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Abstract

This work introduces a new analytical approach to the formulation of optimization

problems with piecewise-de�ned (PD) objective functions. First, we introduce a new

de�nition of multivariate PD functions and derive formal results for their continuity and

di¤erentiability. Then, we obtain closed-form expressions for the calculation of their

moments. We apply these �ndings to three classes of optimization problems involving

coherent risk measures. The method enables one to obtain insights on problem struc-

ture and on sensitivity to imprecision at the problem formulation stage, eliminating

reliance on ad-hoc post-optimality numerical calculations.
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1 Introduction

In this work, we present a new methodology for supporting the formulation of stochastic

programming problems involving piecewise-de�ned (PD) functions.

Referring to the solution of managerial problems in the presence of uncertainty, Dantzig

(1999) (p:1) states: �By "solve", I mean in the practical sense of determining strategic

decisions that are demonstrably superior to those obtained by ways that avoid having to

properly take uncertainty fully into account.�After the seminal works of Dantzig (1955) and

Beale (1955), stochastic programming (SP) has been broadly applied to support managerial

�emanuele.borgonovo@unibocconi.it; lorenzo.peccati@unibocconi.it
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decisions in several sectors. Quoting directly from Dupaµcova (2002), p. 288: �There are

many excellent recent papers on successful real-life applications of stochastic programming;

it is impossible to list them all...�. SP applications range from project management1, to

revenue management2, to the chemical3 and energy sectors4 (for a recent review, see also

Antunes and Dias (2007)).

SP with coherent risk measures is nowadays pervasive in Finance [Artzner et al (1999),

Rockafellar and Uryasev (2002), Benati (2004), Siegmann and Lucas (2005)] and has gained

recent interest in Inventory Management [Gotoh and Takano (2007); Ahmed et al (2007);

Borgonovo and Peccati (2008)]. Convexity properties, duality aspects and risk-coherence

of the optimization problems have been thoroughly discussed in the literature. Ruszczynski

and Shapiro (2005) o¤er a comprehensive theoretical approach to optimization with coherent

risk measures.

In this work, we focus on problem formulation. The presence of a PD objective func-

tion can limit the analytical treatment of SP problems, leaving the derivation of important

decision-making insights to post-optimality analysis. Additional sensitivity tests (for exam-

ple on the selection of di¤erent distributions) often rely on ad-hoc numerical experiments and

provide only case-by-case answers. We develop a method to exploit the problem formulation

stage for the derivation of additional decision-making insights, thus eliminating reliance on

numerical tests. The knowledge of the stochastic properties that a¤ect the managerial choice

plays a crucial role towards this goal.

Our �rst step is the setup of the required theoretical framework. Properties as continuity

and di¤erentiability naturally emerge in O.R. applications. Nonetheless, for PD functions

they have not been discussed comprehensively. The �rst work that formalizes the notion of

a multivariate PD function is Herrera (2007). In Herrera (2007) integrability is of interest

and the de�nition is formulated �:a:e:. As a consequence, continuity and di¤erentiability

cannot be addressed. We extend Herrera�s de�nition and derive results concerning continuity

and di¤erentiability of PD functions. We introduce the notion of distinct constituents, to

reinforce their piecewise character. For operational reasons, we distinguish two types of PD

1Nozick et al (2004) present a model to support decision making in the �allocation and management of
scarce resources across many projects�while facing �uncertainty in the duration and outcomes of speci�c
tasks�.

2We refer to Bertsimas and Shioda (2003) and Cooper and Gupta (2006) for the use of stochastic opti-
mization to support decision-making in revenue management.

3Tomazi (2004), Shah and Madhavan (2004) apply SP in the optimization of batch reactions to address
the presence of uncertainty.

4Chaton and Doucet (2003) utilize an SP model to support decision making in �new investments in
generation and transmission capacity�; Schaefer and Schaefer (2004) present a model to minimize the costs
of distributed hybrid generation while incorportating �uncertainty in customer demand, weather, and fuel
costs� in the analysis.

2



functions, in accordance with their assignment type. This investigation provides us with

all the tools necessary to the calculation of PD function moments. We derive closed form

expressions for the decomposition of PD function central and non-central moments in terms

of the moments of their constituents. The analysis reveals that extended constituents play

a central role. In particular, any moment of a PD function is the sum of the moments of its

extended constituents; and any central moment (of order p) is the linear combination of all

the moments up to p of the extended constituents. We apply the �ndings to PD functions

generated by the max(�) and j � j operations, as their appear frequently in O.R. problems.
The above �ndings allow to unveil the stochastic properties involved in SP problems

whose objective functions are PD. We study mean-deviation, mean-upper-semideviation and

Conditional Value at Risk (CVAR) SP problems. As far as stochastic properties are con-

cerned, the decomposition of the objective functions shows that mean-deviation and mean-

upper-semideviation problems are closely related. The stochastic properties involved in

CVAR decisions, instead, di¤er substantially. As far as the invariance of optimal policies

is concerned, the analysis reveals that the set of distributions over which the solution of

a mean-deviation problem is insensitive to imprecision is included in the set of distribu-

tions that do not alter the solution of mean-upper-semideviation problem of the same order.

Furthermore, sensitivity to imprecision increases with the order of the deviation measures.

The remainder of the paper is organized as follows. Section 2 presents a concise literature

review, highlighting the role of PD functions in O.R.. Section 3 o¤ers a revised de�nition

of PD functions and deals with their analytic properties. Section 4 presents results for the

calculation of the moments of PD functions. Section 5 specializes the results for the cases

of two widely applied PD functions: the max(�) and j � j PD functions. Section 6 derives

results for SP problems with mean-deviation, mean-upper-semideviation and CVAR. Section

7 o¤ers conclusions.

2 Literature Review and problem Statement

Optimization with coherent risk measures has found widespread use in Finance and recent

interest in Inventory Management. As Ruszczynski and Shapiro (2005) point out, in spite

of the application area, a risk-neutral problem is formulated as:

min
x2S

E[Z(x; !)] (1)

where Z(x; !) is the loss function of the system at hand, x is the vector of choice variables,

S the feasible set, ! 2 
 � Rn the stochastic variable(s) (see Table 1 for notation). As
in Ruszczynski and Shapiro (2005), we assume that Z is an element of the linear space of
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functions Z := Lp(
)5 for each x 2 S.

[Insert Table 1 about here]

Ruszczynski and Shapiro (2005) [p.2] underline that the solution of problem 1 represents

�an optimal decision on average� and... �for these reasons, quantitative models of risk and

risk aversion are needed.�One then solves the problem:

min
x2S
[� fZ(x; !)g] (2)

where � : Z ! R. Ruszczynski and Shapiro (2005) refer to �(�) as a risk-function. If �(�)
satis�es the axioms of Artzner et al (1999), then it is a coherent measure of risk [for a

description of the axioms, see Artzner et al (1999), Rockafellar and Uryasev (2002), Benati

(2004); for the relationship between risk functions and utility functions, see Section 4 in

Ruszczynski and Shapiro (2005)].

