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1 Introduction2

The development of decision-support models dedicated to service industry problems has attracted renewed3

interest in O.R. (see Duder and Rosenwein (2001); Grossman and Brandeau (2002); Wu and Lin (2003);4

Kiely et al (2004); Corominas et al (2004); Corominas et al (2007a); Corominas et al (2007b); Hosanagar5

et al (2005); Ata and Shneorson (2006); Hong (2007); Debo et al (2008); Wahab et al (2008); Beraldi and6

Bruni (2009); Section 2). The literature review of Section 2 shows that profound e¤orts and great attention7

are concentrated into the model building phase, while the (equally important) phase of obtaining managerial8

insights is often left to qualitative reasoning. This exposes analysts to the risk of undermining the modelling9

e¤ort. Two issues contribute to the problem. The �rst is model complexity. New models capture aspects of10

the managerial problems previously excluded from the analysis. Models, then, tend to become complex, with11

a closed-form expression of the decision-support criterion mostly unavailable. The model behavior becomes12

unknown to analysts generating the so called black-box e¤ect (Saltelli et al (2000)). The second reason13

concerns parameter estimation: �In most service systems, it is hard to estimate some system parameters14

reliably, and the parameters may also change over time. Therefore, it is important to understand how the15

optimal policy and its performance depend on various system parameters (Ata and Shneorson (2006)).�16

These issues can be solved only by utilization of sensitivity analysis (SA) techniques that, by a thorough17

investigation of the model results, enable analysts to validate the output and obtain additional managerial18

insights (Saltelli et al (2000); Saltelli and Tarantola (2002); Borgonovo (2008); Borgonovo (2009); Borgonovo19

and Peccati (2008a)).20

Scenario analysis (Kiely et al (2004), O�Brien (2004), Tietje (2005)) is the method that has been most21

widely utilized to perform SA of service industry models (Section 2). In a scenario analysis, the model is22

tested for alternative combinations of the exogenous variables and the corresponding model output values are23

recorded. These values provide decision-makers with the variability of the decision-support criterion. The24

explanation of the results, however, is usually left to �qualitative�(Tietje (2005)) reasoning, as a quantitative25

method for interpreting scenario results has not been developed yet.26

This work introduces a new approach to the acquisition of managerial insights from scenario analysis. The27

tool integrates the qualitative aspects of scenario analysis with a quantitative methodology derived from the1
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high dimensional model representation (HDMR) theory. In selecting the method, one needs to consider the2

following features of scenario analysis: a) absence of restrictions in parameter changes � exogenous variables3

undergo discrete changes when varying across scenarios (see Tietje (2005)); b) possible non-smooth model4

output behavior � the model does not need to be di¤erentiable; and c) joint sensitivities � in a scenario5

analysis factors are, in general, formed by groups of exogenous variables; thus, factor variations coincide6

with the simultaneous change in several parameters (in the remainder, by factor we shall mean a group of7

k � 1 exogenous variables). The problem one is facing is, then, the SA of a potentially non-smooth model8

output in the presence of �nite and simultaneous variations in groups of exogenous variables. Let us review9

how this problem has been addressed sofar. In Linear Programming, simultaneous variations in the objective10

function coe¢ cients are the focus of the tolerance sensitivity approach (Wendell (2004)). Outside the Linear11

Programming realm, the works of Borgonovo and Apostolakis (2001) and Borgonovo (2008) address the joint12

sensitivity of generic models for small parameter changes. The work of Saltelli and Tarantola (2002) de�nes13

group sensitivity indices in the context of a global SA. As far as �nite changes are concerned, Borgonovo14

(2009) introduces sensitivity measures for individual exogenous variables. To �nd sensitivity measures for15

factors, one then needs to extend the results of Borgonovo (2009) to group variations. Our �rst step is to16

prove that a change in model output is decomposed as a function of factors with the same structure of the17

parameter decomposition (Rabitz and Alis (1999)). This �nding permits us to introduce factor �nite change18

sensitivity indices (FCSI). The relationship between the factor FCSI and parameter FCSI�s is investigated.19

We show that the �rst order FCSI of a factor formed by k parameters is the sum of all the FCSI�s of order20

