lewandowski et al (2007) is applied by Duintjer

Tebbens et al (2008) in a medical decision-making context.

Bedford (1998) shows that, with correlated model inputs, eqs. (4) and (5) lose uniqueness,

and variance-based importance measures become dependent on the lexicographical ordering of the

parameters. Oakley and O�Hagan (2004) observe that eq. (4) is no more re�ective of model

structure for dependent inputs. By considering Y = t(x1; x2) = x1, Oakley and O�Hagan (2004)

show that a term containing x2 is generated in eq. (4) by the correlation of x1 and x2. In the

presence of correlations, Saltelli and Tarantola (2002) show that variance-based measures still retain

their meaning based on the variance-reduction setting reported above. However, variance is not

necessarily a good summary of a decision-maker�s uncertainty. Consider the model [Borgonovo

(2006)]

y = t(x1; x2) = e
x1 jsinx2j , (6)

with �X = �X1 ��X2 ; �X1 = N(1; 1) and �X2 = N(2; 1). The unconditional model output variance is
VY = 11:18. The decision-maker is next informed that X2 = 1. She now possesses full information

about X2, and is uncertain only about X1. However, if she represents uncertainty by variance, she

concludes that the new information has increased her uncertainty, since V [Y jX2 = 1] = 12:58 > VY .
Indeed, for the model output distribution is skewed in this case, violating the assumption that

variance is su¢ cient to characterize uncertainty [Savage (1972), Huang and Litzenberger (1988).]
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Figure 1: fY jx3 for di¤erent values of x3, for the density of the Ishigami function [eq (7)].

Several works have also pointed out the limitations of variance as a measure of risk. In particular,

Theorem 1 in Cox (2008) shows that �mean-variance decision-making violates the principle that a

rational decision-maker should prefer higher to lower probabilities of receiving a �xed gain, all else

being equal [Cox (2008), p. 925].�This result is also generalized in Huber (2010).

The question then splits into: a) what is the e¤ect of getting to know that Xi = xi? and b)

how can we measure this e¤ect?

Concerning a), after conditioning on Xi = xi, the decision-maker�s uncertainty about the model

output is given by the conditional model output density [fY jxi(y)]. Figure 1 shows the di¤erent

conditional densities fY jx3(y), obtained by conditioning on X3 for the model

y = sin(x1) + 7 sin
2(x2) + 0:1x

4
3 sin(x1) (7)

with Xi (i = 1; 2; 3) uniformly iid on [��; �]. Eq. (7) is the Ishigami function, a widely utilized test
case in global SA [Homma and Saltelli (1996), Crestaux et al (2009), Iooss and Ribatet (2009)].

Suppose we measure the e¤ect of X3 using variance. For the Ishigami function, EY jx3 is inde-
pendent of X3. In fact, when one conditions on x3 and averages, the third summand in eq. (7)
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disappears, since E[sinx1] = 0. Hence, EY jx3 is constant in X3 and, correspondingly, its variance

is null (VX3
�
EY jx3

�
= 0:) By eq. (1), S3 =

VX3
�
EY jx3

�
VY

= 0. Therefore, one would conclude

that evidence on X3 does not provide any information, if she considers the expected reduction in

VY provoked by X3. Nonetheless, Figure 1 shows that �xing X3 changes the distribution of Y .

The e¤ect of knowing X3 would become non-null, if one measured the expected shift between the

conditional and unconditional densities of y.

In global SA, Park and Ahn (1994) introduce the idea of measuring the shift between model

output densities �rst. Park and Ahn (1994) base their sensitivity measure on the Kullback-Leibler

divergence (Kullback and Leibler (1951)), de�ning

IKLi =

Z

Y

fY (y) ln
fY
fY jxi

dy (8)

However, the following problem connected with IKLi emerges. Consider eq. (7). By the functional

form of eq. (7), 
Y = [�10:741; 17:741]. Hence, in eq. (8) one writes IKLi =
R 17:741
�10:741 fY ln

fY

fY jxi

dy.

By conditioning on any x1 2 [0; �], the support of the model output changes to [0; 17:741]. Thus,
fY jxi = 0 for y 2 [�10:741; 0). Consequently, the integral in eq. (8) IKLi is not de�ned. This

problem is encountered every time the support of y changes. This makes IKLi not suitable in global

SA, because the support of the model output varies, in principle, at each conditioning.

To overcome this issue, Chun et al (2000) utilize a distance rather than a divergence for sepa-

ration measurement. This choice has also the advantage of making the sensitivity measures inde-

pendent of the order according to which fY (y) and fY jxi(y) are considered
5. Both Park and Ahn

(1994) and Chun et al (2000), however, de�ne their sensitivity measures for a speci�c sensitivity

case Xi = xi. Because Xi is not known with certainty, �xing it at just one of its possible values is

only partially informative. This limitation is overcome by Borgonovo (2007), where the sensitivity

measure is de�ned as

�i :=
1

2
EXi [si(Xi)] (9)

with

si(Xi) :=

Z ��fY (y)� fY jxi (y)�� dy (10)

The expectation EXi [si(Xi)] accounts for the decision-maker�s degree of belief about Xi. si(Xi)
[eq. (10)] quanti�es the separation between the unconditional and conditional output densities (see

Glick (1975); please refer to the next section for further technical details). �i [eq. (9)] measures

the expected shift in decision-maker�s degree of belief on Y provoked by coming to know Xi.

The corresponding setting is, then: �We are asked to bet on the model input that, if determined,

would lead to the greatest expected shift in the distribution of Y [Borgonovo and Tarantola (2008).]�

Let us examine the de�nitions of Si [eq. (1)] and �i [eq. (9)] further. In both eqs. (9) and (1),

5 In fact, IKLi (fY ; fY jXi
) 6= IKLi (fY jXi

; fY ) since
R
fY (y) ln

fY
fY jXi

dy 6=
R
fY jXi

ln
fY jXi

fY
dy.
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internal statistics � VY jxi and si(Xi), respectively � are estimated. An external expectation is

next carried out to account for uncertainty in Xi. Hence, as shown in Borgonovo and Tarantola

(2008), Si and �i can be estimated from the same Monte Carlo sample. However, VY jxi synthesizes

the conditional distribution of Y in its variance, in agreement with the variance-based setting;

si(Xi) measures the separation between the conditional and unconditional model output densities,

in agreement with the moment independent SA setting.

The above literature review reveals that global SA methods have been extensively studied from

both the theoretical and numerical perspectives, whilst several aspects of moment independent

approaches are still open to further research. In particular, a methodology for obtaining moment

independent sensitivity measures analytically has not been established yet. This is the subject of

the next sections.

3 New Properties and a Procedure for Obtaining Moment Independent Impor-
tance Measures Analytically

This section introduces two new properties of moment independent importance measures and

presents a procedure for determining them analytically.

We start with some notation. Denoting an open interval in R by 
; and any two probability
density functions by f; g : 
! R+, we let

kf � gk =
Z
jf � gjd! (11)

de�ne their distance. As proven in Glick (1975), the operation
Z
jf � gjd! [eq. (11))] is a �sepa-

ration measurement with respect to the L1 norm, for the set of all probability densities.� In other

words, eq. (11) measures the shift between any two density functions.