Three examples of risk functions follow. The CVAR coherent risk measure has been

introduced in Rockafellar and Uryasev (2002).

Example 1 Let � 2 (0; 1). CV AR� is de�ned as �the mean of the ��tail of the distribution
of Z (Rockafellar and Uryasev (2002); p. 1448)�. In optimization with CV AR�, one solves

the problem:

min
x;�2S�R

H�(x; �) (3)

with

H�(x; �) = � +
1

1� �E
�
[Z(x; !)� �]+

	
(4)

and

CV AR� = H�(x
�; ��(x

�)) (5)

V AR�(x) = argmin
�
H�(x; �) is the Value at Risk (V AR) of the loss function.

The presence of the max(�) operation6 in eq. (4) makes the objective function of CV AR
optimization PD.

Besides the CVAR risk-measure, mean-deviation and semi-deviation measures have been

utilized in the literature. We report here the analytical expressions following the notation of

Ruszczynski and Shapiro (2005), p. 10.

5Given the probability space (
;B(
); �), we denote by Lp(
) the set of all � � p�measurable func-
tions [Ruszczynski and Shapiro (2005)], i.e., the set of all functions  : 
! Rn such that

Z



k (!)kp d�(!) <
1.

6 [Z(x; !)� �]+ = max(0; Z(x; !)� �)
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Example 2 Mean-deviation of order p:

�(Z) := E[Z] + c(E[jZ � E[Z]jp])1=p (6)

Example 3 Mean-upper-semideviation of order p:

�(Z) := E[Z] + c(E[[Z � E[Z]]p+])1=p (7)

In eqs. (6) and (7), c is an arbitrary and strictly positive real number. Ruszczynski

and Shapiro (2005) provide a rigorous formalization of stochastic optimization with risk-

functions and derive the conditions under which they become coherent measures of risk in

the sense of Artzner et al (1999). Siegmann and Lucas (2005) discuss portfolio optimization

with shortfall measures [eq. (7) with p = 1] and quadratic shortfall [eq. (7) with p = 2].

These works are generalized by Rockafellar et al (2006) � see also Rockafellar et al (2003),

� where a complete theoretical treatment of deviation measures and of their application to

portfolio optimization is o¤ered.

The optimization problems connected to Examples 2 and 3 are characterized by PD

objective functions. In fact, jZ � E[Z]j makes the mean-deviation objective function PD
[eq. (6)]. Similarly, [eq. (7)], [Z � E[Z]]+ makes the objective function of a mean-upper-
semideviation problem PD. Not only, but in supply chain management, the objective function

of Arcelus et al (2006) [eq. (3) p. 51] entails the presence of the max(�) operation and is,
therefore, PD. In revenue management, the objective function of Cooper and Gupta (2006)

[eq. (1), p. 222] is PD. In inventory management, the recent works of Ahmed et al (2007),

Gotoh and Takano (2007), and Borgonovo and Peccati (2008) formulate the decision-making

question as a risk coherent problem. All the objective functions of these works are PD. In

Ahmed et al (2007), the loss function is an extension of the newsvendor model. Ahmed et

al (2007) derive the convexity properties of the SP problem for mean pth semi-deviation and

CVAR coherent risk measures. Sensitivity and monotonicity properties for increasing risk

aversion are also obtained. Gotoh and Takano (2007) propose a multi-item version of the

inventory system and study its solution when the coherent risk measure is CVAR. Borgonovo

and Peccati (2008) study the risk coherent choice problems with alternative risk measures

for a multi-item inventory system characterized by a the loss function

Z(x; !) =
NX
i=1

�
�pixi + ai +

hix
2
i

2!i

�
(8)
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where N is the total number of items in the inventory system, xi is the order quantity of

item i, hi is the holding cost per unit item and unit period, ! = fdi, i = 1; 2; :::; Ng is item
i demand [we refer to Borgonovo and Peccati (2008) for the complete derivation of eq. (8)].

Then the SP problems in Examples 1, 2 and 3 become:

min
x;�2S�R

� +
1

1� �E

24 [ NX
i=1

�pixi + ai +
hix

2
i

2!i
]� �

!+35 (9)

min
x2S

NX
i=1

�pixi + ai + E[
hix

2
i

2!i
] + c(E[j

NX
i=1

hix
2
i

2!i
�

NX
i=1

E[
hix

2
i

2!i
]jp])1=p (10)

and

min
x2S

NX
i=1

�pixi + ai + E[
hix

2
i

2!i
] + c(E[(

NX
i=1

hix
2
i

2!i
�

NX
i=1

E[
hix

2
i

2!i
])p+])

1=p (11)

Note that the objective functions in eqs. (9), (10) and (11) are PD. The convexity of

the corresponding SP problems is studied in Borgonovo and Peccati (2008). Through eqs.

(9), (10) and (11) are PD the decision-makers determine the optimal policy re�ecting their

(di¤erent) risk attitudes. Borgonovo and Peccati (2008) compare the policies via numerical

experiments and test their sensitivity to the choice of the demand distribution.

The above review shows that PD functions are widely present in O.R. applications, in

particular in all SP problems with coherent measures of risk. The review also shows that the

optimization problems have been thoroughly studied from the convexity and monotonicity

viewpoints. In particular, the works of Ruszczynski and Shapiro (2005) and Rockafellar et

al (2006) provide a comprehensive approach to their theory. We address a di¤erent aspect.

Investigation has not been carried out in the direction of uncovering what stochastic proper-

ties are of interest to decision-makers in the various SP problems. This knowledge is crucial

in understanding the di¤erence in the optimization problem results, as well as in providing

decision-makers with insights on problem structure and on sensitivity to imprecision. It is

our purpose to introduce a method for the derivation of these indications at the problem

formulation stage, so as to avoid reliance on ad-hoc post-optimality numerical experiments.

The development of the required theoretical framework is the �rst step in this direction.

3 Piecewise De�ned Functions: Analytical Properties

This Section introduces the theoretical background necessary to study optimization problems

characterized by PD objective functions.

Piecewise linear mappings are used in Withehead (1961). The concept of a piecewise
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smooth manifold is due to Hutchings et al (2002). Piecewise smooth curves are dealt with in

Ekholm et al (2002). Piecewise a¢ ne Lipschitz mappings are utilized in Muller and Sverak

(2003). However, PD functions have been mostly studied in one-dimension. Single-variable

PD function integration is discussed in Je¤rey et al (1997) and Je¤rey and Rich (1998).

