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Abstract

In risk analysis problems, the decision-making process is supported by the utilization of quantitative

models. Assessing the relevance of interactions is an essential information in the interpretation of

model results. By such knowledge, analysts and decision-maker are able to understand whether

risk is apportioned by individual factor contributions or by their joint action. However, models are

oftentimes large, requiring a high number of input parameters, and complex, with individual model

runs being time consuming. Computational complexity leads analysts to utilize one-parameter-

at-a-time sensitivity methods, which prevent one from assessing interactions. In this work, we

illustrate a methodology to quantify interactions in probabilistic safety assessment (PSA) models

by varying one-parameter-at-a-time. The method is based on a property of the functional ANOVA

decomposition of a �nite change that allows to exactly determine the relevance of factors when

considered individually or together with their interactions with all other factors. A set of test

cases illustrates the technique. We apply the methodology to the analysis of the Core Damage

Frequency of the Large Loss of Coolant Accident of a nuclear reactor. Numerical results reveal the

non-additive model structure, allow to quantify the relevance of interactions and to identify the

direction of change (increase or decrease in risk) implied by individual and joint factor variations.

Keywords: Sensitivity Analysis; Importance Measures; Interaction E¤ects; Elementary E¤ects;

Risk Analysis.



1 Introduction

In the risk assessment of complex systems, decision-makers �face a challenge when deciding how to

allocate scarce resources to minimize the risks of failure. As resource constraints become tighter,

balancing these failure risks is more critical, less intuitive, and can bene�t from the power of quan-

titative analysis [Dillon et al (2003); p. 354].�Indeed, the creation and utilization of quantitative

models plays a central role in the decision-making process. Uncertainty quanti�cation and model

validation are then necessary to insure the correctness and consistency of the process [Saltelli

(2002a), Saltelli et al (2000), Patil and Frey (2004), Borgonovo (2006), Saltelli et al (2009)]. The

US Environmental Protection Agency �recommends best practices to help determine when a model,

despite its uncertainties, can be appropriately used to inform a decision. Speci�cally, it recommends

that model developers and users ... perform sensitivity and uncertainty analyses. Sensitivity analy-

sis evaluates the e¤ect of changes in input values or assumptions on a model�s results [US EPA

(2009), p. vii.]�The following quote from the White House�s O¢ ce of Management and Budget

is reported by Saltelli (2008): �Sensitivity analysis is generally considered a minimum, necessary

component of a quality risk assessment report. [Saltelli (2008); p. 1].�

In this respect, assessing the relevance of interactions is an essential information towards the

correct interpretation of model results. By such knowledge, analysts and decision-makers are able

to understand whether risk is generated by factors individually or caused by their cooperation.

However, estimating interactions might become extremely demanding from a computational

viewpoint. In fact, if a model contains k input factors, the number of possible interactions equals

2k�1.1 For k > 30, one has more than 1 billion interactions � see Table 1 for notation. � In real-

life applications, probabilistic safety assessment (PSA) models contain hundreds of basic events and

parameters. The large number of input factors and the model numerical complexity favour the use

of one-at-a-time (OAT) sensitivity methods. Several PSA importance measures (Birnbaum, Risk

Achievement Worth, Risk Reduction Worth [Cheok et al (1998)]) investigate the e¤ect of OAT

changes in components or parameters. However, OAT methods prevent analysts from detecting

interactions (see Saltelli et al (2004), p. 52.).

In this work, we discuss a method to detect interactions in complex PSA models at the same

computational cost of OAT methods. Core of the method is the evaluation of the model on two

di¤erent scenarios. By utilizing properties of the functional ANOVA decomposition of a �nite

change, one can de�ne sensitivity measures that exactly apportion the risk metric variation to the

changes in the parameters [Borgonovo (2010)]. In particular, we shall make use of the following

�nite change sensitivity indices (FCSI) [Borgonovo (2010)]. The �rst order FCSI�s (�1i ), that

correspond to the portion of the �nite change caused by a shift in factor xi alone. The total

order FCSI�s [�Ti ] that correspond to the fraction of the change in risk metric associated with a

given factor. �Ti is a sensitivity measure that includes all contributions of xi, individually and in

interactions with all other factors. We then illustrate that, thanks to a symmetry e¤ect entailed in

the functional ANOVA expansion of a �nite change, the total order FCSI�s (�T ) can be estimated

1 In fact, there are
�
k
1

�
parameters,

�
k
2

�
pairs,

�
k
3

�
triplets, ..., etc. Their sum equals

Pk
i=1

�
k
i

�
= 2k � 1.



Table 1: Notation and symbols used in this work

Symbol/Acronym Meaning
y Decision-support criterion/model output
OAT One-at-a-time
SA Sensitivity Analysis
FCSI Finite change sensitivity index
PSA Probabilistic Safety Assessment
ANOVA Analysis of Variance
SSCC Savage score correlation coe¢ cient
LOCA Loss of Coolant Accident
DOE Design of Experiments
w.r.t. with respect to
ATR Advanced test reactor
CDF Core damage Frequency
MCS Minimal Cut Set
x =(x1; x2; :::; xk) Vector of the factors (parameters)
k Number of factors

X � Rk Input parameter (factors) space
M Sample size in Montecarlo global SA
f(x) Relationship between y and x
fi1;i2;:::;ik Generic term in the functional ANOVA expansion of f
X Input parameter space
f 0i(x0) Partial derivative of f w.r.t. xi
x0; x1 Any two points in X
x�; x+ Low and High levels in a Design of Experiment

(x0i ; x
1
(�i)) Point obtained by shifting xi alone at x1i , with the other factors at x

0

(x0i ; x
1
(�i)) Point obtained by shifting xi alone at x0i , with the other factors at x

1

�1i First order FCSI of factor xi
�Ti Total-order FCSI of factor xi
�Ii FCSI accounting for the interactions of factor xi
�1; �I ; �T Vectors of all �rst, interaction and total order �nite change sensitivity indices
 �
� 1i Reverse elementary FCSI of factor xi
h Gap in the model output change when xi stays put
g Sobol�g function
a Parameters of Sobol�function
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by varying factors OAT. By taking the di¤erence between �Ti and �
1
i one quanti�es, for each factor,

the portion of the �nite change associated with its interactions with all other factors. We denote

such di¤erence as �Ii = �
T
i � �1i , i = 1; 2; :::; k. The �Ii then become synthetic indictors of the sign

and relevance of interactions. Hence, by two OAT sensitivities (the �rst to compute �1, the second

to compute �T ] the method allows to quantify individual, total and interaction contributions of all

factors.