Let us now study eq. (11) more closely. As shown in Borgonovo and Peccati (2009), the

operation jf � gj sets forth the piecewise de�ned function

u(!) =

8><>:
f � g ! 2 
+
0 ! 2 �

g � f ! 2 
�
(12)

� = f! : f(!) = g(!)g is the set of points where f = g, 
+ is the set of points where f > g and 
�
the set of points where f < g. Let us now denote by F and G the cumulative distribution functions

associated with f and g, respectively: F (!) =
R !
�1 f(�)d� and G(!) =

R !
�1 g(�)d�. In Appendix

A, we show that the following holds:

Proposition 1
kf � gk = 2F (
+)� 2G(
+) = 2G(
�)� 2F (
�) (13)

Eq. (13) states that kf � gk is equal to twice the di¤erence between a) the probability that
! 2 
+ under F and b) the same probability under G. By symmetry, eq. (13) states that
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kf � gkequals twice the di¤erence between the probabilities of ! 2 
� under G and F , respectively.
Proposition 1 plays a central role in the explicit derivation of moment independent sensitivity

measures, as we are to discuss later in this section.

Let us now consider the case in which g is the Dirac-� density (�Dirac). The Dirac-� expresses

the case in which the support of a random variable (the space 
) collapses into a unique point, say,

!0. In this case, the decision-maker is certain that !0 is the value assumed by the random variable.

Corollary 1 Let f be a generic density. Then,



f � �Dirac

 = 2 (14)

Eq. (14) can be interpreted as follows. The density f re�ects the current decision-maker�s

uncertainty about !. When the decision-maker becomes informed that ! = !0, the decision-

maker�s uncertainty is described by a �Dirac density. Eq. (14) states that it is equal to 2 the shift

from: i) the situation in which the decision-maker is uncertain about !, to ii) the situation in

which she knows that ! = !0.

The next property of kf � gkconcerns monotonically increasing transformations.

Proposition 2 Let z = z(!), z : 
 ! R, be a monotonically increasing function of !. Denoting
by f
(!) and g
(!) any two density functions on ! and by fZ(z) and gZ(z) the corresponding

densities on Z, one obtains:

kfZ � gZk = kf
 � g
k (15)

Proposition 2 expresses the fact that the distance between any two densities as de�ned in eq. (11)

is invariant for monotonic transformations of the random variable. For instance, if 
 = R+ � f0g,
and z = ln(!), then



fln(!) � gln(!)

 = kf
 � g
k.
The above �ndings can be generalized in moment independent global SA as follows. Moment

independent importance measures quantify the e¤ect of coming to know Xi by measuring the

separation between fY and fY jxi(y). Therefore, in moment independent SA, 
 becomes the range

of t(x), 
Y . The densities f and g are substituted by fY and fY jxi , respectively. We denote by

FY and FY jX the corresponding cumulative distribution functions. The partition 
 = f
+;
�g is
replaced by 
Y = fY+; Y�g, with Y+ =

�
y : fY > fY jxi

	
and Y� = Y nY+. In moment independent

SA, Y+ varies with Xi. To evidence this dependence, we use the notation Y
xi
+ ; Y

xi
� . We then have

the following properties.

Proposition 3 1. Let z(y) be a monotonic transformation of the model output. Let �yi , �
z(y)
i

denote the importance of Xi with respect to (w.r.t.) y and z(y) respectively. Then,

�yi = �
z(y)
i (16)

2.

�1;2;:::;n = 1 (17)
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Table 1: Steps for the analytical derivation of the delta importance measure.

Step nr Head
1 Identi�cation of the unconditional and conditional model cumulative distribution functions
2 Identi�cation of Y xi+ and Y xi�
3 Evaluation of si(Xi) by eq. (19).
4 Evaluation of �i by eq. (20).

where

�1;2;:::;n =
1

2
E[j
Z
fY � fY jx1;x2;:::;xn(y)dyj] (18)

3.

si(Xi) = 2FY (Y
xi
+ )� 2FY jxi(Y

xi
+ ) (19)

and

�i = EXi [FY (Y
xi
+ )� FY jxi(Y

xi
+ )] (20)

Point 1 in Proposition 3 states that �i does not change if the model output undergoes a

monotonic transformation. Correspondingly, the model input ranking is invariant. When the

model output spans several order of magnitudes, analysts re-scale the output (typically resorting

to a logarithmic scale) to manage and elaborate results. Item 1 insures that computing � before or

after the re-scaling does not alter the SA results. This property is not shared by variance-based

sensitivity measures, since, in general, VY jxi 6= VZ(Y )jxi , which implies S
y
i 6= S

z(y)
i .

Point 2 has the following interpretation. fY jx1;x2;:::;xn(y) is the model output density ob-

tained when all parameters are �xed, say at x0. In that case, y = t(x0) with certainty, and

fY jx1;x2;:::;xn(y) = �Dirac(t(x0)). The shift j
R
fY � fY jx1;x2;:::;xn(y)dyj, then, measures the separa-

tion from the current degree of belief to the state in which one comes to know that x0 is �the true

value of the inputs [Oakley and O�Hagan (2004)].�Point 2 states that this expected shift is nor-

malized to unity. We note that the way in which we have derived this result, namely via Corollary

1, generalizes previous literature �ndings (see, in particular, Borgonovo (2007), p. 782.). Finally,

we observe that Proposition 3 adds two new properties to previous literature results [Borgonovo

(2007)].

Point 3 can be turned into a methodology for deriving � analytically by exploiting the knowledge

of the conditional cumulative distribution functions. We summarize the steps in Table 1.

The �rst step consists of deriving the explicit expressions of the conditional and unconditional

cumulative distribution functions Y . The second step consists of determining Y xi+ and Y xi� by

studying the inequality fY � fY jxi . The third step consists of computing si(Xi) by eq. (19). In

this respect, Proposition 3 allows one to obtain si(Xi) by evaluating FY (Y
xi
+ ) and FY jxi(Y

xi
+ ) at a

limited number of points, resulting in notable computational simpli�cation. The �nal step consists

of taking the expected value of si(Xi).

In the next sections, we apply the methodology and obtain four analytical test cases, with

di¤erent model structures and di¤erent assumptions on the random model inputs.
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4 Normal Random Variables and Additive Model Output

In this section, we apply the procedure in Table 1 and obtain the explicit expression of moment

independent importance measures for the case of additive model and normally distributed inputs.

Proposition 4 Let

y =
nX
i=1

aixi (21)

with X �N(x;m;�) with parameters m = (m1;m2; :::mn), (mi = E[Xi]) and non degenerate
covariance matrix � (det� 6= 0). Then

1.