A canonical form for one-dimensional PD functions on linearly ordered sets is provided for

in Carette (2007). Howell (2008) (see Ch. 28) formalizes the Laplace transform of one-

dimensional PD functions. Multivariate PD functions are formally introduced in Herrera

(2007), Section 9, to formulate a �systematic theory of �nite element methods�, as follows.

Let 
 � Rn, with 
 connected and open. Let @
 denote the frontier of 
. A �nite

partition of 
 (�
) is a collection of subsets of 
, �
 = f
1;
2; :::;
Ng, such that 
i � 
,

i \ 
j = ? (i 6= j, and i = 1; 2; :::; N) and 
 = [
i. The boundary and closure of 
i are
here denoted by @
i and 
i, respectively.

� = [(@
i \ @
j) (12)

denotes the internal boundary. We say that 
i and 
j are neighboring, if @
i \ @
j 6= ?.
Herrera (2007) formulates the de�nition of PD functions as the piecewise representation of

a function f which is �locally de�ned� on 
. In particular, a PD function is thought of

as the one-to-one correspondence between f and the sequence of functions fi : 
i ! R,
i = 1; 2; :::; N , each of which represents the restriction of f onto 
i. In the remainder, we

shall call fi a constituent of f . As stated in Herrera (2007), the de�nition is quite general and

any function can be PD, in accordance with this de�nition. However, it is a shared opinion

among several works [Howell (2008), Je¤rey et al (1997), Je¤rey and Rich (1998), Carette

(2007)] that the PD character is present when some distinction among the constituents is

there. In addition, Herrera (2007) states that �The de�nition of f on � is immaterial

because the Lebesgue measure of � is zero, so, f can be arbitrarily de�ned on � [Herrera

(2007); p.615].�However, while this is true for measurability, the assignment of f at ! 2 �
is necessary for continuity and di¤erentiability.

To address these two issues, we re�ne Herrera�s de�nition. To obtain a stronger char-

acterization of the piecewise nature, we propose the notion of distinct constituents. Given


i;
j 2 �
, consider two subsets 
i!j, 
j!i, such that 
i!j � 
j and 
j!i � 
i (
i!j,


j!i can possibly be null sets) and the sets Ei = 
i [ 
i!j and Ej = 
j [ 
j!i (Figure 1).

[Insert Figure 1 about here]
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De�nition 1 Two constituents fi : Ei ! R and fj : Ej ! R, fs are distinct:
a) when 
i!j = ? and 
j!i = ?, i.e., Ei = 
i and Ej = 
j
or

b) given 
i!j 6= ? or 
j!i 6= ?, if they satisfy the condition

fi(!) 6= fj(!) �:a:e: on 
i!j [ 
j!i (13)

Case a in De�nition 1 covers the situations in which the functional forms of fi and fj do

not allow to extend them outside 
i or 
j. The constituents are, then, "distinct" by default.

Conversely, in case b the functional forms of fi and fj allow them to exist also outside 
i
and 
j. The set 
i!j [
j!i = Ei\Ej is the subset of 
 on which fi and fj can, potentially,
be simultaneously de�ned. Eq. (13) in De�nition 1 states that they are distinct if they di¤er

on 
i!j [ 
j!i, with the exclusion of, at most, a set of null measure.
To insure the continuity and di¤erentiability of f , Herrera�s de�nition needs to be com-

plemented by the assignment of f on the internal boundary. In this respect, we denote the

value of f attained at any ! 2 � by f�(!). We then formulate the following de�nition of
PD functions, which is of interest in the remainder of this work.

De�nition 2 Given a connected open set, 
, and an associated �nite partition, �
, consider
a sequence of distinct constituents, fs, s = 1; 2; :::; N . Then, the function f : 
 � Rn ! R:

f =

8<: fs(!) ! 2 
s

f�(!) ! 2 �
(14)

is a PD function.

The following Example illustrates De�nition 2.

Example 4 Let 
1 = f! : !21 + !22 < 1g, � = f! : !21 + !22 = 1g and 
2 = f! : !21 + !22 > 1g.
The function f : R2 ! R

f =

8>><>>:
p
1� !21 � !22 !21 + !

2
2 < 1p

!21 + !
2
2 � 1 !21 + !

2
2 > 1

0 ! 2 �

(15)

is PD. In fact, the constituents are distinct by the �rst part of De�nition 1.
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2) Let � be the frontier of the unitary rectangle in R2. The function f : R2 ! R

f =

8>>><>>>:
sin(!1 + !2) ! 2 (0; 1)2

1 ! 2 �
(!1 + !2)

2 otherwise

(16)

is PD. In fact, the constituents are distinct by the second part of De�nition 1.

3) Let again � be the frontier of the unitary rectangle in R2. The function f : R2 ! R

f =

8<:sin(!1 + !2) ! 2 (0; 1)2 [ �

sin(!1 + !2) otherwise
(17)

is not PD in the sense of this work. In fact Ei\Ej = 
i�j [
j�i = R2, and the set of points
where f1 equals f2 is not a set of null measure.

De�nition 2 allows to formalize the continuity and di¤erentiability of PD functions. We

�rst recall the de�nition of contact between two functions.

De�nition 3 Two functions fi,fj 2 Cm(E) have a contact of order k (k = 0; 1; 2; :::;m) at

!0 2 E, if
@sfi(!0)

@xi1@xi2 :::@xis
=

@sfj(!0)

@xi1@xi2 :::@xis
for all s = 0; 1; 2; :::; k.

The following result holds.

Proposition 1 Let f 2 C l(
). Then, the constituents fi are at least C l(
i), for all i =
1; 2; :::; N . Conversely, let fi 2 Cki(
i). Then, f 2 Ckmin(
i) where kmin is the minimum
between ki and the order of the contacts between any fi and fj (i 6= j).

Proof. We prove the �rst assertion by contradiction. Consider any ! 2 
i, and allow

fi 2 Cki(!) with ki < l. This implies that fi =2 C l(
i). Now, fi =2 C l(
i) =) f =2
C l(
i) =) f =2 C l(
), which contradicts the hypothesis.
Second assertion. At any interior point ! 2 
i, f is as regular as the corresponding con-
stituent fi. Thus, on the whole 
, f is at most as regular as the least regular of the

constituents: f 2 Csi(!), with si = mini(ki). Consider now ! 2 �. Suppose that, at ! 2 �,

i and 
j (two sets for simplicity) are neighboring (@
i\@
j 6= ?) and f�(!) is such that fi
and fj have a contact of order l at !. If l > mini ki, then f 2 Czi(!), with zi = mini;j ki; kj.
If this happens for all ! 2 �, then f 2 Csi(!), still. Conversely, if l < mini ki at one point
! 2 �, then f =2 Csi(!), and belongs to f 2 C l(
).
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Proposition 1 has the following interpretation. Suppose f 2 C0(
). Then, all the

constituents are at least continuous. In addition, in order for f 2 C0(
) to hold, they must
have a contact of order at least 0 on the internal boundary. Conversely, it is not guaranteed

that f 2 C0(
i), even if each of the fi 2 C1(
i) 8i = 1; 2; :::; N . This happens if at just
one point of � one of the contacts between any two constituents is not of order 0. A �nal

observation. Consider 
 � Rn, bounded. Then, fi 2 Cr(
i) (r = 0 or more), guarantees

f 2 Z.
A PD function can be either directly assigned through eq. (14), or the result of operations

performed on other functions, as the next Examples show.