1 to k of the parameters in the factor. Also, a closed-form expression for the relationship between higher21

order factor FCSI�s and parameter FCSI�s is derived.22

These �ndings are then turned into a procedure for the estimation the factor FCSI�s, based on the23

generation of appropriate sub-scenarios generated according to the HDMR theory. We discuss how to gain24

additional managerial insights by formulation of SA settings (Saltelli and Tarantola (2002)). Knowledge of25

the FCSI�s enables analysts to quantify the contributions of factors, the relevance of their interactions and26

identify the key-drivers of scenario results.27

We apply the methodology to the scenario analysis of the workforce allocation model by Corominas et al1
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(2004). The minimum (optimal) cost undergoes a 155% raise in passing from the �rst to the second scenario.2

The analysis reveals that the change cannot be explained by sole individual e¤ects, but interactions play a3

relevant role: 40% of the change is generated by the cooperation between required capacity and extra-hour4

costs. Matching capacity and extra-hour costs pro�les is, then, revealed as a key aspect on which �to focus5

managerial attention during implementation (Eschenbach (1992), p. 40-41)�, in order to hedge losses.6

The remainder of the paper is organized as follows. Section 2 o¤ers a review of recent quantitative service7

industry literature. Section 3 introduces scenario analysis and three SA settings for obtaining additional8

managerial insights. Section 4 integrates scenario analysis and the HDMR theory and introduces sensitivity9

measure for factors. Section 5 presents the application of the method to the scenario analysis of Corominas et10

al (2004)�s workforce allocation model. Conclusions and further research perspectives are o¤ered in Section11

6.12

2 Literature Review: Models and SA methods in recent works13

This section presents the results of a literature review surveying the SA methods that have been employed14

to gain managerial insights from recently developed service industry decision-support models (Table 1). Due15

to space limitations, we cannot claim exhaustiveness. The indication obtained, however, is that scenario16

analysis is broadly utilized to corroborate model results and obtain additional insights (7 out of 12 works).17

[Insert Table 1 about here]18

Duder and Rosenwein (2001) address the problem of improving service quality in call-centers, with par-19

ticular reference to the evaluation of �zero abandonment policies (Duder and Rosenwein (2001))�. The model20

output (y) [see Table 2 for notation] is analytically expressed as a linear function of seven parameters. Model21

results are tested on a single scenario (no SA is performed).22

Grossman and Brandeau (2002) propose a non-linear optimization model to �address service systems23

where self-optimizing customers receive service from facilities with di¤erent service capabilities, seeking the24

best combination of ease of access to facilities with congestion at facilities [Grossman and Brandeau (2002),25

p. 40].�Model results are tested on a single scenario and sensitivity bounds for toll �exibility are proposed1

in a 2-facility example.2
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In Wu and Lin (2003), a linear programming model is developed to solve a �ow capturing problem. The3

model supports decision-makers in selecting �the optimal locations� of service facilities while maximizing4

�the number of "captured" customers [Wu and Lin (2003); p. 366].�The model is tested across scenarios5

generated by varying the number of facilities and the network spatial distribution.6

Corominas et al (2004) develop a model for optimal workforce allocation in planning annualized hours.7

The model is formulated as a mixed integer linear program. Model results are tested on two scenarios8

involving di¤erent demand curves and working week type parameters. Generalizations of the model are9

proposed in Corominas et al (2007a) and Corominas et al (2007b). In these works, model results are tested10

on scenarios characterized by di¤erent demand curves and working week type parameters.11

In Hosanagar et al (2005) the problem of caching service adoption in the internet service supply chain is12

addressed. Convex optimization problems are proposed and solved analytically �to inform cache operators13

regarding service provisioning and optimal pricing policies (Hosanagar et al (2005))�. SA is performed by14

means of comparative statics. Monotonicity properties (i.e., the direction of change) of the solution for15

changes in the service parameters are derived.16

Ata and Shneorson (2006) introduce an M/M/1 model to study a service facility in which the system17

manager dynamically controls arrival and service rates. Two decision-problems are analyzed: the rate-18

setting and the price-setting problems. Ata and Shneorson (2006) utilize comparative statics �to study the19

dependence of the optimal policy on the system parameters.�In particular, Ata and Shneorson (2006) discuss20

monotonicity properties of the optimal policy as a function of the delay sensitivity parameter, in the value21

rate function and in the cost function.22

Hong (2007) develops a nested logit model for determining the optimal �location of foreign logistics23

services within the Chinese city� of Shanghai. SA results are obtained by applying the model on sub-24

samples of the original data-set.25

The model developed by Debo et al (2008) combines queuing literature and economic equilibrium models26

to take into account �strategic interaction between the server and the customer (Debo et al (2008))�. The27

authors o¤er both analytical expressions of the model and a numerical experiment to validate the model1

results. In particular, model results are replicated for di¤erent choices of the parameters deemed relevant2
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(scenario analysis).3