We discuss the meaning of �1;�I and �T in the context of the factor �xing setting. In particular,

we split the setting into three insights. 1)Model structure. This insight answers the question: what

portion of the model response (�nite change) is attributable to interactions? We are going to see

that knowledge of �1;�I and �T provides an exact and quantitative answer to this question. 2)

Direction of change. This insight provides indication on whether the decision-support criterion is

increasing or decreasing when the parameters undergo the given changes. 3) Factor relevance. This

insight concerns the identi�cation of the most and least relevant factors in determining the model

response.

Two well-known analytical test cases, the Ishigami function and Sobol�g functions, are used

for a �rst illustration of the method and for discussing the derivation of insights through the above

mentioned settings.

We then apply the method to a Probabilistic Safety Assessment (PSA) model. The case study is

represented by the large Loss of Coolant Accident (LOCA) sequence of the Advanced Test Reactor

(ATR). The model has been employed in previous SA studies [Borgonovo et al (2003)]. Model

output is the core damage frequency (CDF) of the accident sequence. The CDF dependence on

the basic event probabilities and parameters has a highly non-additive structure. Results indicate

that, indeed, the model response is governed by interactions. Numerical �ndings reveal signi�cant

discrepancies between the ranking of obtained using sensitivity measures that include interactions

and the ranking obtained using sensitivity measures that do not include interactions, both at the

basic event and parameter levels.

The remainder of the paper is organized as follows. Section 2 illustrates the mathematical

framework. Section 3 discusses the sensitivity analysis settings. Section 4 presents the analytical

test cases. Section 5 presents the application to the PSA case study. Section 6 o¤ers conclusions.

2 The Method

This section sets forth the mathematical framework of our work. We �rst review a relevant property

of the functional ANOVA decomposition of a �nite change. We then show how this property allows

to �nd total order sensitivity measures at the same cost of elementary ones.

Let y = f(x) denote the relationship between the model output (y) and the set of factors

x = (x1; x2; :::; xk) � see Table 1 for notation. � We next consider two generic points of the input

parameter space, x0 and x1. The di¤erence in the model output values attained when moving from

x0 to x1 is denoted by �f = f(x1)� f(x0) (Figure 1).
Let � =

Yk

i=1
�i any product measure. Under the sole requirement that f is measurable, it
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Figure 1: Finite change in a 2-factor model output when the parameters shift from x0 to x1.

has been shown that �f can be decomposed in a �nite number of terms as follows [Rabitz and Alis

(1999), Sobol�(2003), Borgonovo (2010)]:

�f =

kX
s=1

kX
i1<i2<:::<is

�fi1;i2;:::;is (1)

where fi1;i2;:::;is(x
0) is a generic summand of the functional ANOVA expansion of f , �fi1;i2;:::;is =

fi1;i2;:::;is(x
1) � fi1;i2;:::;is(x0) and x1 and x0 are any two points in the input parameter space. We

note that �f is any change in f (not necessarily in�nitesimal), and the summands fi1;i2;:::;is are

obtained by projection according to a generic product measure. When �i is set equal to the Dirac-�

measure, as stated by Sobol� (2003), the decomposition of a �nite change is obtained by nested

applications of the �nite-di¤erence operator. The summands in eq. (1) become8>><>>:
�if = f(x

1
i ;x

0
(�i))� f(x

0)

�i;jf = f(x
1
i ; x

1
j ;x

0
(�i;j))��if ��jf � f(x

0)

:::

(2)

In eq. (2), (x1i ;x
0
(�i)) = (x01; x

0
2; :::; x

0
i�1; x

1
i ; x

0
i+1; :::; x

0
k) denotes the point obtained by shifting

factor xi at value x1i , while the remaining k � 1 parameters (x0(�i)) are �xed at x
0. Similarly,

(x1i ; x
1
j ;x

0
(�i;j)) indicates that factors xi and xj are shifted, with the others remaining �xed.

Consider the �rst equalities in eq. (2) and denote them as �1i [Borgonovo (2010)]:

�1i = �if = f(x
1
i ;x

0
(�i))� f(x

0) (3)

If taken as a sensitivity measure, �1i represents the individual contribution of xi to the �nite change
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in f . We refer to �1i as to the FCSI of xi. One can also consider the normalized version of this

index:

�1i =
�1i
�f

(4)

Note that, as changes become small, under the assumption that f is di¤erentiable, one has that

�1i ' f 0i(x0)dxi = dif and�1i ' DIMi(x
0) (5)

i.e., �1i and �
1
i tend to the partial di¤erential of f and the di¤erential importance (DIM) of xi,

respectively [see Appendix A in Borgonovo (2010).]

Consider then the second order terms in eqs. (2). One can set:

�i;j = f(x
1
i ; x

1
j ;x

0
(�i;j))��if ��jf � f(x

0) (6)

�i;j [eq. (6)] represents the portion of �f that is due to the interaction between xi and xj . In

particular, when changes are small, it can be proven that �i;j(xi; xj) is related to the second order

partial derivative of f w.r.t. xi and xj (f 00i;j(x
0)) as follows [Borgonovo (2010); Appendix A]:

�i;j(xi; xj) ' f 00i;j(x0)dxidxj (7)

Thus, for small changes, �i;j(xi; xj) equals the rate of change of f w.r.t. xi and xj multiplied by the

corresponding small deviations. This means that �i;j(xi; xj) conveys information on second order

local interactions.

By utilizing eqs. (3) and (6), one can rewrite eq. (1) as follows:

�f =
kX
s=1

X
i1<i2:::<is

�i1i2:::is (8)

Eq. (8) states that the sum of all the FCSI�s (�i1i2:::is , s = 1; 2; :::; k) equals the �nite change in f .

Since eq. (8) follows from a functional ANOVA expansion, all the FCSI�s [�i1i2:::is ] are orthogonal

[Borgonovo (2010)]. Let us now consider the sum of all terms in eq. (8) that involve xi. Let us

write

�Ti :=
kX
s=1

X
i1<i2:::<is
i2i1<i2:::<is

�i1i2:::is (9)

�Ti represents the fraction of the change in f associated with the change in xi and equals the sum

of its individual and interaction contributions to the �nite change. It can be shown that, if f is n

times di¤erentiable and parameter changes are small, then

�Ti ' f 0i(x0)dxi +
nX
j=1
j 6=i

f 00j;i(x
0)dxjdxi + :::+ fn1;2;::;n(x

0)dx1dx2:::dxn (10)

4



Eq. (10) shows that 'Tl includes all partial derivatives of f related to xi. Thus, it includes the local

interaction e¤ects of all orders associated with xi. For this reason, �Ti is named the total order

FCSI of xi [Borgonovo (2010)].