Example 5 Consider the function f : R2 ! R

f =

8>><>>:
1� !21 � !22 !21 + !

2
2 � 1

0 ! 2 �
!21 + !

2
2 � 1 !21 + !

2
2 > 1

(18)

where � = f! : !21 + !22 = 1g. In terms of De�nition 2, is PD as the second part of De�nition
1 is satis�ed.

Example 6 Consider now the function:

g = jhj (19)

where h(!) = 1� !21 � !22.
One has to study the sign of h, that leads to: h < 0, if !21 + !

2
2 > 1, h = 0, if !

2
1 + !

2
2 = 1,

and h > 0, if !21 + !
2
2 < 1.

Thus, using the symbols of De�nition (2), we have 
1 = f! : !21 + !22 < 1g, � = f! : !21 + !22 = 1g
and 
2 = f! : !21 + !22 > 1g.
The constituents of g on 
1 and 
2 are g1 = 1� !21 � !22 and g2 = !21 + !22 � 1. Thus, one
can write:

g =

8><>:
1� !21 � !22 ! 2 
1

0 ! 2 �
!21 + !

2
2 � 1 ! 2 
2

(20)

Note that the function in eq. (18) is equivalent to the function in eq. (20), thus g = f .

Examples 5 and 6 reveal two ways of assigning PD functions. A �rst way [Example 5, eq.

(18)] consists of the direct assignment of both 
i and fi. The subdomains 
i are assigned

independently of the constituents. In Example 6 [eq. (19)], the PD function is the result

10



of some operation performed on another function de�ned on 
. In this case, the functional

form of the constituents and the partition of 
 are linked. As we are going to see, from

an operational viewpoint, it is convenient to exhibit this di¤erence. We therefore group PD

functions into two types.

De�nition 4 Type I: a PD function is directly assigned as eq. (14).
Type II: A PD function is the result of operations performed on other functions which link

the partition of 
 to its assignment.

In the next Section, results for the moments of PD functions are presented.

4 Moment Calculations for Piecewise-De�ned Functions

This Section discusses the computation of the moments of PD functions.

Consider a decision-maker who is not certain about !, and let (
;B(
); �) denote the
corresponding subjective probability space. Given a partition �
 (de�ned in Section 3), we

require �(
i) > 0 8i, and �(
) =
PN

i=1 �(
i) = 1 for non-triviality.

Before coming to the calculations of the moments of a PD function, we state a preliminary

observation on the measurability of f and of its constituents.

Remark 1 Let the image of f be strictly included in R and 
 bounded. If f 2 Lp(
), then
fi 2 Lpi(
i), i = 1; 2; :::; N , where pi � p: Viceversa, if fi 2 Lpi(
i) then f 2 Lpmin(
),
where pmin = mini pi, i = 1; 2; :::; N .

As discussed in Section 3, Remark 1 holds and f 2 Lp(
) by assuming fi 2 Cr(
i), r = 0
or more.

Let f 2 Lp(
). We denote the pth moment of f by (see Table 1 for notation):

Ep[f ] =
Z



fpd� (21)

and the pth central moment of f by

Mp
f = E

p[(f � E[f ])] =
Z



(f � E[f ])pd�

The following result relates the moment of order p of a PD function to the integration of its

constituents.

Proposition 2 Let f 2 Lp(
) be a PD function. Then

Ep[f ] =
NX
i=1

Z

i

fpi d� (22)
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Proof. By Remark 1, if f 2 Lp(
) and then all fi 2 Lp(
i). The right hand side then
follows from the additivity property of integrals and from eq. (14).

Proposition 2 [see eq. (14)] states that the moment of order p of a PD function is the

sum of the integrals on 
i of the constituents fi elevated to the p. Observe that
R

i
fpi is not

the pth-moment of fi. Let us, however, extend the constituents to the whole 
, as follows.

De�nition 5 (Extended Constituent) Let 'i : 
! R with

'i(!) =

(
fi(!) ! 2 
i
0 otherwise

(23)

'i is called an extended constituent of f .

We then have the following result for the pth moment of f .

Lemma 1

Ep[f ] =
NX
i=1

Ep['i] (24)

Proof. Given De�nition 5 and Proposition 2, we have:

Ep[f ] =
Z



fpd� =
NX
i=1

Z

i

fpi d� =
NX
i=1

Z



'pi d� =
NX
i=1

Ep['i] (25)

Remark 2 Proposition 2 and Lemma 1 exploit the generalized additivity property of integrals
over the integration range. In this respect, the role played by the disjointedness assumption

proper of the partition of 
 is crucial.

Lemma 1 [see eq. (24)] states that any moment of a PD function is the sum of the

moments of its extended constituents. As we are going to see shortly, extended constituents

play also a relevant role in the central moments of f .

Theorem 1 Let f be a PD function (De�nition 2). Let f 2 Lp(
). Then, the central
moments of f are given by:

Mp
f =

NX
i=1

pX
q=0

�
p

q

�
(�1)p�q(E[f ])p�qEq['i] (26)
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Proof. Given De�nitions 2 and 5, one has:

NX
i=1

Z

i

(fi � E[f ])pd� =
NX
i=1

Z

i

pX
q=0

�
p

q

�
f qi (�E[f ])p�qd� =

NX
i=1

pX
q=0

�
p

q

�Z

i

f qi (�E[f ])p�qd�

(27)

=

NX
i=1

pX
q=0

�
p

q

�
(�E[f ])p�q

Z

i

f qi d� (28)

From Lemma 2, one has Eq['i] =
Z

i

f qi d�: Then,

=
NX
i=1

pX
q=0

�
p

q

�
(�E[f ])p�qEq['i] (29)

q.e.d.

Eq. (26) states that the central moment of order p of a PD function involves the linear

combination of the moments of all orders up to p of its extended constituents.

In the next Section, we utilize the �ndings of this Section and Section 3 to derive the

analytic and stochastic properties of max(�) and j�j PD functions.

5 The max and absolute value PD Functions

The literature review of Section 2 shows that PD functions induced by max(�) and j�j op-
erations appear frequently in O.R. applications. max(�) and j�j functions are PD functions
of Type II. Thus, the functional forms of the constituents is linked to the partition of the

domain. Section 5.1 derives results for the max(�) function, Section 5.2 for the j�j function.