FY = N(y;mY ; VY ) and FY jxi(y) = N(y;mY jxi ; VY jxi) (22)

where
VY = a�a

T

VY jxi = a�Y jxia
T

mY =
Xn

s=1
asms

mY jxi =
nX

s=1;s 6=i
as

�
ms + (xi �mi)

�s;i
�i

�
, i = 1; 2; :::; n

(23)

and

�Y jxi =

�
�j;s �

�j;i � �i;s
�i;i

, j; s; i = 1; 2; :::; n
�

(24)

2. Y xi+ = (�1; y1] [ [y2;+1) and Y xi� = (y1; y2) with

y1;2=
1

VY � VY jxi

 
VYmY jxi � VY jximY �

s
VY VY jxi

�
(aixi)2 + (VY � VY jxi) ln(

VY
VY jxi

)

�!
(25)

3.

si(Xi) = 2[N(y1;mY ; VY ) +N(y2;mY jxi ; VY jxi)�N(y2;mY ; VY )�N(y1;mY jxi ; VY jxi)] (26)

4. and

�i = EXi [N(y1;mY ; VY ) +N(y2;mY j!i; VY jxi)�N(y2;mY ;�Y )�N(y1;mY jxi ; VY jxi)] (27)

Proposition 4 has the following interpretation. Item 1 states that both the conditional and

unconditional model output densities are normal, and with parameters displayed in eq. (23). Item

2 identi�es the two points at which fY and fY jxi intersect. Item 3 determines si(Xi) by Proposition

1. Item 4 obtains �i by conditional expectation over the normal density of Xi.
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Figure 2: si(Xi); i = 1; 2; :::; n;for n = 3 (continuous) and n = 10 (dotted).

Proposition 4 is readily implemented in a software as Matematica or Mathcad (used by the

authors), delivering si(Xi) and �i [eqs. (26), (27)] for all a, m, � and n.

Let us then study the separation between the conditional and unconditional densities, si(Xi),

as a function of Xi. We recall that si(xi) measures how far the conditional density of y shifts from

the unconditional density, given that the decision-makers gets to know that Xi = xi.

Figure 2 displays si(Xi) in eq. (26), for a = 1 (1 = 1 1 ::: 1); m = 0 and � = I (identity

matrix), for two model sizes (n = 3, continuous and n = 10, dotted.)

si(Xi) (Figure 2) is symmetric around the expected value of Xi. This symmetry stems from

the symmetric structure of the model and from the identity of the conditional and unconditional

normal densities. One notes (Figure 2) that the left limit of si(Xi) is 2, then si(Xi) decreases to a

minimum value, which is reached at E[Xi] and next increases to its maximum value, 2. The fact

that the separation reaches its minimum at E[Xi] signals that getting to know that Xi is �xed at its
expected value provokes the smallest change in the decision-maker�s uncertainty about y; the more

the value of Xi di¤ers from E[Xi], the bigger the shift between the conditional and unconditional
model output densities. We observe that the limiting values do not depend on the choice of the

parameters of the distributions (see Appendix A for the proof.)

Corollary 2 Given the model input distribution and the model output in Proposition 4, it holds

lim
Xi!�1

si(Xi) = 2 8a;m;� (28)

Let us then examine the behavior of si(Xi) as the model size changes, namely, as n increases.

The continuous and dotted lines in Figure 2, report si(Xi) in the cases n = 3 and n = 10,

respectively. One notes that si(Xi) grows to its asymptotic value less rapidly for n = 10 than for

n = 3 � the same behavior is obtained for other values of n, although not displayed. � In other

words, si(Xi) grows faster to its limit as n decreases. This behavior is relevant to the results for

importance measures.

12



By our choice of the parameters, it is si(x�) = sj(x�), 8x� 2 R; and 8i; j = 1; 2; :::; n, that is,
getting to know that one out of n standard normally iid random variables is �xed at x� provokes

the same shift in the distribution of their sum, independently of whether this variable is labeled Xi
or Xj . By the fact that the Xi are iid, �i = �j 8i; j = 1; 2; :::; n. Furthermore, by a = 1, m = 0

and � = I, �i is obtained by averaging si(Xi) via a standard normal density [eq. (9)] as follows:

�i =

Z 1

�1

1p
2�
e

�v2
2 � si(v)dv (29)

In eq. (29),
1p
2�
e

�v2
2 does not vary with n. Because si(Xi) grows at a lower pace as n increases,

the measure of the region intercepted by the product

0B@ 1p
2�
e

�v2
2

1CA � si(v) decreases with n: Con-
sequently, �i decreases with n. This result is also in accordance with intuition: getting to know one

out of 100 (to be summed) iid variables has a lower impact on a decision-maker�s degree of belief

than getting to know 1 out of 3 (to be summed) variables.

Lines 2�4 in Table 2 report the importance measures for several values of n (a = 1, m = 0 and

� = I). The decreasing values of � in the second line of Table 2 show that the impact of getting to

know Xi decreases with n; as expected. The same happens to variance-based measures, S (third

row in Table 2.) For the model in eq. (21), one writes

Si =
a�Y jxia

T

a�aT
(30)

By a = 1 and the fact that the random inputs are iid, Si = 1=n [see also Owen (2003)].

This section has involved an additive model � its superimposition dimension equals unity

[Owen (2003)] � with in�nite support of the random inputs. In the next section, we discuss a case

study with a di¤erent superimposition dimension, namely a completely interactive model, with

semi-in�nite support of the random inputs.
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5 Lognormal Random Variables and Multiplicative Model Output

In this section, we consider a model with completely di¤erent structure in respect of the model of

Section 4, i.e.,

Y =

nY
i=1

Xai
i (31)

The model in eq. (31) is characterized by the presence of interactions among the model inputs,

generated by their multiplication � it is constituted by a unique interaction term. � We let Xi be

independently distributed with lognormal distributions LN(xi; �i; �i), where �i and �i are the mean

value and standard deviation of ln(Xi), respectively. For clarity, we report the density function of

X:

�X(x;�; �) =

nY
i=1

�i(xi; �i; �i) =

nY
i=1

1p
2��ixi

e
� 1
2

�
ln(xi)��i

�i

�2
(32)

The next result reports the expression of the sensitivity measures. The proof makes use of the

invariance properties of Propositions 2 and 3 and is discussed in Appendix A.

Proposition 5 Let Y be de�ned by eq. (31) and X a random vector with the density given in eq.

(32). Then

1.

fY (y) =
1

y
p
2��2Y

e
� [ln(y)�

Pk
i=1 �i]

2

2�2
Y and fY jxi(y) =

1

y
q
2��2Y jxi

e
�
[ln(y)��Y jxi

]2

2�2
Y jxi (33)

where
�2Y =

Pn
i=1 a

2
i �
2
i

�2Y jxi =
Pn
s=1
s 6=i

a2s�
2
s

�Y = a�
T

�Y jxi = �Y � ai�i + ai lnxi

(34)

2. Y xi+ = (0; ey1 ][ [ey2 ;+1) and Y xi� = (ey1 ; ey2) with y1 and y2 obtained by eq. (25) where VY ,

VY jxi, mY and mY jxi are replaced by �
2
Y , by �

2
Y jxi, �Y , and �Y jxi, respectively.

3.

si(Xi) =

2[LN(ey1 ; �Y ; �
2
Y )� LN(ey2 ; �Y ; �2Y ) + LN(ey2 ; �Y jxi ; �

2
Y jxi)� LN(e

y1 ; �Y jxi ; �
2
Y jxi)]

= 2[N(y1; �Y ; �
2
Y )�N(y2; �Y ; �2Y ) +N(y2; �Y jxi ; �

2
Y jxi)�N(y1; �Y jxi ; �

2
Y jxi)]

(35)
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Figure 3: si(Xi) for Y =
nY
i=1

Xi, Xi lognormally iid; n = 3 (continuous) and n = 10 (dotted).

The horizontal axis is in logarithmic scale.

4.