Consider next the di¤erences �Ii = �
T
i � �1i , i = 1; 2; :::; k. One has

�Ii = �
T
i � �1i =

kX
s=2

X
i1<i2:::<is
i2i1<i2:::<is

�i1i2:::is (11)

�Ii is the sum of 2k � 2 terms and is extended to all the interactions of parameter xi. Note that,
by construction, �Ii equals the portion of the change in f provoked by the change in factor i in

interactions with all the other factors, with exclusion of its individual contribution.

By eq. (9), estimation of all �Ti �s requires 2
k � 1 model evaluations. This clearly would make

the computation prohibitive in the case of complex models. In this respect, one notes that a similar

problem arises in the estimation of variance-based global sensitivity indices. More precisely, in

global SA, the cost would be of M � (2k � 1), where M is the Montecarlo sample size. However,

Saltelli (2002a)�s Theorem 1 shows that a cost of M � (k + 2) model runs is necessary to obtain
both �rst and total order variance-based sensitivity indices. The result stems from properties of

global sensitivity indices proven in Sobol� (1993), Homma and Saltelli (1996). In other words,

variance-based total order sensitivity indices are obtained at the same cost of the �rst order ones.

Since the mathematical framework in eqs. (1) and (2) allows to transfer the properties of variance

decomposition to the decomposition of a �nite change, one would expect that the total order FCSI�s

can be computed at the same cost of �rst order FCSI�s.

The next paragraphs con�rm such expectation. We start with a result illustrated in Borgonovo

(2010).

Proposition 1 [(see Proposition 1 in Borgonovo (2010) for a formal proof)]Consider points x1

and (x0i ;x
1
(�i)). Then

�Ti = f(x
1)� f(x0i ;x1(�i)) i = 1; 2; :::; k (12)

In Proposition 1, (x0i ;x
1
(�i)) is the point obtained by shifting all factors from x0 to x1, but xi.

f(x1)� f(x0i ;x1(�i)) is the di¤erence in the corresponding model output values. The equality states
that such di¤erence equals �Ti . An intuitive explanation is as follows. By adding and subtracting

f(x0) from f(x1) � f(x1(�i)); one obtains f(x
1) � f(x0i ;x1(�i)) = �f � �f(�i), where �f is the

change in f when all factors jump from x0 to x1, and �f(�i) is the change in f when all factors

shift butxi. Thus, f(x1)� f(x0i ;x1(�i)) equals the gap in �f that is created when all factors move
from x0 to x1 but xi. It is then possible to prove that this gap is exactly equal to the portion of the

change in f related to xi, namely, �Ti (see Proposition 1 in Borgonovo (2010) for a formal proof).

We then observe that point (x0i ;x
1
(�i)) is obtained by placing oneself at x

1 and shifting only

xi to x0i . In other words, point (x
0
i ;x

1
(�i)) is obtained by shifting one parameter in the direction

x1 ! x0 � we shall refer to it as �reverse direction�� The corresponding change in f is equal
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Figure 2: A visual representation of the symmetry e¤ect that allows to estimate �T by one-
parameter-at-a-time variations.

to f(x0i ;x
1
(�i)) � f(x

1). This quantity, however, equals the �rst order FCSI of xi obtained when

parameters shift in the reverse direction. Denoting the reverse direction FCSI by
 �
� 1i , one has:

 �
� 1i = f(x

0
i ;x

1
(i))� f(x

1) (13)

By comparing eqs. (13) and (12) one obtains

�Ti = �
 �
� 1i (14)

The above �nding can be summarized in the following.

Proposition 2 The total order FCSI�s when factors shift in the direction x0 ! x1 equal the

opposite of the �rst order FCSI (
 �
� 1i ) when factors shift in the reverse direction, x

1 ! x0:

Figure 2 visualizes Proposition 2. The left part of Figure 2 shows the shift in one parameter

(x3) in the direction x0 ! x1. One obtains the corresponding �rst order FCSI�s (�13). Conversely

(right part of Figure 2), by starting at (x1) and shifting x3 in the direction x1 ! x0, one obtains the

reverse-direction �rst order FCSI,
 �
� 13. By changing sign to

 �
� 13, one obtains �

T
3 . By subtracting �

1
3

from �T3 , one obtains the interaction FCSI of x3, �
I
3 . By repeating this steps k times, one estimates

�1;�I and �T for all factors.

From the computational viewpoint, this leads to the following result: k+1 model runs allow to
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Figure 3: A 23 design (see Montgomery and Myers (1995); p. 92).

obtain the �rst order contributions [�1]. By additional k + 1 model runs in the reverse direction

one determines the k total order sensitivity measures [�T ]. In summary, by two OAT sensitivities

one estimates the total, individual and interaction contributions of all factors.

In the remainder of this section, we investigate how the above concepts relate to the screening

exercise. We consider a design of experiment as described by Myers and Montgomery (1995). In

particular, let us focus on the full-factorial 2k design framework (Figure 3 reports a 23 example;

see Myers and Montgomery (1995) p. 92).

In a 2k design, each factor has two levels, (�) and (+). We shall refer to low and high level,
respectively [see Figure 3]. Let us denote by x+ = (+;+; ::::;+) and x� = (�;�; ::::;�) the points
at which all factors are at the high level and low levels respectively, and by f+ = f(x+), f� = f(x�)

the corresponding model output values. The link between DOE and the ANOVA decomposition of

a �nite change is then obtained by applying eq. (8) to decompose the change f+ � f�:
Let us now further examine the meaning of eq. (2). Morris (1991) de�nes one estimate of an

individual e¤ect via the following quantity:

di =
f(x�i +�i;x

+
(�i))� f(x

+)

�i
(15)

In Campolongo et al (2007), the absolute values of elementary e¤ects are taken as sensitivity
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measures in order to avoid type two errors in randomization:

jdij =
�����f(x

�
i +�i;x

+
(�i))� f(x

+)

�i

����� (16)

One notes that the �rst of the equalities in eq. (2) is the numerator of eq. (15). Therefore, one has

�1i = �i � di (17)

Eq. (17) shows that �1i and di di¤er only by a normalization factor. In particular, by appropriate

scaling, one can always choose �i = 1 and �1i and di coincide. Thus, the �rst order FCSI�s coincide

with one estimate of the elementary e¤ect of factor i in a screening exercise, given that x0 and x1

are chosen as (�) and (+) levels.
In the DOE terminology, eq. (3), implies that the �rst order FCSI�s (�1i ) are obtained by

shifting parameters OAT from the low to the high level [(+)! (�)]. Similarly, eq. (6) shows that
second order FCSI�s are proportional to one estimate of second order interaction e¤ects. They are

obtained by shifting all factor pairs in the reverse direction [(�)! (+)] and orthogonalizing.