5.1 Multivariate max(�) PD functions

In this Section, we analyze the analytic and stochastic properties of PD functions that result

as application of the max(�) operation. For clarity of presentation and following the results
of Sections 3 and 4, we present the analysis in three phases:

1. Function assignment (Determination the partition of 
, f
1;
2; :::;
Ng, identi�cation
of the boundaries; determination of the constituents of f);

2. Analysis of continuity and di¤erentiability properties;

3. Moment Calculation.

13



Let

f = max(t; h) : 
 � Rn ! R (30)

with t; h : 
 � Rn ! R.
Phase 1. The partition of 
 is determined by the solution of the inequality:

t(!) > h(!) (31)

Then, one obtains the partition:

�
 = f
t;
hg (32)

with


t = f! : t(!) > h(!)g and 
h = f! : h(!) < t(!)g (33)

The internal boundary is de�ned by

� = f! : t(!)� h(!) = 0g (34)

The properties of � are determined by a classical Theorem of di¤erential geometry (see

Spivak (2005), Vol I).

Theorem 2 Consider g = t(!) � h(!) : 
 � Rn ! R; 
 open. Assume that g 2 Cr(E),
r � 1 and 0 2 R is a regular point of g. Then, � is either empty or a n � 1�dimensional
Cr manifold.

Theorem 2 states that if t; h 2 Cr(
), and a solution of eq. (22) exists, then � is a Cr,
n� 1 dimensional manifold. In other words, if t and h are smooth, the internal boundary is
an hypersurface of dimensions n � 1 that shares the same regularity properties as t and h.
Theorem 2 is also readily extended to the case in which t 2 Crt(
) and h 2 Crh(
): Then,
g = t� h 2 Cmin(rt;rh)(
). In other words, r in Theorem 2 is, in general, min(rt; rh).

Note that, since t(!) = h(!) for ! 2 �, f�(!) can be equivalently assigned equal to t or
to h at ! 2 �. Then, we have the resulting PD function:

f(!) = max(t; h) =

8><>:
t(!) ! 2 
t
t(!) ! 2 �
h(!) ! 2 
h

(35)

where the partition of 
 is in eq. (33). The extended constituents are:

't =

(
t(!) ! 2 
t [ �
0 otherwise

and 'h =

(
h(!) ! 2 
h
0 otherwise

(36)
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Alternatively, by assigning f�(!) = h(!), one would obtain the extended constituents:

't =

(
t(!) ! 2 
t
0 otherwise

and 'h =

(
h(!) ! 2 
h [ �
0 otherwise

(37)

Phase 2. Concerning the continuity and di¤erentiability properties of f = max(t; h), the

following Remark is a consequence of Proposition 1.

Remark 3 Let t; h : 
 � Rn ! R, with t and h belonging to Crt(
) and Crh(
) respectively.
Let t and h have a contact of order k at ! 2 �. Then, by Proposition 1, f 2 Crmax(
), where
rmax = min(rt; rh; k).

Remark 3 implies that the degree of smoothness of f = max(g; h) is determined not only

by the regularity of t and h, but also by the order of their contact.

Phase 3. The following results hold for the moments of f = max(t; h).

Lemma 2 Let f = max(t; h), t; h : 
 � Rn ! R, with t; h 2 Lp(
). Then, we have:

Epmax(t;h) = E
p['t] + Ep['h] (38)

with p � 1, and

Mp
max(t;h) =

pX
q=0

�
p

q

�
(�1)p�q(E['t] + E['h])p�q(Eq['t] + Eq['h]) (39)

with p > 2.

Proof. Eq. (38) is obtained by combining eq. (36) [or eq. (37)] with Lemma 1. Eq. (39):
note that from eq. (35), in eq. (24), it is N = 2.

Mp
f =

P2
i=1

Pp
q=0

�
p

q

�
(�1)p�q(E[max(t; h)])p�qEq['i] =

=
Pp

q=0

�
p

q

�
(�1)p�q(E[max(t; h)])p�qEq['t] +

Pp
q=0

�
p

q

�
(E[max(t; h)])p�qEq['h] =

=
Pp

q=0

�
p

q

�
(�1)p�q(E['t] + E['h])p�q(Eq['t] + Eq['h])

(40)

q.e.d.

In eq. (39), the summands contain the products (E['t]+E['h])p�q times (Eq['t]+Eq['h]),
in which the moments of 't and 'h are multiplied by the powers of E['t] and E['h].
Eq. (39) is generalized in Appendix A to the case of f = max(g1; g2; :::; gn).

In the next Section, results for j�j PD functions are derived.
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5.2 Multivariate j�j PD functions

Consider the function f = jgj; with g : 
 � Rn ! R.
Phase 1. The partition of 
 is determined by studying the inequality:

g(!) > 0 (41)

One obtains:

�
 = f
�;
+g (42)

with


� = f! : g(!) < 0g and 
+ = f! : g(!) > 0g (43)

The internal boundary is

� = f! : g(!) = 0g (44)

The properties of � are determined by Theorem 2, which, in this case, applies directly to g.

Recalling eq. (43), the expression of f is equal to:

f(!) =

8><>:
g(!) ! 2 
+
0 ! 2 �

�g(!) ! 2 
�
(45)

The extended constituents are:

'+ =

(
g(!) ! 2 
+
0 otherwise

and '� =

(
�g(!) ! 2 
�
0 otherwise

(46)

Recalling that jgj = max(g;�g), eq. (46) can be seen as a special case of eq. (37), with
t = g and h = �g.
Phase 2. Concerning on the continuity and di¤erentiability properties of f = jgj, the

following holds.

Proposition 3 Let g : 
 � Rn ! R belong to Cr(
): If r = 0, then g 2 C0(
). If r > 0,
let '+ and '� have a contact of order k at ! 2 �. Then, jgj 2 Ck(
).

Proof. For r = 0, the result is immediate. For r > 0, let u = min(r; k). By theorem 1, then,
g 2 Cu(
). Now, since g 2 Cr(
), derivatives of orders higher than r cannot be de�ned.
Therefore, '+ and '� cannot have a contact of order greater than r. Hence, k � r, from

which u = k.
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Remark 4 In order '+ and '� to have a contact of order k at ! 2 �, all the derivatives of
g up to order k must be null at ! 2 �. Conversely, if the derivatives of g are null at ! 2 �
up to order k; then '+ and '� have a contact of order k. Thus, the value of k in Proposition

3 is determined by the order of null derivatives of g on �.

Phase 3. Applying the results of Sections 4 and 5.1, we have the following statement

concerning the moments of f = jgj.