�i =

= EXi [LN(ey1 ; �Y ; �
2
Y )� LN(ey2 ; �Y ; �2Y ) + LN(ey2 ; �Y jxi ; �

2
Y jxi)� LN(e

y1 ; �Y jxi ; �
2
Y jxi)]

= EXi [N(y1; �Y ; �
2
Y )�N(y2; �Y ; �2Y ) +N(y2; �Y jxi ; �

2
Y jxi)�N(y1; �Y jxi ; �

2
Y jxi)]

(36)

Concerning the asymptotic properties of si(Xi), one obtains

lim
Xi!0+

si(Xi) = 2 and lim
Xi!+1

si(Xi) = 2 (37)

Eq. (37) follows by the second of the equalities in eq. (35)6. Figure 3 displays si(Xi) [eq. (35)] for

the cases n = 3 and n = 10 (continuous and dotted graphs respectively), with a = � = 1; � = 1.

Figure 3 displays si(Xi). The continuous and dotted lines refer to n = 3 and n = 10, respectively.

A logarithmic scale is used in the horizontal axis. Figure 3 shows that, unlike in the normal-additive

case, the density separation is no more a symmetric function of Xi. It is, instead, symmetric in

lnXi. Similarly to the normal-additive case, si(Xi) reaches its minimum at the expected value of

Xi, and it increases towards its asymptotic value at a lower pace when the number of parameters is

higher (compare the dotted to the continuous lines in Figure 3.) We therefore expect a decreasing

value of �i as n increases. Lines 5� 7 in Table 2 illustrate the numerical values of the importance
measures for di¤erent model sizes. The values of the sensitivity measures show that the importance

of model inputs decreases with n also in the multiplicative-lognormal case. In particular, � (sixth

line) assumes the same values as in the normal-additive case. This result follows by the monotonic

invariance property of � (Proposition 2). However, a notable di¤erence is registered among the

values of the variance-based sensitivity measures between the additive-normal case study and the

multiplicative-lognormal one. This discrepancy is a consequence of the di¤erent model structure.
6The proof is close to the one of Corollary 2, and is omitted for the sake of brevity.
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Variance-based importance measures, can be found analytically also for this type of model (see

Appendix A for the derivation):

Si = 1�
(e�

2
Y � e�2i )

(e�
2
Y � 1)

(38)

Line 6 in Table 2 shows that Si decreases very rapidly with model size. As an example, take

the case n = 5. Determining Xi reduces variance by around 1%. Hence, by looking at variance

reduction, the decision-maker would conclude that being able to know Xi with certainty has an

almost negligible e¤ect on her uncertainty (if this is made coincide with variance). Instead, �xing

one-out-of the 5 model inputs provokes a non-negligible shift in the model output distribution, as

testi�ed by �i = 0:160. Its interpretation in terms of density separation measurement is as follows:

the expected impact of getting to know a random variable in the sum of n standard normally iid

random variables is the same as that of getting to know a random variable in the product of n

standard lognormally iid random variables. However, variance based importance measures would

not deliver this information.

In the next section, we deal with a classical case: additive model and uniformly distributed

random variables in [0; 1]n.

6 Uniform Random Variables and Additive Model Output

In this section, we consider the case in which X 2 [0; 1]n is a random vector of iid uniformly

distributed random variables Xi, and the model is additive:

y =

nX
i=1

xi (39)

By the works of Mitra (1971) and Sadooghi-Alvandi et al (2007), the unconditional density of Y is

the piecewise-de�ned function:

unY (y) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

1

(n� 1)!(y)
n�1 if 0 � y < 1

yn�1

(n� 1)! �
n

(n� 1)! (y � 1)
n�1 if 1 � y < 2

::: ::: :::
n�1X
l=0

(�1)l
�
n
l

� 1

(n� 1)!(y � l)
n�1 if n� 1 � y < n

0 otherwise

(40)

In order to utilize Proposition 1, the cumulative distribution function of the sum of uniformly

distributed random variables is needed. We write it as follows (the proof is in Appendix A).

Lemma 1 Let y 2 [k� � 1; k�], k� = 1; 2; :::; n: Then, the cumulative distribution function of the
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sum of n uniform iid random variables is given by

UnY (y) =
k��2X
m=0

(
mX
l=0

(
(�1)l
l!(n� l)! ((m+1� l)

n� (m� l)n)+
k��1X
l=0

(�1)l
l!(n� l)! ((y� l)

n� (k�� 1� l)n) (41)

We then have the following results.

Proposition 6 Given the model output in eq. (39), X 2 [0; 1]n, with Xi uniformly iid random
variables, then:

1.

FY = U
n
Y (y) andFY jxi = U

n�1
Y (y � xi) (42)

where UnY (y) is given in eq. (41).

2. Y xi+ = [0; ani (xi)] [ [bni (xi); n] and Y
xi
� = [0; n]nY xi+ , where ani (xi) and bni (xi) are the solutions

of the equation

un�1Y (y � xi) = unY (y) (43)

3.

si(xi) = 2[U
n
Y (a

n
i (xi))� Un�1Y jxi(a

n
i (xi)) + U

n�1
Y jxi(b

n
i (xi))� Un�1Y (bni (xi))] (44)

4.

�i =

Z 1

0

h
UnY (a

n
i (s))� Un�1Y jxi(a

n
i (s)) + U

n�1
Y jxi(b

n
i (s))� Un�1Y (bni (s))

i
ds (45)

We note that item 1 extends previous results proven in Mitra (1971) and Sadooghi-Alvandi et

al (2007). In particular, it introduces the conditional distributions of the sum of independently

distributed uniform random variables. Item 3, furthermore, provides a general explicit expression

of the separation between the conditional and unconditional densities of the sum of uniformly iid

random variables.

Let us now illustrate Proposition 6. Given n = 2, by Item 1 in Proposition 6, the conditional

and unconditional model output distributions are

u2Y (y) =

8><>:
y if xi � y < xi + 1

2� y if xi + 1 � y < 2 + xi
0 otherwise

(46)

and

u1Y jxi(y) =

(
1 if xi � y < xi + 1
0 otherwise

, respectively. (47)
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Figure 4: si(Xi) in eq. (48) (n = 2, continuous line) and eq. (50) (n = 3, dotted line).

By solving eq. (43) (Item 2 in Proposition 6), one obtains Y xi+ = [0; xi] [ [1 + xi; 2], and Y xi+ =

(xi; 1 + xi). By eq. (44), one obtains the following closed form expression for the separation:

si(xi) = 2x
2
i � 2xi + 1 (48)

The left graph in Figure 4 displays si(Xi) in eq. (48).

Finally, by Item 4 in Proposition 6, one obtains

�i =
1

2

Z 1

0
si(v)dv =

1

3
. (49)

For the case n = 3, by Proposition 6, we have (the derivation is Appendix A):

si(xi) =

8>>>><>>>>:
2xi � 2x2i �

1

3
+ (�xi +

1p
2
+ 1�

p
2xi)

p
1� 2xi � (

p
2

6
+
1

3
) (1� 2xi)

3

2 if 0 � xi <
1

2

2xi � 2x2i �
1

3
+ (2xi �

1p
2
� 1 +

p
2xi)

p
2xi � 1� (

1

3
p
2
+
1

3
) (2xi � 1)

3

2 if
1

2
< xi � 1

(50)

One notes that, for n = 3, si(xi) is continuous, albeit piecewise-de�ned. �i is then found by

integrating eq. (50) in [0; 1]. One obtains �i = 0:228.