To cast Proposition 1 in the DOE context, one needs to set x1 = x+ and x0 = x� and apply

eq. (12). One has:

�Ti = f
+ � f(x�i ;x

+
(�i)) (18)

where (x�i ;x
+
(�i)) is the point obtained by shifting all factors at the high level but xi. Then,

f(x�i ;x
+
(�i))� f

+ is one estimate of an elementary e¤ect in the reverse direction (+) ! (�), and
coincides with the corresponding reversed �rst order FCSI.

In terms of DOE schemes, we note that the proposed approach makes use of a �nite change in

model output across two points in the input parameter space, namely x0 and x1. The assumption

under which the method insures detection of interactions is model monotonicity.

In the case of non-monotonic input-output relations, a result indicating that interactions do

not matter might not testify the absence of interactions, as the consequence of compensation

e¤ects (type II error). The choice of the points at which to evaluate the model, then, becomes

crucial to evidence interactions. In particular, the DOE and screening literature suggests to utilize

a larger sample size x0, x1; :::;xs (s > 2), possibly with suitable randomization. We refer to

Morris (1991), Campolongo et al (2007), Saltelli et al (2009) for sampling schemes in the screening

exercise, and to Myers and Montgomery (1995) for a comprehensive description of several design of

experiment (DOE) schemes. One notes that the method proposed here would then be applicable

to the decomposition of each of the jumps in model output across any pair of these points.

In the next Section, we discuss the SA settings utilized in this work.

3 Settings for Finite Change Sensitivity Indices

An SA setting is de�ned as �a way of framing the sensitivity analysis quest in such a way that

the answer can be con�dently entrusted to a well-identi�ed measure [Saltelli et al (2008); p. 24.]
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The concept of SA setting is originated by Saltelli and Tarantola (2002), and further elaborated

in Saltelli et al (2004), Saltelli et al (2006). In Saltelli et al (2004), the following settings are

introduced: factor prioritization, factor �xing, variance cutting and factor mapping. The factor

prioritization setting concerns the identi�cation of the most relevant factors. The variance cutting

setting is related to the identi�cation of the smallest groups of factors that, when �xed, allow

to achieve a pre-determined variance-reduction level. The factor mapping setting is developed in

the context of Montecarlo �ltering and answers the question of identifying �what factor is most

responsible for producing realizations of Y in the region of interest (Saltelli et al (2004); p. 55)�.

The purpose of the factor-�xing setting is to identify the input factors that, if �xed, do not cause

any �signi�cant loss of information (Saltelli et al (2004); p. 54)�to the decision-maker. Screening

methods are the most appropriate tools in the context of the �factor �xing�setting (Saltelli et al

(2004); p. 54). The reason is as follows. SA methods can be grouped in the categories of local,

screening, and global methods. Examples of local SA techniques are the Birnbaum, the Criticality,

the Fussell-Vesely, the Joint and the Di¤erential importance measures [Birnbaum (1969), Vesely

(1998), Armstrong (1995), Borgonovo and Apostolakis (2001)]. By construction, local methods

provide insights on model behavior around one point in the input parameter space [Saltelli (1999),

Borgonovo et al (2003), Patil and Frey (2004)]. When the decision-maker�s con�dence in the

parameters is not complete, uncertainty propagation is necessary to assess the decision-maker�s

degree of con�dence in the importance measure results [a study on the e¤ect of uncertainty in

local importance measures can be found in Borgonovo (2008).]. Conversely, global SA methods

take the decision-maker�s uncertainty into account directly in the sensitivity measures. Thus, the

sensitivity measures re�ect the decision-maker�s state of belief [Saltelli (2002b), Borgonovo (2006)].

However, when models are computationally intensive, the application of global SA techniques might

be restrained. In fact, in spite of the considerable improvements in computation (see Theorems 1

and 2 in Saltelli (2002a)), global SA requires a high number of model runs for accurate estimation

of the sensitivity measures. In particular, as proven in Saltelli (2002a), M(k + 2) model runs are

necessary to estimate the �rst and total order global sensitivity indices. M is the appropriate

sample size for numerical estimation � M can be of order 103 or more. � If model runs are time

consuming, the computational cost might prevent the direct application of a global SA method.

In these circumstances, however, it is recommended to adopt a two-step approach, by letting the

global SA exercise be preceded by a screening exercise [see Saltelli et al (2004)]. In particular,

�In these cases, one of the aims in modelling is to come up with a short list of important factors

[Saltelli et al (2004); p. 91].� Fixing non-relevant input parameters, in fact, can lead to notable

reductions in computational cost.

In the remainder of this section, we elaborate further the factor �xing setting, in the light of

the information on model structure, direction of change and factor relevance that can be derived

by knowledge of �1i , �
T
i and �

I
i .

Model structure. The SA question is states as follows: are model results driven by individual

factors or by interactions? This question is answered by comparing the magnitude of �1i , �
I
i and
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�Ti . In fact, if
���1i �� >> ���Ii �� for all i, then one can conclude that the model response is additive,

i.e., the model responds separately to parameter changes. Conversely, if
���1i �� is comparable to ���Ii ��,

or
���1i �� < ���Ii ��, interactions cannot be neglected.
Direction of change: The SA question becomes: do parameter changes cause the model output

to increase or decrease? The origin of this setting is linked to the SA question stated in Economics

by Samuelson (1947): �it is hoped to formulate qualitative restrictions on slopes, curvatures etc.

of our equilibrium,� so as to be able to understand whether the parameter changes impact the

decision-support criterion positively or negatively (Samuelson (1947) p. 20.). As a reference, the

decision-support criterion (model output) can be a risk metric, an expected utility, a net present

value, etc.. It is then natural to ask the �what-if�question of whether, when factors are changed,

risk, expected utility or net present value (etc.) increase or decrease, respectively. To answer this

question, one needs to retain the sign of the sensitivity measures. The sign of �1i indicates whether

the individual factor variations impact the decision-support criterion positively or negatively. The

sign of �Ii indicates whether interactions overlap in a constructive or disruptive way with individual

actions. The sign of �Ti summarizes whether the overall consequence of a change in xi (alone and

together with its interactions) is an increase or decrease in model output.

Factor relevance. The SA question is: how in�uential is a factor in driving model results?

The answer to this question is provided for by the absolute value of the sensitivity measures. By

utilizing
���1i �� one ranks the factors based on their individual actions. By utilizing ���Ti �� one ranks

parameters with inclusion of all their interactions with the other factors. In this respect, we note

that the insights on model structure should be gained before choosing the sensitivity measures.

In fact, if interactions prevail over individual actions, a ranking based on �rst order sensitivity

measures might not be completely re�ective of the actual model behavior.

4 Analytical Test Cases

In this section, by application to analytical examples, we illustrate the determination of the FCSI�s

(�1i ; �
I
i ; �

T
i ) by the OAT scheme presented in Section 2, and the interpretation of results in the light

of the Settings of Section 3.