Lemma 3
Ep[jgj] = Ep['+] + Ep['�] (47)

and

Mp
jgj =

pX
q=0

�
p

q

�
(�1)p�q(E['+] + E['�])p�q(Eq['+] + Eq['�]) (48)

Proof. Recalling that jgj = max(g;�g), then eq. (48) follows from eq. (39).

We note that the summands in eq. (48) contain the product of (E['+] + E['�])p�q �
(Eq['+] + Eq['�]), in which the moments of '+ and '� are multiplied by the powers of
E['+] and E['�]. This is equivalent to replace 't and 'h in eq. (39) with '+ and '�,
respectively.

In the next Section, we apply the �ndings obtained sofar to the study of mean-deviation,

mean-upper-semideviation and CVAR optimization problems.

6 Stochastic Optimization with Coherent Risk Measures

In this Section, we show how the results of the previous Sections can be implemented to

derive decision-making insights at the formulation stage of risk coherent SP problems.

6.1 Mean-Deviation SP Problems

A mean-deviation decision-maker solves the SP problem of eq. (6) (Section 2). Eq. (6)

involves the moments of the PD function jZ�E[Z]j. By the �ndings of Section 5.2, we have
the following result on mean-deviation PD problems.

Theorem 3 Consider a p-mean-deviation decision-maker. Then, if Z(x; !) 2 Lp(
), the
optimal decision-maker�s choice (x) solves the SP problem characterized by the objective

function7

�md = E[Z] + c[
pX
q=0

�
p

q

�
(�E[Z])p�q(Ep[Z+] + Ep[Z�])]1=p (49)

7In eq. (51), the dependence on x is hidden for notational simplicity.

17



where

Z+ :=

(
Z(x; !) ! 2 
+ [ �md
0 otherwise

and Z� :=

(
�Z(x; !) ! 2 
�

0 otherwise
(50)

and 8><>:

+ = f! : Z(x; !) > E[Z(x; !)]]g
�md = f! : Z(x; !) = E[Z(x; !)]]g

� = f! : Z(x; !) < E[Z(x; !)]g

(51)

Proof. In eq. (6), for any given (x), let w(!) : 
! R such that w(!) = Z(x; !)�E[Z(x; !)].
Then, eq. (6) is written as:

�md = E[Z] + c(E[jwjp])
1=p (52)

Then, applying Lemma 3, one gets:

�md = E[Z] + c(Ep['+] + Ep['�])
1=p (53)

where the functions '+ and '� in eq. (53) are the extended constituents of the PD function:

f =

8><>:
Z(x; !)� E[Z(x; !)] ! 2 
+

0 ! 2 �md
�Z(x; !)� E[Z(x; !)] ! 2 
�

(54)

i.e.,

'+ :=

(
Z(x; !)� E[Z(x; !] ! 2 
+ [ �md

0 otherwise
(55)

and

'� :=

(
�Z(x; !)� E[Z(x; !)] ! 2 
�

0 otherwise
(56)

At this stage, introduce the functions Z+ and Z� as de�ned in eq. (50). Then:

Ep['+] =
Z

+

(Z � E[Z])p d� =
Z

+

 
pX
q=0

�
p

q

�
Zq(�E[Z])p�q

!
d� =

=

pX
q=0

�
p

q

�
(�E[Z])p�q

Z

+

Z(x; !)qd�

(57)
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Since
Z

+

Zqd� =

Z



Zq+d� = Eq[Z+], one gets:

Ep['p+] =
pX
q=0

�
p

q

�
(�E[Z])p�qEq[Z+] (58)

A similar argument leads to Ep['�] =
pX
q=0

�
p

q

�
(�E[Z])p�qEq[Z�], which ends the proof.

Concerning eqs. (49) - (51), we note that:

1. In eq. (51), given x, �md is the set of points where the expected loss equals the actual

loss incurred by the decision-maker;

2. 
+ and 
� are the subdomains where Z is greater (respectively) lower than the ex-

pected loss. Correspondingly, the functions Z+ and Z� [eq. (50)] are greater (respec-

tively) lower than the expected loss at the points of 
 where they are di¤erent from

0. We refer to Z+ as to the �excess loss function� and to Z� as to the �defect loss

function�.

Let us now deal with the use of Theorem 3 in problem formulation. Theorem 3 [eq.

(49)] states that the optimal choice of a decision-maker using a mean-deviation objective

function of order p is determined by the moments of order 1 to p of the restrictions of the

loss functions on 
+ and 
�. Thus, the stochastic properties of both the excess and defect

loss functions are of interest to the decision-maker. The next Corollary enables us to identify

the families of distributions that leave the decision-maker indi¤erent to imprecision.

Corollary 1 The solution of a mean-deviation SP problem of order p is invariant for fam-

ilies of distributions leading to the same values of E[Z], Es[Z+], Es[Z�] with s = 1; 2; ::; p.

The special case of p = 1 deserves further attention. For p = 1, in fact, one obtains

the mean-absolute-deviation (MAD) risk function [Ruszczynski and Shapiro (2005)], which

has been widely applied in portfolio optimization and inventory management [Siegmann and

Lucas (2005), Ahmed et al (2007)]. Corollary 1 implies that risk averse decision makers

utilizing MAD are insensitive to imprecision for families of distributions leading to the same

E[Z], E[Z+], E[Z�]. This result generalizes previous literature �ndings (see Borgonovo and
Peccati (2008)). In Borgonovo and Peccati (2008), sensitivity to imprecision in the demand

distribution for the multi-item inventory problems of eqs. (9), (10) and (11) is discussed.

A case study is presented involving two families of distributions, multivariate Beta and
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Gamma, respectively. The parameters of the distributions are such that they produce the

same values of E[Z], E[Z+], E[Z�]. It is shown numerically that the optimal choice of the
MAD risk coherent decision-maker is the same independently of whether she/he selects the

Beta or the Gamma distribution to represent her/his state of knowledge on demand. Note

that, in this case, the decision-maker is insensitive to imprecision even if a change in the

support of the random variable (from �nite with Beta, to in�nite with Gamma) is registered.

Consider now the case p = 2. Then, two distributions lead to the same optimal policy if

they imply the same E[Z], E[Z+], E[Z�], E2[Z+], and E2[Z�]. Note that the set of distribu-
tions that lead to the same E[Z], E[Z+], E[Z�] strictly includes the set of distributions which
lead also to the same E2[Z+], E2[Z�]. The same happens for any increase in p. Corollary 1
implies that sensitivity to imprecision increases with the order of the deviation measure (p).

In the next Section, we consider the optimization problem of a decision-maker utilizing

the same loss function but a mean-upper-semideviation risk measure of order p.

6.2 Mean-upper-semideviation SP Problems

Mean-upper-semideviation SP problems are characterized by the objective function in eq.