Figure 4 displays si(Xi) for n = 2 and 3 (continuous and dotted lines, respectively). One notes

the symmetric shape of si(Xi) around E[Xi] (namely,
1

2
). As in the previous case studies, the

minimum of the separation is reached when Xi is �xed at E[Xi].
The above analysis has concerned n = 2 and 3. For large n, by a result proven in Mitra (1971),

Y is approximately normally distributed, with density

fY (y) '
r

3

2�n
e
�
3(y � n

2
)2

2n (51)
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Therefore, provided that the approximation in eq. (51) is accurate, one is brought back to a normal-

additive problem and can apply the results of Section 4, namely Proposition 4. However, neither

Mitra (1971), nor later on Sadooghi-Alvandi et al (2007), provide a numerical indication about the

value of n for which such approximation becomes accurate. Our calculations allow us to verify the

accuracy of the approximation. The results are reported in Table 2, lines 9� 11.
Table 2 shows that the normal approximation is accurate after n = 3. A slight bias is, however,

always present. The bias is caused by the missed truncation of the normal distribution tails. Lines

9�11 in Table 2 also show that the relative importance of an uncertain input decreases with model
size (both when considered with variance-based and moment independent importance measures),

in accordance with intuition and with the results of the previous sections.

In the next section, we introduce a further analytical test case, in which the model output is a

non-additive-non-multiplicative function of the model inputs.

7 Non Additive and Non-Multiplicative Model

In this section, we show the application of the procedure in Table 1 for obtaining moment indepen-

dent importance measures analytically in the case of a non-additive and non-multiplicative model.

The model equation is

Y =
X1

X1 +X2
(52)

The random inputs are X1 � Gamma(�; �) and X2 � Gamma(�; �), independently distributed.

We write the Gamma densities as follows:

fX1(x1;�; �) = x
��1
1

e�
x1
�

��� (�)
and fX2(x2;�; �) = x

��1
1

e�
x1
�

��� (�)
(53)

Before coming to the values of the sensitivity measures, let us study the behavior of the uncertainty

in y deriving from the selected distributions. The resulting distribution of the model output [see

also Appendix A] is Beta with parameters � and �. Thus, the model output assumes values between

0 and 1. Figure 5 displays the unconditional density of y for increasing values of � = �.

Figure 5 shows that the distribution of y is symmetric when � = �. In this case, the random

inputs x1 and x2 are identically distributed. However, the mathematical expression of y is not

symmetric in x1 and x2, although the resulting distribution of y is. This observation impacts the

sensitivity measures, as we are to see later in this section. Furthermore, Figure 5 shows that the

density of y tends to collapse on its expected value (E[y]) as � = � increase. This implies that, for
the model in eq. (52), while the variance of the model inputs increases (the variance of a gamma

random variable increases linearly with �), the variance of the model output decreases.

Let us then come the global sensitivity analysis of this case study. As far as moment independent

sensitivity measures are concerned, by applying the Procedure in Table 1, one �nds the following

results.
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Figure 5: Density of y as � = � increase from 1 to 50. One notes that the density tends to a
Dirac-� density concentrated on the expected value of y, namely E[y] = 0:5:

Proposition 7 Given the model in eq. (52), X1 and X2 distributed according with the densities
in eqs. (53), one obtains:

1. The unconditional and conditional distributions given x1 and x2 are, respectively:

FY (y) =

R y
0 u

��1(1� u)��1dyR 1
0 s

��1(1� s)��1ds

FY jx1(y) =
R y
0

(1� s)��1

s�+1
x�1

e
�x1

�
(
1� s
s

)

���(�)
dy

FY jx2(y) =
R y
0

(s)��1

(s� 1)�+1x
�
1
e
�x1

�
(
1� s
s

)

���(�)
dy

(54)

2. Let i = 1; 2. Y xi+ = [0; a1(xi)] [ [a2(xi); 1] and Y xi� = [0; 1]nY xi+ , where a1(xi) and a2(xi) are
the two points at which the conditional and unconditional densities intersect [they are given

in Appendix A]

3.

si(xi) = 2[FY (a1(xi))� FY jxi(a2(xi)) + FY jxi(a2(xi))� FY (a2(xi))] (55)

4.

�i =

Z 1

0
[FY (a1(xi))� FY jxi(a2(xi)) + FY jxi(a2(xi))� FY (a2(xi))]ds (56)
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It is possible to see (Appendix A) that, when � = �, then s1(x1) becomes identical to s2(x2)

� in the remainder we shall simply write s(x) when � = �. � By s1(x1) = s2(x2), �1 = �2 when

� = �. This �nding is in agreement with the symmetry e¤ect discussed earlier.

Figure 6 displays s(x) for increasing values of � = �.

Figure 6: s(x) for di¤erent choices of � = �. The �gure besides s on the vertical axes denotes
the value. Hence, s1(x) means the s(x) for � = � = 1; s2(x) means s(x) for � = � = 2, and,

similarly, s2(x) means s(x) for � = � = 50:

Figure 6 shows that the separation reaches its minimum at x = � � � (� = 1 in our case),

which is the expected value of the random inputs. Furthermore, it is limxi!1si(xi) = 2 and also

limxi!0si(xi) = 2, similarly to the lognormal case study.

The values of the importance measures for increasing values of � are reported in Table 2, lines

13 � 15. One notes that X1 and X2 have the same importance, both when ranked using moment
independent and variance based sensitivity measures. The value of the global sensitivity indices

(S), however, indicates the presence of a slight interaction e¤ect, provoked by the non-additive

structure of the model. By inspecting the values of S in row 15 of Table 2, one observes that the

relevance of interactions decreases with �. Interactions are not felt for high values of �. As far

as moment independent sensitivity measures are concerned, �i decreases with �, showing that it

becomes less relevant to get to know a model input as � increases, in accordance with our previous

discussion (when � increases, the distribution becomes more concentrated on E[y].)
The present and the previous three sections have formulated analytical test cases for moment

independent importance measures. In the next section, we discuss numerical experiments.
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8 Using the Analytical Test Cases to Perform Numerical Experiments

In this section, we discuss the numerical estimation of moment independent sensitivity measures in

connection with the four test cases developed in the previous sections.

The computation of � requires the quanti�cation of the two integrals in eq. (9). The internal

integral estimates si(Xi). The external integral carries out the expectation over the distribution of

Xi.

We utilize the following estimation procedure. Latin hypercube [McKay et al (1979)] is used

to generate the unconditional model input sample of size N . This is represented by a matrix

X = [xi;j ,
i = 1; 2; :::; N

j = 1; 2; :::; n
], whose rows are a possible realization of the n input values, and whose

columns represent the values of input Xi generated across the N Monte Carlo samples. We denote

a column by bXi = �
x
(1)
i ; : : : ; x

(N)
i

�T
, 8i = 1; : : : ; n. By the corresponding N model runs, one

obtains the unconditional model output sample, bY =
�
y(1); : : : ; y(N)

�
. The unconditional model

output sample is then utilized to estimate the unconditional model output density, fY (y). In this

respect, we make use of kernel density estimation [non-parametric approach, Parzen (1962)] to �t

unconditional distribution. For obtaining the conditional density, we proceed as follows. First, the

conditional model input sample is obtained. To condition on, say, Xr one �xes all elements of the

rth column of matrix bX to one of the values sampled, say, bxr;i. Then, two alternatives are possible
depending on whether the model inputs are correlated: a) in the presence of correlations, one needs

to re-samples the remaining n� 1 model inputs given that Xr = bxr;i; b) in the case of uncorrelated
inputs, one can obtain the conditional samples without actual re-sampling, but by simply repeating

the column substitution (substituted columns sampling plan). At each bxr;i, one then estimates
fY jxr;s(y) by kernel density. One is, then, in a position to evaluate the separation si(bxr;i). Finally,
the statistics

NX
r=1

si(bxr;i)
2N

provides an estimate of �i. The total number of model evaluations for this

computational strategy is nN2 +N , both in the case of correlated and uncorrelated model inputs.