4.1 Test Case I: the Ishigami Function

The Ishigami function has been extensively used in the SA literature as a test case, especially after

the work by Homma and Saltelli (1996). We write it in the following form

f = sin(x1) + 7 sin(x2)
2 + 0:1x43 sin(x1) (19)

We let x0 = (1; 1; 1) and x1 = (2; 2; 2). The two corresponding model output values are f(x0) =

5:8821 and f(x1) = 8:1519. Hence, the model output undergoes the �nite change �f = 2:2698.

Since the model is smooth (Y 2 C1(R3)), the decomposition in eq. (1) applies.
Being k = 3 in this example, only 8 model evaluations are necessary for the complete decomposi-

tion of �f . The decomposition is achieved by recursive application of the �nite di¤erence operator

10
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Figure 4: Complete decomposition of �f = f+ � f� for the Ishigami test function. The FCSI�s
of all orders, �11, �

1
2; �

1
3,�

2
1;2,�

2
1;3; �

2
2;3;�

3
1;2;3 are displayed. One notes that only a weak interaction

e¤ect between x1 and x3 is registered.

[eq. (2); see also Borgonovo (2010).] The FCSI�s of all orders (�11, �
1
2; �

1
3,�

2
1;2,�

2
1;3; �

2
2;3;�

3
1;2;3) are

plotted in Figure 4.

From Figure 4, one notes that the sum of the sensitivity measures equals the �nite change:

�11 + �
1
2 + �

1
3 + �

2
1;2 + �

2
1;3 + �+ �

3
1;2;3 = 2:2698 = �f , as per eq. (8). Figure 4 also shows that the

only interaction is the one between x1 and x3, in agreement with the Ishigami function structure.

The total order FCSI�s of the parameters can then be found as sum of the lower order FCSI�s,

by a direct application of the de�nition [eq. (9)]:

�T1 = �
1
1 + �

2
1;2 + �

2
1;3 + �

3
1;2;3 = 0:1763

�T2 = �
1
2 + �

2
1;2 + �

2
2;3 + �

3
1;2;3 = 0:8312

�T3 = �
1
3 + �

2
1;3 + �

2
2;3 + �

3
1;2;3 = 1:3639

However, by Proposition 2, the �Ti �s can be estimated directly by 3 OAT sensitivities. One needs

to utilize x1 as the reference point and to re-evaluate the Ishigami function in the direction x1 !
x0. The three new model output values, which we denote by f(x�i ;x

1
(�i)) are: f(x

�
i ;x

1
(�i)) =

[7:9756; 7:3207; 6:7880]: The di¤erences f(x1(�i)) � f(x
0
i ;x

1
(�i)) (i = 1; 2; 3) then equal the reverse

�rst order FCSI�s,
 �
� 1i , i.e., the opposite of �

T
i by eq. (14) (see also Proposition 2, Section 2). One

obtains:

�T = [0:1763; 0:8312; 1:3639]

11



The �rst order, interaction and total order FCSI�s are displayed in Figure 5.

1 2 3
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Total Effect

Figure 5: �1i (left), �
I
i (middle), �

T
i (right) for the 3 factors of the Ishigami model. One notes

that individual contributions are predominant, with a weak presence of interactions. All sensitivity
measures are positive.

By the settings of Section 3, one gathers the following insights from Figure 5.

Model structure. The only interaction is the one between x1 and x3. Individual actions prevail

for factors x1 and x3. These results are in agreement with past studies on the Ishigami function.

Direction of change. All individual and interaction sensitivity measures are positive. This

means that when jumping from x0 to x1, all factors have a positive impact on the model output.

Interactions reinforce individual e¤ects.

Factor relevance. From Figure 5, one observes that x3 is the most relevant factor followed by

x2 and x1.

In the next section, we discuss a test case in which model behavior is dominated by interactions.

4.2 Sobol�g functions

Sobol�g functions have been utilized as a test case in several important works related to functional

ANOVA: we recall Sobol� (1993), Sobol� (2001), Sobol� (2003), Sobol� et al (2007). A Sobol� g

function is represented by the following expression

g =
kY
i=1

j4xi � 2j+ ai
1 + ai

(20)

12



where a is a vector of parameters. In our test case, we utilize the same vector a as in Sobol�

et al (2007): a =
h
0 1 4:5 9 99 99 99 99

i
: We let x0 = [�1;�1;�1;�1;�1;�1;�1;�1] and x1 =

[1; 1; 1; 1; 1; 1; 1; 1]. Since g 2 C(Rk), eq. (1) applies.
To compute the total order FCSI�s, one needs to perform the following steps. The �rst is to

evaluate g(x1). In our case, one obtains g(x1) = 4:0584. Then, by starting at x1 and shifting one

parameter at a time from x1i to x
0
i , one computes the di¤erences g(x

1)� g(x0i ;x1(�i)). By eq. (14)
(see Proposition 2), the �Ti �s are then obtained by reversing the signs of these di¤erences. One

obtains

�T = [�8:12;�5:41;�2:50;�1:48;�0:16;�0:16;�0:16;�0:16] (21)

A second series of OAT factor variations provides �1i , and, by di¤erence, �
I
i . By starting at x

0, one

evaluates g(x0) = 73:10: Shifting one-parameter at a time from x0i to x
1
i , with the others at x

0, one

obtains the �rst order FCSI�s

�1 = [�48:73;�41:76;�27:85;�19:50;�2:78;�2:78;�2:78;�2:78] (22)

By computing the di¤erences �Ti � �1i , one derives the interaction FCSI�s:

�I = [40:61; 36:36; 25:35; 18:02; 2:62; 2:62; 2:62; 2:62] (23)

Figure 6 allows a visual comparison of �1i ; �
I
i and �

T
i .
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Figure 6: �Ti (negative dark, �rst in each triplet), �
I
i (positive light, second in each triplet) and

�1i (negative light, third of each triplet) for the 8 factors. One notes that interactions act in the
opposite direction in respect of the individual factor impacts.

Let us then interpret the results in Figure 6 in view of the settings of Section 3.

Model structure. The results in Figure 6 show that interactions play an important role in the

13



model response, as the magnitude of the interaction FCSI�s is comparable to the magnitude of the

�rst order indices.

Direction of change. Figure 6 shows that the shift from x0 to x1 of each factor has a negative

impact on the model output (the �1i are all negative). Interaction e¤ects [�
I
i ], instead, are positive,

thus contrasting the individual parameter actions. The total order FCSI�s [�T ], are negative, but

their magnitude is lower than the corresponding �rst order FCSI�s. Thus, interactions smoothen

the impact of the individual factor changes.