(7) (Section 2). Eq. (7) involves the PD function max(0; Z � E[Z]). By Section 5.1, one
obtains the following result.

Theorem 4 Consider a p mean-upper-semideviation decision-maker. Then, if Z(x; !) 2
Lp(
), the optimal decision-maker�s choice (x) solves the SP problem with objective function

�musd = E[Z] + c

"
pX
q=0

�
p

q

�
(�E[Z])p�qEq[Z+]

#1=p
(59)

where Z+(x; !), 
+ and �musd are the same as for a mean-deviation decision-maker (Theo-

rem 3).

Proof. In eq. (7), for any given x, let h(!) : 
! R such that h = Z �E[Z]. Then, eq. (7)
is written as:

�musd = E[Z] + c(E [max(0; h)p] )
1=p (60)

Applying Lemma 2, one gets

Ep[max(0; h)] = Ep['h] (61)

where

'h :=

(
Z(x; !)� E[Z(x; !] ! 2 
h [ �musd

0 otherwise
(62)
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and

h = f! : Z(x; !) > E[Z(x; !)]]g
�musd = f! : Z(x; !) = E[Z(x; !)]]g

(63)

By comparing eqs. (62), (63) to eqs. (51) and (55), one obtains that 
h = 
+, �musd = �md
and 'h = '+. Hence, eq. (7) becomes:

�musd = E[Z] + c(E
p['+])

1=p (64)

Let Z+ as in eq. (50). Then, Ep['+] is given by eq. (58). The proof is completed by inserting
eq. (58) in eq. (61), and eq. (61) in eq. (60).

Theorem 4 [eq. (49)] states that the optimal choice of decision-maker using a mean-

upper-semideviation of order p is determined by the moments of the excess loss function and

by the expected loss. In terms of sensitivity to imprecision, this result implies the following.

Corollary 2 The solution of a mean-upper-semideviation SP of order p is invariant for

families of distributions leading to the same values of E[Z], Eq[Z+] with q = 1; 2; ::; p.

By comparing Theorems 4 and 3, one notes that a mean-deviation SP problem involves

the moments of the defect loss function in addition to the moments of the excess loss function

(eqs. (49) and (59) di¤er for the presence of the terms containing Eq[Z�]). This implies that,
if two (or more) distributions satisfy Corollary 1, then they simultaneously satisfy Corollary

2. In other words,

Corollary 3 All distribution families that leave optimal mean-deviation policies unaltered,
also leave the corresponding mean-upper-semideviation policies unaltered.

We note that the converse is not true.

6.3 CVAR SP Problems

In this Section, we discuss CVAR optimization problems. The objective function is reported

in Example 1, eq. (4). It entails the computation of E[max(0; Z)]. Therefore the �ndings of
Section 5.1 apply. We obtain the following result.

Theorem 5 Consider a CVAR decision-maker. Then, if Z(x; !) 2 Lp(
), the optimal
decision-maker�s choice (x) solves the stochastic program determined by the objective function

H = �

�
1� �(
�)

1� �

�
+
E[Z� ]
1� � (65)
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where

Z�(x; !) =

(
Z(x; !) ! 2 
�( [ �CVAR)
0 otherwise

(66)

and 8><>:

� = f! : Z(x; !) > �g

�CV AR = f! : Z(x; !) = �g

0 = f! : Z(x; !) < �g

(67)

Proof. In eq. (4), for any given x, let h(!) : 
! R such that h = Z � �. Then, eq. (4) is
written as:

H = � +
1

1� �E[ max(0; h)] (68)

Applying Lemma 2, one gets

E[max(0; h)] = E['h] (69)

with

'h(x; !) =

(
Z(x; !)� � if ! 2 
�

0 otherwise
(70)

Hence, eq. (7) becomes:

H = � +
1

1� �E['h] (71)

Now, observe that

E['h] =
Z

�

[Z(x; !)� �] d� =
Z

�

Z(x; !)d��
Z

�

�d� (72)

Let Z� as in eq. (66). Then,
Z

�

Z(x; !)d� =
Z



Z�(x; !)d� = E[Z� ]. Hence:

E['h] = E[Z� ]� �
Z

�

d� = E[Z� ]� ��(
�) (73)

Substituting into eq. (68), one gets eq. (65).

In eq. (65), �(
�) is the measure of 
� . As eq. 67 states, 
� is the subset of 
 in which

Z exceeds �. Thus, �(
�) is the probability that the loss exceeds �. At the optimum, i.e.,

after solving the optimization problem, one has �� = V AR��. Then, �(
��) = 1 � �, and

H�
� =

E[Z�� ]
1� � = CV AR�. Note that E[Z�� ] is the expectation of Z�� under the unconditional

distribution. The term
1

1� � is the correction factor necessary to include the conditional
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expectation (= change in distribution) implied by the de�nition of CVAR8.

As far as the sensitivity to imprecision in the distribution is concerned, Theorem 5 [eq.

(65)] allows one to establish the following result.

Corollary 4 The solution of a CVAR problem is invariant for families of distributions lead-
ing to the same values of �(
�) and E[Z� ].

Theorems (3), (4) and (5) allow one to compare CVAR problems to mean-deviation

and mean-upper deviation problems. Eq. (65) indicates that the stochastic properties

that in�uence a CVAR decision-maker are E[Z� ] and �(
�), while eqs. (49) and (59)

show that mean-deviation and mean-upper-semideviation decision-makers are interested in

E[Z], Er[Z�], and Er[Z+], r = 1; 2; :::; p. Thus, di¤erent stochastic properties are of in-

terest to the decision-makers. Let us, however, examine the stochastic properties more

closely. In eq. (65), for any given x, �CV AR is the set of points where the loss equals

VAR. Thus, �CV AR 6= (�md = �musd), in general. However, if � is selected in such a

way that ��(�) = E[Z(x; !)], then by comparison of eqs. (51) and (67) one obtains that
�CV AR = �md = �musd. In this case, it holds that 
� = 
+, and E[Z� ] = E[Z+]. However,
none of the deviation SP problems is characterized by �(
�). Thus, in contrast to the re-

sults obtained for the deviation problems, no general conditions can be stated to identify

families of distributions that simultaneously leave a CVAR decision-maker and a deviation

decision-maker insensitive to imprecision.

7 Conclusions

In this work, we have formalized a new analytical approach to support the formulation of

optimization problems involving PD functions.

The �rst part of this work has developed the required technical background. We have

introduced a new de�nition of multivariate PD functions that complements Herrera (2007)�s

de�nition. We have obtained results for the continuity and di¤erentiability of PD functions.

We have then addressed the calculation of the moments of PD functions. We have derived

formulas for the decomposition of the moments. Findings show that extended constituents

play a central role. The moments of a PD function are the sum of the moments of the

same order (p) of its extended constituents and the pth central moment is given by the linear

combination of the moments of all orders from 1 to p of the extended constituents.