In order to assess whether the envisioned strategy leads to a correct estimation of the sensitivity

measures, one can utilize the analytical test cases developed in the previous sections as benchmarks.

In this exercise, we use all the four case studies, with the following input data:

1. Model of Section 4, with three parameters (n = 3), equal weights (a = 1), and parameters of

the normal distributions � = 1 and diagonal covariance matrix � = diag(16; 4; 1);

2. Model of Section 5, with three parameters (n = 3), equal weights (a = 1), and parameters of

the lognormal distributions � = 1, and �1 = 16; �2 = 4; and �3 = 1;

3. Model of Section 6, with three uniformly distributed parameters;

4. Model of Section 7 with input parameter distributions � = � = 3.

Based on these data, by Propositions 4, 5, 6, and 7, one obtains the following values of the

sensitivity measures:
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1. �1 = 0:472, �2 = 0:155 and �3 = 0:071;

2. �1 = 0:472, �2 = 0:155 and �3 = 0:071;

3. �1 = �2 = �3 = 0:228;

4. �1 = �2 = 0:315.

Figures 7, 8, 9 and 10 report the results of numerical experiments showing both robustness

(replicates at same sample size) and convergence (increasing the sample size) of the sensitivity

measure estimates.

We start with describing the results of the third and fourth case studies (Figures 9 and 10).

In these test cases, the model inputs are equally important. The dotted line shows the analytical

value of the importance measures. The horizontal axis displays the number of model evaluations.

The size of the base Latin hypercube sample (N) is varied from 8 to 128, leading to a number of

model runs varying from 200 to 49280. In the �rst three (two) graphs Figures 9 and 10, respec-

tively, the estimates of � are displayed. The box-plots surrounding the values of the importance

measures describe the accuracy in the estimation. The box-plots are obtained by 100 replicates of

the estimation procedure at each sample size. In each box plot, the central mark is the median

of the replicates, and the edges are the 25th and 75th percentiles, respectively. The dotted refer-

ence line marks the analytical value. The whiskers extend to the most extreme data points not

considered outliers; outliers are plotted individually. Results show that: i) the numerical estimates

monotonically converge towards the analytical values as N increases; ii) the analytical value is

always contained in the uncertainty bounds provided by the replicates; iii) the dispersion is sig-

ni�cantly and constantly reduced as the sample size increases. In this respect, the fourth (third)

graph in 9 and 10 report the evolution of the average root mean square error (RMSE) (where the

average is taken across the 100 replicates) in a loglog plot. RMSE decreases steadily with N . Be-

sides receiving con�rmation of the correctness of the estimation procedures, the graphs in Figures

9 and 10, can be utilized to gain additional insights on numerical convergence. In this respect, let

us examine the results for the normal and lognormal test cases (Figures 7 and 8). In these two

case studies, the model inputs have di¤erent importance. By considering the model input ranking

instead of the importance measures values, one can identify the sample size that leads to consistent

ranking. In our case, starting with N = 784, there is no more overlapping between the box plots of

the model inputs. Given the monotonic convergence to the analytical estimates, this fact indicates

that the ranking of the parameters is stable and is not going to change by increasing the sample

size.
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9 Conclusions

Moment independent sensitivity measures have been developed along the lines of uncertainty and

global SA works underlying the need for providing a thorough way of assessing the in�uence of an

uncertain model input on the model output (decision criterion, risk metric). In particular, moment

independent techniques avoid reliance on the assumption that variance is su¢ cient to characterize

uncertainty. However, due to the lack of analytical test cases, works in moment independent SA rely

on ad-hoc numerical strategies in estimating the sensitivity measures. This lack makes it impossible

to assess the reliability of a given estimation strategy. Furthermore, the absence of benchmarks

prevents one from comparing alternative estimation designs.

This paper has introduced a new methodology that allows one to obtain moment independent

importance measures analytically. At the basis of the methodology is the establishment of the link

between moment independent importance measures and the statistical theory of density separation.

This link has enabled us to obtain two new properties for moment independent importance mea-

sures: i) invariance for monotonic transformation of the model output; ii) evaluation via cumulative

distribution. The former property is relevant in numerical applications in which re-scaling is applied

to the model output. The latter property has enabled us to formalize a four-step procedure for ob-

taining moment independent importance sensitivity measures analytically. We have illustrated the

methodology via the formulation of four case studies: i) additive model with multivariate normal

random inputs; ii) multiplicative model with lognormally iid random inputs; iii) additive model

with uniformly distributed random variables; and iv) non-additive-non-multiplicative model with

gamma distributed random variables. It has then been possible to analyze the behavior of moment

independent importance measures for di¤erent combinations of model input support (�nite, semi-

in�nite and in�nite) and model structures (additive and interactive). For each test case, we have

also obtained the corresponding values of the variance-based sensitivity measures. By comparing

variance-based and moment-independent results, has enabled us to shed further light on the dif-

ferences between these two global SA approaches and about the di¤erences in insights they deliver

to decision-makers. In particular, the complementary nature of the insights derived by the two

methods emerges, with moment independent methods better capable of re�ecting uncertainty and

variance based of re�ecting model structure.

Finally, we have demonstrated the use of the four case studies through numerical experiments.

We conclude with a note on future research. The analytical test cases developed in this work

provide a benchmark for future studies aimed at comparing and improving the numerical sampling

strategies, by testing combinations of sampling designs, on the one hand, and approaches to evaluate

the shift between unconditional and conditional densities, on the other hand. The availability of

analytical test cases with dependent inputs (Proposition 4) provides the benchmark for assessing

the impact of the independence assumption that characterizes most of global SA studies to date. A

further research direction is represented by the combination of emulators and moment independent

techniques. Moment independent techniques, being global, potentially ask for a high number of

model runs in numerical estimation. This might make their computation problematic for models
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requiring long computational times. The recent developments in the area of meta-modelling and

emulators, however, suggest the combination of emulators � that reduce model complexity �

and moment independent techniques as a promising way for obtaining importance measures that

thoroughly re�ect uncertainty, even in the presence of computationally intensive models.

10 Appendix A: Proofs

Proof of Proposition 1. Since 
+ \ 
� \ � = ?; by additivity of the integralZ


jf � gjd�(!) =

Z

+

(f � g)d�(!) +
Z

�

(g � f)d�(!) +
Z
�
0d�(!)

=

Z

+

fd�(!)�
Z

+

gd�(!) +
Z

�

gd�(!)�
Z

�

fd�(!)