Factor relevance. By utilizing the absolute values of the sensitivity indices, one notes that

x5; x6; x7 and x8 have a low relevance on the model output. On the other hand, x1 is the most

relevant factor, followed by x2, x3 and x4. These results hold both when �rst order and total order

FCSI�s are considered [Figure 6].

In the next Section, we apply the method to a PSA model. We note that the class of PSA

models for coherent systems satisfy the monotonicity assumptions stated above.

5 An Application: the Advanced Test Reactor Large Loss of Coolant Accident
Sequence

In this section, we apply the method to a PSA case study. We make reference to the large LOCA

sequence of the ATR reactor PSA model utilized in Borgonovo et al (2003).

The sequence contains one initiating event, 44 basic events, 239 minimal cut sets (MCS) and

31 parameters. The list of factors is reported in Table 2. The numerical values are the same as in

Table 1 of Borgonovo et al (2003).

The dependence of the CDF on basic event probabilities is multilinear, i.e., of the form [Bor-

gonovo and Apostolakis (2001), Borgonovo et al (2003)]:

CDF = fLLOCA � (
nMCSX
i=1

nBEiY
u=1

psu) (24)

where fLLOCA is the initiating event frequency, nMCS = 239 is the number of minimal cut sets,

nBEi is the number of basic events in minimal cut set i, and psu is the conditional probability of

the uth basic event in the ith MCS. The 44 basic event probabilities are given in column 3 of Table

2.

At the parameter level, some of the failure probabilities are expressed through an exponential

model

psk(T ) = 1� e��skT (25)

The relationship between the CDF and the factors becomes non-linear

CDF = fLLOCA � [
nMCSX
i=1

nBEiY
k=1

psk(�)] (26)

as some of the psk(�) are of the exponential form of eq. (25). Since the same � is shared across

14



Table 2: Basic events (�rst column), meaning (second column), values of the Probabilities (third
column) and corresponding parameters for the ATR large LOCA sequence, as per Table 1 in
Borgonovo et al (2003).

Nr. Event Probability Parameter
1 Operator failure to isolate after excavation error 8:00 � 10�2 x1
2 Firewater injection system (FWIS) disabled by excavation error 1:25 � 10�4 x2
3 Insu¢ cient �ow through bottom head injection 1:50 � 10�6 x3
4 Lower FIS manual valve GT-T-84 failure to restore after TM 2:70 � 10�5 x4
5 No �ow from �rewater injection system 3:48 � 10�5 x5
6 Failure to actuate valve lcv-7b 5:00 � 10�4 x6
7 Failure to actuate valve lcv-7a 5:00 � 10�4 x6
8 Lower FWIS injection valve LCV-7B spuriously closes 3:00 � 10�4 x7= �v= 3 � 10�6
9 Valve LCV-7B ICC fails to operate 1:00 � 10�3 x8
10 Lower FIS injection valve LCV-7B fails to open 7:00 � 10�4 x9
11 Common cause failure of valve paths to open 7:00 � 10�5 x10
12 Common cause loss of both FIS paths due to AOVs failure 4:30 � 10�5 x11
13 Lower FIS injection valve LCV-7A fails to open 7:00 � 10�4 x9
14 Valve LCV-7A ICC fails to operate 1:00 � 10�3 x8= �v= 3 � 10�6
15 Lower FWIS injection valve LCV-7A spuriously closes 3:00 � 10�4 x7
16 Deepwell pump 1 heating and ventilation fails 1:40 � 10�2 x12
17 Deepwell pump 1 is in TM (plant-speci�c) 1:94 � 10�2 x13
18 Deepwell pump 1 fails to start 3:00 � 10�3 x14
19 Deepwell pump 1 fails to run 2:99 � 10�3 x15= �p= 3 � 10�5
20 Deepwell Pump 1 instrumentation and control (ICC) fails 1:00 � 10�3 x16
21 Deepwell Pump #1 Breaker Spuriously Opens 3:00 � 10�5 x17= �b= 3 � 10�7
22 Level control faults 8:38 � 10�5 x19
23 Power failure at 4160 vac commercial bus �d� 5:60 � 10�4 x20
24 Deepwell pump 3 is in TM (plant-speci�c) 7:05 � 10�3 x18
25 Deepwell pump 3 fails to start 3:00 � 10�3 x14
26 Deepwell pump 3 fails to run 2:99 � 10�3 x15= �p= 3 � 10�5
27 Deepwell Pump 3 instrumentation and control (ICC) fails 1:00 � 10�3 x16
28 Deepwell Pump #3 Breaker Spuriously Opens 3:00 � 10�5 x17= �b= 3 � 10�7
29 Deepwell pump 3 heating and ventilation fails 1:40 � 10�2 x12
30 Deepwell pump 4 TM (plant-speci�c) 2:62 � 10�2 x21
31 Deepwell pump 4 fails to start 3:00 � 10�3 x14
32 Deepwell pump 4 fails to run 2:99 � 10�3 x15=�p= 3 � 10�5
33 Deepwell Pump 4 instrumentation and control (ICC) fails 1:00 � 10�3 x16
34 Deepwell pump #4 breaker spuriously opens 3:00 � 10�5 x17=�b= 3 � 10�7
35 Heating and ventilation fails for pump 4 1:40 � 10�2 x12
36 Power failure at 4160 V atr bus 670-e-1 1:08 � 10�3 x22
37 Common cause loss of scram system 1:50 � 10�5 x23
38 Common cause failure of low outlet pressure sensor trains (C) 7:20 � 10�6 x24
39 Common cause failures of low outlet pressure 2:3 logics 3:00 � 10�5 x25
40 Failure of rod clutch coil controllers (rcccs) 2:60 � 10�6 x26
41 2/3 Sensor trains fail to signal lop sublogic u 4:77 � 10�7 x27
42 Failure to insert at least three safety rods in 6:50 � 10�7 x28
43 Common cause failure of RCCCs to release 5:00 � 10�4 x29
44 Failure of su¢ cient rcccs to release 5:00 � 10�4 x30

LL0CA Initiating event frequency 4:56 � 10�6(1=y) �loca
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some of the basic event probabilities, the CDF is a function of 31 distinct parameters, the 31st

being the initiating event frequency (see also Borgonovo et al (2003)).

The models in eqs. (24) and (26) are non-additive. In particular, at the basic event level the

CDF [eq. (24)] has the same functional form as the multilinear model in eq. (11) of Saltelli et al

(2009). At the parameter level, linearity is lost and the model becomes non-linear and non-additive.

We now perform the SA of the model by utilizing the method of Section 2 both when the CDF is

expressed as a function of the basic events [eq. (24)] and of the parameters [eq. (26)].