8In fact, restricting the loss function over 
� and taking the expectation without reshaping the distribution
is equivalent to take the expectation of Z over the conditional distribution de�ned in Rockafellar and Uryasev
(2002), eq. (8), p. 1449 and �obtained by rescaling the portion of the graph of the original distribution between
the horizontal lines at levels 1� � and 1�.
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We have then focused on j � j and max(�) PD functions, which appear frequently in O.R.
applications. We have studied their continuity and di¤erentiability properties. and derived

closed form expressions for the calculation of their moments.

We have applied the �ndings to mean-deviations, mean-upper-semideviation and CVAR

optimization problems. The main results can be summarized as follows: i) for any p-

measurable loss function, mean-deviation problems of order p are characterized by all mo-

ments up to p of both the excess and defect loss functions; ii) p-mean-semideviation problems

involve only moments of the excess loss function; iii) families of distributions leaving the

optimal policy of a mean-deviation decision-maker unchanged, also leave the correspond-

ing p-mean-upper-semideviation optimal policy unchanged; iv) sensitivity to imprecision

increases with the order (p) of the deviation measures for both mean-deviation and mean-

semideviation problems; v) CVAR decision-makers are insensitive to imprecision for families

of distributions leading to the same E[Z� ] and �(
�). The method allows to obtain in-
sights at the problem formulation stage, thus eliminating reliance on ad-hoc post-optimality

numerical calculations.
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8 Appendices

8.1 Appendix A: moment calculations for f = max(h1; h2; :::; hN)

In this appendix, we present the extension of the results of Section 5.1 to PD functions of

the type

f = max(h1; h2; :::; hN) (74)

In this case, the partition is:

�
 = f
1;
2; :::;
Ng (75)

with


i = f! : hi(!) > hj(!) 8j = 1; 2; :::; N ; i 6= jg (76)

and

� = f! : hi(!)� hj(!) = 0; i; j = 1; 2; :::; N ; j 6= ig (77)

The functional form of f and the extended constituents ('i, i = 1; 2; :::; N) then follow

straightforwardly. Letting hi 2 Cri(
), and ki;j the order of the contact between hi and hj
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at ! 2 �\ (@
i \
j), Theorem 2 follows with r = min(ri; ki;j). Eqs. (38) and (39) become:

Epmax(t;h) =
NX
i=1

Ep['i] (78)

and

Mp
max(h1;;h2;:::;hN )

=
NX
j=1

pX
q=0

�
p

q

�
(�

NX
i=1

E['i])p�q(Eq['j]) (79)

respectively.

8.2 Appendix B: moment calculation for f =
XN

i=1
jgij

In this Appendix, we report the extension of the results of Section 5.2 to functions of the

type:

f = jg1j+ jg2j+ :::+ jgN j =
NX
i=1

jgij (80)

In this case, 
 is partitioned in 2N subsets, possibly null, depending on the signs of gi,

i = 1; 2; ::; N . Let 
1 = 
++;:::;+ = f! : gi(!) > 0;8i = 1; 2; :::; Ng and 
2N = 
�;�;:::;� =

f! : gi(!) < 0;8i = 1; 2; :::; Ng. Similarly, 
i = 
+;�;:::;+ shall denote the generic subset

in which g1 > 0, g2 < 0, etc. The internal boundary is � =
[N

i=1
�i, where �i =

f! : gi(!) = 0;8i = 1; 2; :::; Ng : For simplicity, let us temporarily set N = 2. We have 4

possible regions:

1 = 
+;+


2 = 
�;+


3 = 
�;�


4 = 
�;�

(81)

Then, the PD expression of eq. (80) is:

f =

8>>>><>>>>:
f+;+ = g1 + g2 ! 2 
+;+ [ (@
+;+ \ �)
f�;+ = �g1 + g2 ! 2 
�;+ [ (@
�;+ \ �n(@
+;+ \ @
�;+))
f+;� = g1 � g2 ! 2 
+;� [ (@
+;� \ �n(@
+;� \ @
+;+)n(@
+;� \ @
�;+))
f�;� = �g1 � g2 ! 2 
�;�

(82)

The extended constituents are, then, denoted by '+;+; '�;+; '+;�; '+;+ and obtained by

extending the functions in eq. (82) to the whole 
. For example:

'+;+ =

(
f+;+ ! 2 
+;+ [ (@
+;+ \ �)
0 otherwise

(83)
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and similarly '�;+; '+;� and '+;+.

One then obtains the following generalization of Lemma 2:

Ep[jgj] = Ep['+;+] + Ep['�;+] + Ep['+;�] + Ep['�;�] (84)

and

Mp
jgj =

Pp
q=0f

�
p

q

�
(�1)p�q(E['+;+] + E['�;+] + E['+;�] + E['�;�])p�q�

�(Eq['+;+] + Eq['�;+] + Eq['+;�] + Eq['�;�])g
(85)

By numbering the extended constituents as follows '+;+ = '1, '�;+ = '2, '+;� = '3,

and '�;� = '4, one can rewrite eqs. (84) and (85) more synthetically as:

Ep[jgj] =
4X
i=1

Ep['i] (86)

and

Mp
jg1+g2j =

pX
q=0

f
�
p

q

�
(�1)p�q(

4X
i=1

E['i])p�q � (
4X
i=1

Eq['i]) (87)

For N = 3, one has to consider 8 regions, denoted as 
+;+;+, 
�;+;+,
+;�;+; :::;
�;�;�.

For N = 4, one has to consider 16 regions, etc.. By applying the same approach as used for

N = 2, one can then extend eqs. (84) and (85) to the case N > 2. One obtains:

Ep[jgj] =
2NX
i=1

Ep['i] (88)

and

MpXN

i=1
jgij
=

pX
q=0

f
�
p

q

�
(�1)p�q(

2NX
i=1

E['i])p�q(
2NX
i=1

Eq['i]) (89)
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Table 1: Notation used in this work
Symbol Meaning
f Piecewise de�ned function
N Number of constituents of f

 Domain of f
� Partition of 


i An element of �
1
i Indicator function of 
i
n Dimension of 
 and 
i
@
i Frontier of 
i
� = [(@
i \ @
j) Internal Boundary
N Number of subdomains and of constituents
fi Constituent of f
'i Extended Constituent
(
;B(
); �) Probability space on 

Ep[f ] Moment of order p of f
Mp
f Central Moment of order p of f

�(�) Coherent Measure of Risk
Z(x; !) Loss Function
S Feasible Set
�md mean-deviation risk-function
�musd mean-upper-semideviation risk-function
CV AR� Conditional value at risk
V AR� Value at Risk
H Auxiliary function for CVAR optimization
� Parameter in CVAR optimization
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