Beraldi and Bruni (2009) develop a stochastic programming model for determining the optimal location of4

emergency vehicles in congested service systems. Model results are tested on di¤erent scenarios (see Beraldi5

and Bruni (2009), pages 328-329).6

In Castillo et al (2009), the problem of workforce allocation is generalized to multicriteria optimization.7

Castillo et al (2009) report the following comment of the call center management concerning the model:8

�The tool that you have created would allow scenarios to be run that would be very useful�.9

Let us now summarize the �ndings of this (concise) literature review. A �rst indication is that scenario10

analysis is the most broadly applied method to corroborate model results (Table 1). A second is that the11

analysis is stopped after acquiring the values of the model output. The interpretation of scenario results12

is left to qualitative reasoning. In this way, many relevant managerial insights go overlooked, as we are to13

discuss in the next section.14

3 Scenario Analysis and Managerial Insights15

The origin of scenario analysis is often linked to the classical book by Khan and Wiener (1967). Since then,16

scenario analysis has became a major decision tool in economics and strategic management and has been17

extensively studied in O.R.. Several de�nitions of scenarios have been formulated: �single deterministic18

realizations of all uncertainties over the planning horizon� in Mulvey et al (1999), �stories about how the19

future might turn out�in O�Brien (2004), �di¤erent states of the world in presence of uncertainty�in Hinojosa20

et al (2005), and �di¤erent possible future states of a system�in Tietje (2005).21

In the service industry, we recall the work of Kiely et al (2004), who propose a research-approach to22

scenario generation in the service sector. Scenarios are utilized �to guide strategic planning�by envisioning23

di¤erent possible realizations of the future (Kiely et al (2004), p. 131).24

The aim of a scenario analysis is, indeed, a consistent elicitation of predictions. Cognitive aspects play25

a relevant role, as demonstrated by Jungermann and Thuring (1988). The study of the methodological26

aspects of a coherent scenario generation have been thoroughly discussed over time. The works of O�Brien1

(2004) and Tietje (2005) can be seen as summarizing the �ndings of previous literature. O�Brien (2004)2
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proposes an eight-step scenario generation process that extends the 5-step approach proposed by Linneman3

and Kennell (1977). O�Brien (2004) discusses pitfalls in implementing scenarios and underlines consistency4

issues. Consistency is the focus of Tietje (2005), where it is considered �a core part of a formative scenario5

analysis (Tietje (2005); p. 419).� According to Tietje (2005), the desirable scenario generation method6

should result in scenarios that are consistent (to provide realistic descriptions of the future), di¤erent (to7

avoid redundant information), in a small number (to facilitate comparison), reliable (to allow replication if8

di¤erent scenario analysts were to start with the same assumptions) and e¢ cient. Tietje (2005) introduces a9

quantitative approach to estimate consistency by the creation of a consistency matrix. Consistency analysis10

is followed by a scenario selection process, in which the number of scenarios is reduced by appropriate �ltering11

so as to achieve a compact and e¢ cient set (we refer to Tietje (2005), Section 2.2, p. 421, for further details).12

A scenario analysis, if correctly implemented, allows an analyst/decision-maker to forecast future out-13

comes according to her/his state of knowledge (see also Jungermann and Thuring (1988)). By using scenario14

analysis to corroborate model results, a decision-maker assesses the values of the decision-support criterion15

given the forecasted realizations of the exogenous variables. The task of understanding �what it was about16

the inputs that made the outputs come out as they did (Little (1970); p. B469)�is usually addressed by qual-17

itative reasoning, which does not necessarily lead to a rigorous interpretation of the results. The following18

questions, among others, remain unanswered (see also Borgonovo (2009)):19

Setting 1: 1How much does each factor impact the scenario results? What is the direction of change implied1

by the factor changes?2

Setting 2: What portion of the results is due to interaction e¤ects? Do interaction e¤ects amplify or3

smoothen individual e¤ects?4

1Settings have been introduced in Saltelli and Tarantola (2002). A setting is a statement of the question a decision-

maker/analyst wishes to answer through the SA exercise. A Setting then enables an analyst to identify the method that provides

the consistent answer. Several works have underlined the risk of obtaining misleading insights SA. Koltay and Terlaky (2000)

warn about the di¤erences in mathematical and managerial interpretations of SA results when applied to linear programming

models. Wallace (2000), Higle and Wallace, 2003 underline that the SA method employed to interpret model results must be

consistent with the decision-maker�s state of knowledge. Borgonovo and Peccati (2008a) provide a thorough discussion of the

consistency between state-of-knowledge and SA methods.
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Setting 3: What are the most important factors (key-drivers of the change)?5