We select the 5th and 95th percentiles of the basic events and parameters distributions as

points x0 and x1, respectively. As in Borgonovo et al (2003), the distributions are lognormal,

with an error factor of 10. The corresponding CDF values are CDF (x0) = 7:9580 � 10�8 and
CDF (x1) = 1:9994 � 10�12. By applying the results of Section 2, one estimates �1i ; �Ii and �Ti with
92 model runs at the basic event level and 64 model runs at the parameter level2.

Table 3 displays the results at the basic event level.

Let us discuss the results of Table 3 with the help of the settings of Section 3.

Model structure. Table 3 shows that �Ti ' �Ii >> �1i for all factors. This result reveals that

interactions prevail over individual actions in determining the model response.

Direction of change. All �rst order FCSI�s are positive. This means that each shift in basic

event probability from the 5th to the 95th percentile increases the CDF . This result follows from

the coherent structure of the system. The presence of a negative sign in �rst order FCSI�s would,

in fact, reveal the presence of some non-coherent feature of the system (see Lu and Jiang (2007)).

As far as interactions are concerned, the positive sign means that interactions reinforce individual

actions.

Factor relevance. The most relevant factor is the initiating event frequency (factor nr 45), which

is ranked �rst by
���1i ��, ���Ii �� and ���Ti �� (Table 3): Among the 44 remaining basic events, results are

as follows. If one utilizes as sensitivity measure
���1i ��, basic event 22 (�Level control faults�) ranks

second, followed by basic event 11 (�Common cause failure of valve paths LCV-7A and LCV-7B

to open�) and basic event 12 (�Common cause loss of both FIS paths due to failure of AOVs�).

We recall that ranking basic events with
���1i �� is equivalent to considering individual actions only.

However, the model structure insights suggest that interactions play a primary role in the model

response. If one includes interactions in the analysis, and ranks the factors according to
���Ti ��, one

obtains the following results. Basic event 22 ranks 9th, while basic events 11 and 12 rank 12th and

17th, respectively. The most important basic event becomes nr 30 (�Deepwell pump 4 is in TM�),

followed by basic event 29 (�Deepwell pump 3 heating and ventilation fails�) and basic event 17

(�Deepwell pump 1 is in TM�).

In order to further analyze the ranking agreement with inclusion and exclusion of interactions,

we make use of the Savage Score correlation coe¢ cients (SSCC) (Iman and Conover (1987)). Let

us denote by ��1i ;�Ti , ��1i ;�Ii and ��Ii ;�Ti the SSCC�s between the ranking obtained with �
1 and �T ,

2These �gures ought to be contrasted to the total number of interactions, namely 245 +2 and 231 +2 at the basic
event and parameter levels, respectively.
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Table 3: Sensitrivity measures and ranking for the 45 basic events. One notes that interactions
prevail over individual impacts.

Basic Event �1 �I �T Rank �1 Rank �I Rank �T

BE1 2.36E-13 2.36E-09 2.36E-09 15 18 18
BE2 2.36E-13 2.36E-09 2.36E-09 15 18 18
BE3 9.44E-13 9.34E-11 9.44E-11 10 37 37
BE4 1.70E-11 1.68E-09 1.70E-09 7 23 23
BE5 2.19E-11 2.17E-09 2.19E-09 5 20 20
BE6 2.95E-14 2.95E-10 2.95E-10 24 33 33
BE7 2.95E-14 2.95E-10 2.95E-10 24 33 33
BE8 1.77E-14 1.77E-10 1.77E-10 28 35 35
BE9 5.89E-14 5.89E-10 5.89E-10 18 28 28
BE10 4.13E-14 4.13E-10 4.13E-10 22 31 31
BE11 4.40E-11 4.35E-09 4.40E-09 3 12 12
BE12 2.70E-11 2.67E-09 2.70E-09 4 17 17
BE13 4.13E-14 4.13E-10 4.13E-10 22 31 31
BE14 5.89E-14 5.89E-10 5.89E-10 18 28 28
BE15 1.77E-14 1.77E-10 1.77E-10 28 35 35
BE16 1.70E-14 1.70E-08 1.70E-08 30 5 5
BE17 2.34E-14 2.34E-08 2.34E-08 27 4 4
BE18 3.62E-15 3.62E-09 3.62E-09 36 13 13
BE19 3.61E-15 3.61E-09 3.61E-09 37 14 14
BE20 1.21E-15 1.21E-09 1.21E-09 39 25 25
BE21 3.36E-17 3.36E-11 3.36E-11 43 40 40
BE22 5.26E-11 5.21E-09 5.26E-09 2 9 9
BE23 6.39E-13 6.39E-09 6.39E-09 11 8 8
BE24 1.22E-14 1.22E-08 1.22E-08 33 7 7
BE25 5.21E-15 5.21E-09 5.21E-09 34 10 10
BE26 5.20E-15 5.20E-09 5.20E-09 35 11 11
BE27 1.73E-15 1.73E-09 1.73E-09 38 22 22
BE28 4.87E-17 4.87E-11 4.87E-11 42 38 38
BE29 2.45E-14 2.45E-08 2.45E-08 26 3 3
BE30 3.72E-13 2.99E-08 2.99E-08 13 2 2
BE31 4.26E-14 3.43E-09 3.43E-09 20 15 15
BE32 4.26E-14 3.42E-09 3.42E-09 21 16 16
BE33 1.42E-14 1.14E-09 1.14E-09 32 26 26
BE34 4.24E-16 3.19E-11 3.19E-11 40 41 41
BE35 2.00E-13 1.61E-08 1.61E-08 17 6 6
BE36 1.53E-14 1.23E-09 1.23E-09 31 24 24
BE37 9.42E-12 9.33E-10 9.42E-10 8 27 27
BE38 4.52E-12 4.48E-10 4.52E-10 9 30 30
BE39 1.88E-11 1.87E-09 1.88E-09 6 21 21
BE40 6.25E-17 6.25E-13 6.25E-13 41 43 43
BE41 3.00E-13 2.97E-11 3.00E-11 14 42 42
BE42 4.08E-13 4.04E-11 4.08E-11 12 39 39
BE43 3.13E-17 3.13E-13 3.13E-13 44 44 44
BE44 3.13E-17 3.13E-13 3.13E-13 44 44 44
fLL0CA 1.98E-10 7.86E-08 7.88E-08 1 1 117



Table 4: Savage score correlation coe¢ cients on the ranking of basic events obtained with inclusion
and exclusion of interactions.

��;� �1 �I �T

�1 1 �0:03 �0:03
�I �0:03 1 1

�T �0:03 1 1

�1 and �I , and �I and �T , respectively. Table 4 displays the results.