= F (
+)�G(
+) +G(
�)� F (
�)
= F (
+)�G(
+) + [1�G(
+)]� [1� F (
+)]
= 2F (
+)� 2G(
+)

(57)

and
F (
+)�G(
+) +G(
�)� F (
�)
= 1� F (
�)� [1�G(
�)] +G(
�)� F (
�)
= 2G(
�)� 2F (
�)

(58)

Proof of Corollary 1. Let !0 2 
 the point such that, given a generic function h(!)Z


h(!) � �Diracd�(!) = h(!0) (59)

In this case, 
+ = 
+ � f!0g and 
� = f!0g. Consequently, in eq. (13), F (
+) = 1 and

GDirac(
+) = 0: Conversely, GDirac(
�) = 1 and F (
�) = 0: Inserting in eq. (13) completes the

proof.

Proof of Proposition 2. By eq. (11),

kfZ � gZk =
Z


jfZ(z(!))� gZ(z(!))jd�(z(!)) (60)

which, by positivity of d�(z(!)) implied by the monotonicity of z(!), can be rewritten as

kfZ � gZk =
Z


jfZ(z(!))d�(z(!))� gZ(z(!))d�(z(!))j (61)

By the change of variable rule, one obtains

fZ(z)d�(z) = f
(!)d�(!) (62)

and

gZ(z)d�(z) = g
(!)d�(!) (63)
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whence

kfZ � gZk =
Z


jfZ(z)d�(z)� gZ(z)d�(z)j

=

Z


jf
(!)d�(!)� g
(!)d�(!)j = kf
 � g
k�

(64)

Proof of Proposition 3. Item 1. If Z = z(Y ) is a monotonically increasing transformation of

the model output, by eq. (15), one has:



fY � fY jxi

 = 

fZ � fZjxi

 (65)

It follows that EXi [


fY � fY jxi

] = EXi [

fZ � fZjxi

].

Item 2. Since fY jX1=x1;X2=x2;:::;Xn=xn = �
Dirac(x) [see Appendix A in Borgonovo (2007)] then

eq. (17) follows by Corollary 1.

Item 3. si(Xi) =


fY � fY jxi

, by eqs. (11) and (10). Hence, eq. (19) follows by Proposition

1. Eq. (20), follows by eq.(9).

1. Given Xi = xi, eq. (21) can be rewritten as

Y jxi =
nX
s=1
s 6=i

asXs + aixi (66)

with aixi being a constant term. Y jxi is then still normal. The conditional distribution
of Xs, given Xi = xi, is N(ms + (xi � mi)

�s;i
�i
; �j;s �

�j;i � �i;s
�i

). It follows that Y jxi �

N(
nX
s=1

as

�
ms + (xi �mi)

�s;i
�i

�
;a�Y jxia

T ); with �Y jxi in eq. (24).

2. Two normal densities intersect at the points determined by the equality

1p
2�VY

e
� (y�mY )

2

2VY =
1p

2�VY jxi
e
�
(y�mY jxi)

2

2VY jxi (67)

By some manipulation, one obtains the quadratic equation

0 =
(y �mY )

2

2VY
�
�
y �mY jxi

�2
2VY jxi

+ ln

p
VYp
VY jxi

(68)

The solution is represented by the two points given in eq. (25).

3. By applying Proposition 3, one obtains

FY (Y
xi
+ ) = N(y1;mY ; VY ) + (1�N(y2;mY ; VY )) (69)

FY jxi(Y
xi
+ ) = N(y1;mY jxi ; VY jxi) + (1�N(y2;mY jxi ; VY jxi) (70)
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Then eq. (26) follows by eq. (19).

4. Eq. (27) follows by expectation of eq. (26).

Proof of Corollary 2. If Xi ! +1, then by eq. (25), y1 ! +1 and y2 ! �1. Consequently,
in eq. (26), for the terms concerning the unconditional distribution, one has:

limxi!1N(+1;mY ; VY ) = 1

limxi!1N(�1;mY ; VY ) = 0
(71)

The terms concerning the conditional distribution behave as follows. a) lim
Xi!+1

N(y2;mY ; VY ) =

0, since lim
r!�1

R r
�1

1p
2��

e

�(s�mY jxi)
2

2VY jxi ds = 0. b) N(+1;mY jxi ; VY jxi) ! 0. In fact, by eq.

(23), limXi!1mY jxi = +1 and the Gaussian density tends to the null function as Xi increases.

Therefore,

lim
Xi!+1

si(xi) = 2 lim
Xi!1

N(+1;mY ; VY ) (72)

This limit equals 2 by eq. (71). The result for Xi ! �1 is proven in a similar fashion, and follows

by symmetry.

Proof of Proposition 5. By taking the logarithm of both sides of eq. (31), one obtains

lnY = ln
kY
i=1

Xai
i =

kX
i=1

ai lnXi

Hence, lnY � N(
Pk
i=1 ai�i;

Pk
i=1 a

2
i �
2
i ): The �rst equality in eq. (33) then follows. The second

equality (conditional density of Y given Xi = xi) is found as follows. By eq. (31),

Yjxi = x
ai
i

nY
s=1
s 6=i

Xas
s (73)

By taking the logarithm of both sides, one writes

lnYjxi = ai lnxi +
nX
s=1
s 6=i

as lnXs

Hence, lnYjXi=xi is normally distributed with parameters

�Y jxi =
kX
s=1
s 6=i

as�s + ai lnxi = �Y � ai�i + ai lnxi (74)
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and

�2Y jxi =
kX
s=1
s 6=i

�2s

It follows that YjXi=xi is lognormally distributed with parameters �Y jxi and �
2
Y jxi . For items 2; 3

and 4, one needs to note that Z = lnY is a monotonic transformation of Y and that Z is normally

distributed. By Proposition 2, the problem is transformed back to the problem of Proposition 4.

Hence, items 2, 3 and 4 follow by Point 3 of Proposition 3 and by Proposition 4.

Proof of Proposition 6. Item 1 holds by the change of variable rule. Item 2 follows by the

de�nitions ofY xi+ and Y xi� in Proposition 3. Items 3 and 4 follow by Proposition 3.

Proof of eq. (31) . By the properties of variance,

VY = E[(
kY
i=1

Xi �
kY
i=1

E[Xi])2] =
kY
i=1

E[X2
i ]�

kY
i=1

E[Xi]2 (75)

In the case of lognormally distributed random variables, E[Xi] = e�i+�
2
i =2 and V [Xi] = (e�

2
i �

1)e2�i+�
2
i : Hence

E[X2
i ] = V [X

2
i ] + E[Xi]2 = e2�i+2�

2
i (76)

Substituting into eq. (75), one obtains

VY =
kY
i=1

e2�i+2�
2
i �

kY
i=1

(e2�i+�
2
i ) (77)

We then let �Y =
Pk
i=1 �i and �

2
Y =

Pk
i=1 �

2
i , to obtain

VY = e
2�Y +2�

2
Y � e2�Y +2�2 = e2�Y +�2(e�2Y � 1) (78)

The conditional variance is obtained as follows. If Xi is �xed at xi, then

�2Y jxi =
kX

s=1;i6=s
�2s = �

2
Y � �2i (79)

�Y jxi is given in eq. (74). Therefore,

VY jxi = e
2�Y jxi+�

2
Y jxi (e

�2Y jxi � 1) = e�2Y ��2i+2��2�i+2 lnxi(e�
2
Y jxi � 1) = x2i

e�
2
Y +2�

e�
2
i+2�i

(e�
2
Y ��2i � 1) (80)