As we are to see, answering these questions is ripe of managerial insights. To obtain the answers, however,6

it is necessary to add to the quantitative aspects of scenario analysis. This is the task of the next section.7

4 Generalized Scenario Analysis: Factor FCSI�s and Scenario Decomposition8

This section introduces the integration of scenario analysis with the HDMR theory to set forth a rigorous9

way to explain scenario analysis results.10

The HDMR theory is the generalization of Functional ANOVA (Rabitz and Alis (1999); Efron and Stein11

(1981)). Functional ANOVA originates with the works of Hoe¤ding (see Hoe¤ding (1948)), and the problem12

of achieving the complete decomposition of the variance of a function of random variable. The most recent13

formulations are due to the works of Rabitz and Alis (1999), Sobol�(2001), Sobol�(2003) and Sobol�et al14

(2007). We summarize them in the next paragraphs. Let (� � Rn,A,�) be a measure space and consider a15

function f such that16

y = f(�) f : �! R (1)

(see Table 2 for notation).17

[Insert Table 2 about here]1

From the SA viewpoint, y [eq. (1)] is the model output and f(�) the functional relationship that binds2

y and the exogenous variables (parameters, � 2 �). A closed-form for f(�) does not need to be known. The3

central result of the HDMR theory states that under the assumption of � =
Yn

i=1
�i, any f 2 L(�;A; �)4

can be expanded as (Sobol�(1993), Rabitz and Alis (1999)):5

f(�) = f0 +
nX
i=1

fi(�i) +
X
i<j

fi;j(�i; �j) + :::+ f1;2;:::n(�1; �2; :::; �n) (2)
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where6 8>>>>>>>>>><>>>>>>>>>>:

f0 = E�[Y ] =
R
���
R
f(x)d�

fi(xi) = E�[Y jxi]� f0 =
R
���
R
f(x)

Q
k 6=i d�k � f0

fi;j(xi;xj) = E�[Y jxi; xj ]� fi(xi)� fj(xj)� f0

:::

(3)

Eq. (2) has been widely employed in statistics and global sensitivity analysis (Saltelli and Tarantola (2002)).7

In fact, by adding the assumption that f 2 L2(�;A; �) and squaring the di¤erence f � f0, one obtains the8

complete decomposition of the variance of f (functional ANOVA). The variance decomposition is proven for9

the �rst time in Efron and Stein (1981).10

Borgonovo (2009) proves that any �nite change in f can be decomposed in 2n � 1 terms via eq. (2). In11

this case, let �0,�1 2 �, y0 = f(�0), y1 = f(�1) and �f = y1 � y0 = f(�1) � f(�0). Then, under the same12

assumptions of eq. (2), one obtains (Borgonovo (2009), Theorem 2),13

�f = f(�1)� f(�0) =
Pn

i=1�fi +
P

i<j �fi;j + :::+�f1;2;:::n
(4)

One refers to the terms in the RHS of eq.(4) as to �e¤ects�. The �rst order terms �fi [eq.(4)] are the14

contributions of individual parameter changes. The second order terms (�fi;j) account for the interactions15

of all parameters pairs, excluding individual e¤ects (see also Borgonovo (2009)). The third order terms reveal16

the strength of the interaction of all triplets, with exclusion of second and �rst order e¤ects. The last term17

re�ects the portion of the change in f that can be explained only as a residual interaction of order n.18

We now address how to merge scenario analysis and HDMR theory. As mentioned in Section 3, in19

a scenario analysis factors are usually represented by groups of exogenous variables. Thus, analysts are20

interested in the e¤ect of a group of parameters rather than in individual parameter e¤ects. Let us refer21

to the model by Corominas et al (2004). The capacity curve, which is one of the factors, is a group of T22

variables (C = fctg, t = 1; 2; :::; T ). When passing from scenario 0 to scenario 1, the whole curve is shifted1

and an analyst is interested in the overall e¤ect of C, and not in the separate e¤ects of each ct. Since eq.2

(4) deal with individual parameters, it needs to be generalized to the case of parameter groups. We proceed3

as follows. First, we partition � in Q < n groups, each called a factor and denoted by l, l = 1; 2; :::; Q.4
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De�nition 1 We call5