Table 4 reveals a low agreement between the ranking of basic events obtained with �rst order

and total order indices (��1i ;�Ti = �0:03; ��1i ;�Ii = �0:03). Conversely, the value ��Ii ;�Ti = 1 shows
perfect agreement between the ranking induced by �Ii and �

T
i . This result indicates that the

ranking of the basic events obtained when including interactions in the sensitivity measures di¤ers

substantially from the ranking obtained when interactions are excluded. This is a consequence of

the non-additivity of the model [eq. (24)].

We now report the results at the parameter level. The input-output dependence is represented

by eq. (26). Table 5 displays the numerical results.

Let us discuss the results in Table 5 with the aid of the settings (Section 3).

Model structure. Table 5 shows that interactions prevail over individual e¤ects also at the

parameter level.

Direction of change. Table 5 shows that all individual, interaction and total sensitivity measures

are positive. Similarly to the �nding at the basic event level, this is a re�ection of the coherent

structure of the system.

Factor relevance. When individual e¤ects are considered, the most relevant parameter is

fLLOCA, followed by parameters x19, �Level control faults�, x10, �Common cause failure of valve

paths LCV-7A and LCV-7B to open�and x11, �Common cause loss of both FIS paths due to failure

of AOVs.�However, when interaction e¤ects are included in the analysis, x19 ranks 9th, x10 and x11
rank 10th and 12th, respectively. The second most important parameter becomes x12 (�Deepwell

pump 1 heating and ventilation fails�), ranked 5th by individual e¤ects, followed by x21 (�Deepwell

pump 4 in TM�), ranked 19th by individual e¤ects, and x13 (�Deepwell pump 1 is in TM�), ranked

13 by individual e¤ects.

We then analyze the ranking agreement by computing ��1i ;�Ti , ��1i ;�Ii and ��Ii ;�Ti on the parame-

ters, with exclusion of fLLOCA. Table 6 shows the results.

Table 6 shows a very low value of the correlation coe¢ cient between
���1i �� and ���Ii �� and between���1i �� and ���Ti ��. Conversely, the ranking agreement between ���Ii �� and ���Ti �� is complete. This signals

that interactions, if included in the analysis, change the results obtained by individual sensitivity

measures, in agreement with the result obtained at the basic event level.
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Table 5: Sensitrivity measures and raking for the 31 parameters. Also at the parameter level
interaction e¤ects prevail over the individual actions

Parameter �1i �Ii �Ti Rank �1i Rank �Ii Rank �Ti
x1 2.36E-13 2.36E-09 2.36E-09 22 13 13
x2 2.36E-13 2.36E-09 2.36E-09 22 13 13
x3 9.44E-13 9.34E-11 9.44E-11 13 26 26
x4 1.70E-11 1.68E-09 1.70E-09 8 17 17
x5 2.19E-11 2.17E-09 2.19E-09 6 15 15
x6 6.42E-13 5.30E-10 5.31E-10 14 22 22
x7 2.45E-13 3.32E-10 3.32E-10 21 24 24
x8 2.45E-12 9.43E-10 9.45E-10 11 19 19
x9 1.23E-12 7.10E-10 7.11E-10 12 21 21
x10 4.40E-11 4.35E-09 4.40E-09 3 10 10
x11 2.70E-11 2.67E-09 2.70E-09 4 12 12
x12 2.65E-11 3.95E-08 3.96E-08 5 2 2
x13 2.34E-14 2.34E-08 2.34E-08 25 4 4
x14 3.78E-13 1.13E-08 1.13E-08 17 6 6
x15 3.73E-13 1.13E-08 1.13E-08 18 7 7
x16 3.61E-14 3.98E-09 3.98E-09 24 11 11
x17 5.16E-16 1.14E-10 1.14E-10 28 25 25
x18 1.22E-14 1.22E-08 1.22E-08 27 5 5
x19 5.26E-11 5.21E-09 5.26E-09 2 9 9
x20 6.39E-13 6.39E-09 6.39E-09 15 8 8
x21 3.72E-13 2.99E-08 2.99E-08 19 3 3
x22 1.53E-14 1.23E-09 1.23E-09 26 18 18
x23 9.42E-12 9.33E-10 9.42E-10 9 20 20
x24 4.52E-12 4.48E-10 4.52E-10 10 23 23
x25 1.88E-11 1.87E-09 1.88E-09 7 16 16
x26 6.25E-17 6.25E-13 6.25E-13 29 29 29
x27 3.00E-13 2.97E-11 3.00E-11 20 28 28
x28 4.08E-13 4.04E-11 4.08E-11 16 27 27
x29 3.13E-17 3.13E-13 3.13E-13 30 30 30
x30 3.13E-17 3.13E-13 3.13E-13 30 30 30
x31 1.98E-10 7.85E-08 7.87E-08 1 1 1

Table 6: Savage score correlation coe¢ cients on the ranking of parameters obtained with inclusion
and exclusion of interactions.

��;� �1 �I �T

�1 1 0:06 0:06

�I 0:06 1 1

�T 0:06 1 1
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6 Conclusions

In the analysis of complex systems, decision-makers bene�t from the utilization of quantitative mod-

els. Knowledge of the relevance of interactions is essential in correctly interpreting and explaining

model results. However, the computational complexity of the problems often leads decision-makers

to rely on OAT techniques. In this work, we have shown a method to determine the relevance of

interactions in complex PSA models at the same computational cost of OAT sensitivity methods.

The method rests on the functional ANOVA decomposition of a �nite change discussed in previ-

ous literature [Rabitz and Alis (1999), Sobol�(2003), Borgonovo (2010)]. From this decomposition,

one can then de�ne sensitivity measures (the �nite change sensitivity indices (�1,�I and �T )) that

identify the portion of the �nite change in model output caused by interactions. Furthermore, a

symmetry property entailed in the decomposition allows one to estimate the sensitivity measures

at the same cost as OAT methods.

We have cast the interpretation of the results in the context of the factor �xing setting showing

that knowledge of �1,�I and �T allows analysts to infer insights on model structure, direction of

change and factor relevance.

A �rst series of numerical experiments has been performed by means of two widely utilized SA

case studies, the Ishigami and Sobol�g functions.

We have then applied the method to the PSA model of the ATR large LOCA sequence. We have

carried out the analysis at two levels, the basic event and parameter levels. The model contains

45 basic events and 31 parameters. The CDF is multilinear and non-additive as a function of the

basic events, non-linear and non-additive as a function of the parameters. We have chosen the 5th

and 95th percentiles of the factors distributions as sample points. Numerical �ndings show that:

1) interactions prevail over individual e¤ects; 2) all sensitivity measures are positive, revealing the

coherent structure of the system; 3) the initiating event frequency is the most relevant factor both

at the parameter and basic event levels, and both when individual and total e¤ects are considered;

however, notable discrepancies arise in the basic events and parameter ranking when interactions

are quanti�ed in the sensitivity measures.
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