The corresponding expected value is

EXi fV (Y jxi)g = E
�
X2
i

�
e�
2
Y +2�

e�
2
i
+2�i

(e
�2Y ��2i
i � 1) = e2�i+2�2i e

�2Y +2�

e�
2
i
+2�i

(e
�2Y ��2Y
i � 1)

= e�
2
i e�

2
Y +2�(e

�2Y ��2i
i � 1)

(81)
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Whence,

Si =
VY � EXi fV (Y jxi)g

VY
= 1� e

�2i e�
2
Y +2�(e

�2Y ��2i
i � 1)

e2�+�
2
Y (e�

2
Y � 1)

= 1� (e
�2Y � e�2i )
(e�

2
Y � 1)

Proof of Lemma 1. We prove the expression for the cumulative distribution function of the sum

and conditional sum of uniformly distributed random variables. Let s 2 [k� � 1; k�]; k� = 1; 2; ::; n.
Then, by integrating eq. (40), one obtains

G(s) =

Z s

0
f(s)ds =

k��2X
m=0

Z m+1

m
fm(s)ds+

Z s

k��1
fk��1(s)ds (82)

The �rst term in the right hand side of eq. (82), is given by:

k��2X
m=0

Rm+1
m fm(s)ds =

k��2X
m=0

Rm+1
m

mX
l=0

(�1)l
�
n
l

� 1

(n� 1)!(s� l)
n�1ds

=
k��2X
m=0

mX
l=0

(�1)l
�
n
l

� 1

(n)!
(m+ 1� l)n � (m� l)

(83)

The second term in the right hand side of eq. (41), is given by:

R s
k��1 fk��1(s)ds =

R s
k��1

k��1X
l=0

(�1)l
�
n
l

� 1

(n� 1)!(u� l)
n�1du

=

k��1X
l=0

(�1)l
�
n
l

� 1
n!
((s� l)n � (k� � 1� l)n)

(84)

As a consequence eq.(82) equals eq. (41).

Proof of eq. (50). The unconditional and conditional densities become

u3Y (y) =

8>>>>>><>>>>>>:

1

2
y2 if 0 � y < 1

�y2 + 3y � 3
2
if 1 � y < 2

1

2
(y � 3)2 if 2 � y < 3
0 otherwise

(85)

and

u3Y jxi(y) =

8><>:
y � xi if xi � y < xi + 1

2� y + xi if xi + 1 � y < 2 + xi
0 otherwise

(86)
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respectively. By some manipulation, the points a3i (xi) and b
3
i (xi) are:

a3i (xi) =

8><>:
1�

p
1� 2xi if 0 � xi <

1

2r
xi �

1

2
+ 1 if

1

2
� xi � 1

(87)

b3i (xi) =

8><>:2�
r
1

2
� xi if 0 � xi <

1

2
p
2xi � 1 + 2 if

1

2
� xi � 1

(88)

The next step is to evaluate UnY (y) and U
n�1
Y jxi(y) at a(xi) and b(xi), respectively. By Proposition 6,

we have:

UnY (a(xi)) =

8>>><>>>:
1

6
(1�

p
1� 2xi)3 if 0 � xi <

1

2

1

2
xi +

1

2

r
xi �

1

2
� 1
3

�
xi �

1

2

�3
2 � 1

12
if
1

2
� xi � 1

; (89)

UnY (b(xi)) =

8>>>><>>>>:
1

2
xi �

1

2

r
1

2
� xi +

1

3

�
1

2
� xi

�3
2 +

7

12
if 0 � xi <

1

2

1

2

p
2xi � 1� xi +

1

6
(2xi � 1)

3

2 +
4

3
if
1

2
� xi � 1

; (90)

Un�1Y jxi fa(xi)g =

8><>:
1

2
(1�

p
1� 2xi � xi)2 if 0 � xi <

1

2
1

2
(

r
xi �

1

2
+ 1� xi)2 if

1

2
� xi � 1

; (91)

and

Un�1Y jxi fb(xi)g =

8><>:
1

2
xi �

1

2
x2i �

1

2

p
2xi
p
1� 2xi +

3

4

xi
p
2xi � 1� xi �

1

2
x2i +

3

2

if 0 � xi <
1

2

if
1

2
� xi � 1

(92)

By inserting the above results into eq. (44), and simplifying, one obtains the explicit expression

for si(Xi) in eq. (50).

Proof of Proposition 7. The �rst step is the determination of the density of Y . In this respect, a

well known result in statistical theory states that, under the above assumptions on the distributions

of X1 and X2, Y 2 [0; 1] follows a Beta(�; �) distribution with density

fY (y) =
y��1(1� y)��1R 1

0 s
��1(1� s)��1ds

(93)

The conditional densities are found as follows. If one conditions on X1 = x1, then the model output

becomes a random variable depending only on X2:

Yjx1 = g(X2) =
x1

x1 +X2
(94)
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The density fY jx1(y) is obtained by the change of variable formula, as follows.

fY jx1(z)dz = fX2(x2)dx2 (95)

fY jx1(y) = fX2(x2)
1���� @z@X2
���� = fX2(x2)

1

@

@X2
(

x1
x1 +X2

)

(96)

Let us work out the right hand side. One has:
@

@X2
(

x1
x1 +X2

) = � x1

(X2 + x1)
2 , hence

fX2(x2)
1

@

@X2
(

x1
x1 +X2

)

= X��1
2

e�
X2
�

�a� (�)

(X2 + x1)
2

x1
(97)

Substituting for X2 =
x1
y
� x1, one obtains:

fX2(x2)
1

@

@X2
(

x1
x1 +X2

)

=

�
x1
y
� x1

���1 e�
X2
�

��� (�)

x1
y2

(98)

fY jx1(y) =
(1� y)��1

y�+1
x�1
e
�x1

�
(
1� y
y

)

��� (�)
(99)

Proceeding in a similar fashion, one has

fY jx2(y) =
y��1

(1� y)�+1
x�2
e

�x2
�
(
y

1� y )

��� (�)
(100)

Hence, the points at which the two distributions intercept are found, for X1:

y��1(1� y)��1R 1
0 s

��1(1� s)��1ds
=
(1� y)��1

y�+1
x�1
e
�x1

�
(
1� y
y

)

��� (�)
(101)

Letting CBeta =
R 1
0 s

��1(1 � s)��1ds and CGamma = ��� (�), one obtains, while conditioning on

X1,

y�+� =
CBeta
CGamma

x�1e
�
x1
�

 
1� y
y

!
(102)
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and, while conditioning on X2

(1� y)�+� = CBeta
CGamma

x�2 e

�x2
�
(
y

1� y )
(103)

By eqs. (54) and Proposition 3, the remainder follows.

We note that, in particular, one can write

s1(x1) =

Z 1

0
j y��1(1� y)��1R 1
0 s

��1(1� s)��1ds
� (1� y)

��1

y�+1
x�1
e

�x1
�
(
1� y
y

)

��� (�)
jdy (104)

and

s2(x2) =

Z 1

0
j y��1(1� y)��1R 1
0 s

��1(1� s)��1ds
� y��1

(1� y)�+1
x�2
e

�x2
�
(
y

1� y )

��� (�)
jdy (105)

One observes that for � = �, s1(x1) = s2(x2) and, therefore, �1 = �2.
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