�1 �2 ::: �s1| {z }
1

�s1+1 �s1+2 ::: �s2| {z }
2

...
�skQ�1+1 �sQ�1+2 ::: �n| {z }

Q

(5)

factor partition of the parameters, and6

 =
�
1; 2; :::; Q

	
(6)

the vector of factors.7

We then utilize the formalization of Tietje (2005), according to whom a scenario is �a set of system8

variables (impact factors) each of which is allowed to take only a small number of di¤erent levels (two to9

�ve)�. For each of the Q factors (l, l = 1; 2; :::; Q), sl di¤erent levels 
1
l ; : : : ; 

sl
l are de�ned. In Tietje (2005),10

it is suggested to keep sl between two to �ve. Scenario k is the vector k = (
m1
1 ; : : : ; 

mQ

Q ) with each factor11

set at a given level. For simplicity, in the remainder, let us refer to two scenarios, namely scenario 0 and 1:12

0 =
�
01; 

0
2; :::; 

0
Q

	
and 1 =

�
11; 

1
2; :::; 

1
Q

	
denote the values of the factors and, similarly, y0 = f(0)13

and y1 = f(1) denote the corresponding model output values.14

We have the following result (we refer to Table 2 for notation).15

Theorem 1 Let f be a measurable function, and let  be the vector of factors [eq. (6)]. Then,16

�f = f(1)� f(0) =
QX
l=1

X
i1<i2:::<il

�i1;i2;:::;ilf (7)

where17 8>>>>>><>>>>>>:
�if = f(

1
i ; 

0
(�))� f(0)

�i1;i2f = f(i1 ; 
1
i2
; 0(�))��i1f ��i2f � f(0)

:::

(8)

Proof. Let � denote the space of parameter groups, with measure space (�;F ; �). Consider then a Dirac18

�-density of the type �() =
QY
l=1

�(l� 0l ). Eq. (8) then follows by inserting �() into eqs. (3). Eq. (4) then19

becomes eq. (7).1

Theorem 1 states that the decomposition of a change in model output with respect to factors preserves2

the structure of the decomposition with respect to individual variables. It is then possible to de�ne �nite3

change sensitivity indices (FCSI) for factors.4
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De�nition 2 We call5

�1l := �lf (l = 1; 2; :::; Q) (9)

the FCSI of factor 
l
,6

�k
l1
;l2 ;:::;lk

:= �
l1
;l2 ;:::;lk

f (k = 1; 2; :::; Q) (10)

the FCSI of order k of the group of factors l1 ; l2 ; :::; lk ,7

and8

�Tl := �lf +
X
l 6=j

�l;jf + :::+�1;2;:::;Qf (l = 1; 2; :::; Q) (11)

the total order FCSI of factor 
l
:9

Eqs. (9), (10) and (11) de�ne the factor FCSI�s. We are shortly to discuss how they generalize the10

parameter FCSI�s introduced in Borgonovo (2009). Before, let us summarize their meaining. �1l [eq. (9)]11

is the e¤ect of factor l. It equals the change in f provoked by moving factor l from 0l to 
1
l , while the12

other factors are kept at 0l . �
k
l1
;l2 ;:::;lk

[eq. (10)] equals the interaction e¤ect of factors l1 ; l2 ; ::: and lk .13

For instance, let us consider the group FCSI of order 2. �2s;t is the residual change in f provoked by the14

simultaneous shift of factors s and t from 
0
s,

0
t to 

1
s,

1
t respectively [fs;t(

0
1; :::; 

1
t ; :::; 

1
s; :::; 

0
Q)�f(0)],15

after subtraction of their individual e¤ects (��tf ��sf). �Tl [eq. (11)] is the total order FCSI of group l.16

The sum in eq. (11) includes all terms in eq. (7) involving group l. �
T
l is called total e¤ect of factor l and17

coincides with the portion of �f associated with group l.1

We now investigate how factors FCSI�s of factors are related to FCSI�s of the parameters in the group2

(see De�nition 1). Let �0 and �1 denote the values assumed by the exogenous variables (parameters, see eq.3

(5)) in scenarios 0 and 1, respectively. One observes that y0 = f(�
0) = f(0) and y1 = f(�

1) = f(1). Then,4

the following holds.5

Theorem 2 Part 1) Relationship between �rst order factor FCSI (�1i ) and parameter FCSI�s ('
k
t1;t2;:::;tk

).6

Let i = f�t; t = si + 1; si + 2; :::; si + nig the ith factor in De�nition 1 and let t1; t2; :::tk any subset of k7

indices such that t1 ; t2 ; :::; tk 2 i. Then, one has:8

�1i =

niX
k=1

X
t1<t2:::<tk

'kt1;t2;:::;tk (12)

10



where 'kt1;t2;:::;tk is the FCSI of exogenous variables �t1 , �t2 ,..., �tk .9

Part 2) Relationship between second order factor FCSI and parameter FCSI�s ('kt1;t2;:::;tk).10

Let i and t1; t2; :::tk as in Part 1. In addition, let j = f�r; r = sj + 1; sj + 2; :::; sj + njg be the jth factor11

in De�nition 1 and let r1; r2; :::rm any subset of m indices such that r1 ; r2 ; :::; rm 2 j. One has:12

�2i;j = �i;jf =

ni+njX
u=max(ni;nj)

X
s1<s2:::<su

'ut1;t2;:::;tu (13)

Proof. Part 1. We use the subscripts ji and j�twhen referring to the e¤ect of a factor or of an exogenous1

variables, respectively. By expressing eq. (8) as a function of the parameters, one has:2

f(1i ; 
0
(�))� f(0) = f(�

1
t1 ; �

1
t2 ; :::; �

1
tni
; �0(�))� f(�0) (14)

We recall that in Borgonovo (2009) (Corollary 1) the following equalities for the parameter e¤ects hold:3

��t1 ;�t2 ;:::;�tni
f = f(�1t1 ; �

1
t2 ; :::; �

1
tni
; �0(�))�

ni�1X
k=1

X
t1<t2:::<tk

��t1 ;�t2 ;:::;�tnk
f � f(�0) (15)

Hence, there follows that:4

f(�1t1 ; �
1
t2 ; :::; �

1
tni
; �0(�))� f(�0) = ��t1 ;�t2 ;:::;�tni f +

ni�1X
k=1

X
t1<t2:::<tk

��t1 ;�t2 ;:::;�tk f (16)

i.e.,5

�if =

niX
k=1

X
t1<t2:::<tk

��t1 ;�t2 ;:::;�tni
f (17)

By de�nition of 'kt1;t2;:::;tk ,6

��t1 ;�t2 ;:::;�tni
f = 'kt1;t2;:::;tk (18)

which concludes the proof of Part 1.7

Part 2. We note that:8

�i;jf = f(
1
i ; 

1
j ; 

0
(�))��i1f ��i2f � f(

0)

f(�1t1 ; �
1
t2 ; :::; �

1
tni
; �1r1 ; �

1
r2 ; :::; �

1
rnj
; �0(�))��if ��jf � f(�0)

(19)

From Corollary 1 in Borgonovo (2009), there follows that:9

f(�1t1 ; �
1
t2 ; :::; �

1
tni
; �1r1 ; �

1
r2 ; :::; �

1
rnj
; �0(�))� f(�0) =

ni+njX
k=1

X
t1<t2:::<tk

��t1 ;�t2 ;:::;�tk f (20)
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Hence, substituting in eq. (19), one obtains:10

�ijf =

ni+njX
k=1

X
t1<t2:::<tk

��t1 ;�t2 ;:::;�tk f ��if ��jf (21)

One needs to observe that11 Xni+nj

k=1

X
t1<t2:::<tk

��t1 ;�t2 ;:::;�tk f =
Xni

k=1

X
t1<t2:::<tk

��t1 ;�t2 ;:::;�tk f +
Xnj

p=1

X
r1<r2:::<rp

��r1 ;�r2 ;:::;�rp f+

+
Xni+nj

u=max(ni;nj)

X
s1<s2:::<su

��s1 ;�s2 ;:::;�su f

(22)

Then, by utilizing Part 1 [eq. (12)] to expand �if and �jf , and substituting into eq. (21), one obtains:12

�i;jf =
Xni

k=1

X
t1<t2:::<tk

��t1 ;�t2 ;:::;�tk f +
Xnj

p=1

X
r1<r2:::<rp

��r1 ;�r2 ;:::;�rk f+

+
Xni+nj

u=ni

X
s1<s2:::<su

��s1 ;�s2 ;:::;�su f �
Xni

k=1

X
t1<t2:::<tk

��t1 ;�t2 ;:::;�tk f �
Xnj

p=1

X
r1<r2:::<rp

��r1 ;�r2 ;:::;�rk f

(23)

Hence,13

�i;jf =

ni+njX
u=ni+1

X
s1<s2:::<su

��s1 ;�s2 ;:::;�su f =

ni+njX
u=max(ni;nj)

X
s1<s2:::<su

'ut1;t2;:::;tu (24)

14

Part 1 of Theorem 2 states that the �rst order FCSI of a factor is the sum of all the FCSI�s of the15

parameters contained in the factor. Hence, �1i encompasses all individual e¤ects, the e¤ects of all pairs,16

triplets (and so on so forth) that can be formed with the parameters in the group. With reference to17

Corominas et al (2004)�s model, Proposition 2 states that the e¤ect of translating the whole capacity curve18

from one scenario to the other (C0 =
�
c0t
	
! C1 =

�
c1t
	
) is the sum of the e¤ects of all the shifts in the19

individual ct�s, t = 1; 2; :::; T , when considered individually, in pairs, triplets etc..20

Part 2 of Theorem 2 states that the interaction e¤ect between two factors includes the interaction e¤ects21

of all (and sole) the groups of order max(ni; nj) + 1 to ni + nj that can be formed by adding parameters of22

factor j to the parameters of factor i. In Part 2 of Theorem 2, we have used the second-order FCSI�s for23

notation simplicity, but the result can be readily extended to higher order interactions.24

We now turn these �ndings into a procedure for the estimation of �k
l1
;l2 ;:::;lk

while conducting scenario25

analysis (Table 3).26

12



[Insert Table 3 about here]1

The �rst step consists in developing the scenarios and evaluating the model as discussed in Section 32

(i.e., one performs scenario analysis of model output as foreseen by the scenario analysis methodology). The3

second step consists in determining the partition in De�nition 1. This is equivalent to establishing what4

factors are varied across scenarios. The third step (Table 3) consists in running the model on sub-scenarios.5

The sub-scenarios are selected according to eq. (7). The model is �rst run on sub-scenarios involving one-6

factor-at-a-time variations (0l ! 1l , l = 1; :::; Q). By computing the di¤erence between the model output7

in scenario 0 (f(0)) and the values obtained in each sub-scenario, one estimates the �rst order indices, �1l .8

To quantify two-factor interactions (Table 3), the model needs to be run on sub-scenarios formed by shifting9

two-factors-at-a-time. By taking the di¤erence between the values attained by the model in each sub-scenario10

and f(0), and subtracting the �rst order indices of the pair, one obtains the second order FCSI�s. This step11

is repeated Q� 1 times, since the term of order n can be computed as a residual di¤erence. The last step of12

the procedure consists in summing the sensitivity indices of orders 1 to Q of each factor so as to obtain the13

total e¤ect �Tl .14

In the next section, we apply the methodology to gain managerial insights in the scenario analysis of the15

service industry model by Corominas et al (2004).16

5 Application: Explaining the AHDV-1 Model Results on Two Scenarios17

In this section, we apply the method introduced in Section 4 to gain additional managerial insights from the18

scenario analysis of the model proposed by Corominas et al (2004) [eq. (25)].19

Flexibility is a key feature in both the manufacturing and the service industries. For a thorough discussion20

of �exibility and the problem of its measurement, we refer to Wahab et al (2008) and to the references1

therein contained. To achieve �exibility, managers in the manufacturing sector can rely both on machines2

and inventories. In the service sector, the problem has a di¤erent nature �because of the absence of any3

equivalent to inventory (Corominas et al (2004), p. 217)�. Thus, to match �capacity to demand over time�4

(Corominas et al (2004), p. 218), the focus is on workforce. In workforce allocation problems, constraints5

arise in view of regulations and collective enterprise (union) agreements. The concept of annualized hours6

13



plays a central role (Corominas et al (2004), Corominas et al (2007a) Corominas et al (2007b)).7

Corominas et al (2004) develop a mixed integer linear programming model to determine optimal workforce8

allocation. The model equations are as follows:9

minx;d
PT

t=1 �tdt

s:t:PK
k=1 hkxkt + dt � ct (8t)PK
k=1 xkt = N (8t)PT
t=1 xkt = N � rk (8k)

xkt � 0 and integer (8k;8t)

dt � 0 (8t)

(25)

The objective function in eq. (25) represents the temporary worker cost. A = f�t, t = 1; 2; :::; Tg and dt10

denote the hourly cost and the number of external workforce hours, respectively. N denotes the number of11

permanent sta¤-members. The planning horizon is denoted by T . It is assumed that the �rm is capable12

of forecasting demand at times t = 1; 2; :::; T and then to estimate the corresponding required capacity13

(C = fct, t = 1; 2; :::; Tg) � see Table 2. � If demand cannot be satis�ed by permanent sta¤ capacity,14

temporary workers are hired. Working weeks di¤er based on the number of working hours (e.g., 35, 38, 40).15

K denotes the number of working weeks types (Table 2). hk denotes the number of hours in each type of16

week. A �xed number of working weeks of each type can be performed by each sta¤member in the planning17

horizon T (such number is denoted by rk). xkt denotes the number of permanent workers assigned to a18

working week of type k at time t (see Table 2). The �rst constraint states that the �rm�s (o¤ered) capacity19

must exceed (or be equal) to the required capacity at any t. The second concerns the number of workers to20

be assigned to each type of working week at any period t. The third constraint binds the number of weeks21

of a given type that can be performed by each worker during the planning horizon. The fourth and �fth22

constraints are technical.23

Corominas et al (2004) evaluate the model on two scenarios. The output of interest in our analysis is1

the (minimum) cost generated by the optimal choice, here denoted by f� = f(). In the �rst scenario, f�2

is equal to f0� = f(0) = 896. In the second scenario, we have f1� = f(1) = 2282. Hence, in the second3

14



scenario the �rm would incur an extra cost of 1386.4

A natural question that a decision-maker would like to answer, is, then: how can we explain this 155%5

jump? To provide a structured answer to the question, we apply the procedure of Section 4, together with6

the three Settings of Section 3. As suggested by step 2 in Table 3, we determine the factors (De�nition 1).7

The scenarios are characterized by di¤erent required capacity (C), and extra-hour cost (A) pro�les (Figure8

1, upper chart) and annualized hours constrains (H) (Table 4). Thus, three factors are shifted across the9

scenarios, namely C, H and A. The parameter partition is, then given by10

c1 c2 ::: cT| {z }
C

h1 h2 ::: hk r1 r2 ::: rk| {z }
H

�1 �2 ::: �T| {z }
A

(26)

with T = 46 in both scenarios, and k = 3 and 4 in scenarios 0 and 1 respectively. The input data are11

displayed in Figure 1 and in Table 4. The numerical values for C and H are taken from Corominas et al12

(2004).13

[Insert Figure 1 about here]14

[Insert Table 4 about here]15

In scenario 0, the required capacity curve (C, C = fct; t = 1; 2; :::; 46g) (see Figure 1 in Corominas et16

al (2004) from which is taken) is seasonal with a smooth behavior and one peak. In scenario 1, C follows a17

two-peak pattern (see Figure 2 in Corominas et al (2004)). The hourly cost curve (A = f�t; t = 1; 2; :::; 46g)18

assumes values between a minimum of 5/hour to a maximum of 10/hour with the two behaviors shown in19

Figure 1, bottom graphs. The H parameters vary from the three week-type frame of scenario 0 to the four20

week-type frame of scenario 1 (Table 4).21

The second step is the estimation of the scenario FCSI�s. Applying eq. (7), �f� is decomposed as follows:22

�f� = �Cf +�Hf +�Af +�C;Hf +�C;Af +�A;Hf +�C;H;Af (27)

In eq. (27), the �rst three terms represent the e¤ects of the changes in C, H and A, when they vary23

individually. To estimate �1C = �Cf; �
1
H = �Hf and �

1
A = �Af the model is run in three sub-scenarios, in24

which C, A and H are shifted one-at-a-time to the respective values of scenario 1 , while the other factors25
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are kept at scenario 0 (Table 3, step 3). The second order terms �C;Af; �C;Hf; and �A;Hf represent the1

marginal e¤ects of the interactions (C - A), (C - H) and (A - H), respectively. They are estimated by2

re-running the model in three sub-scenarios, with the pairs of factors shifted to scenario 1, with the residual3

factor kept at the value of scenario 0 (Table 3, step 3). Finally, �C;A;Hf represents the residual e¤ect of the4

interaction of the three factors. A total of 6 model runs is necessary for the scenario decomposition.5

The numerical estimates of the FCSI�s are reported in Figure 2.6

[Insert Figure 2 about here]7

Let us start with interpreting the results in the light of Setting 1 (Section 3, page 6). The �rst three8

columns of Figure 2 display �1C , �
1
H and �1A. As �

1
C is positive, the change in the required capacity curve9

from seasonal to peaked causes an increase in the total cost for the �rm. On the other hand, the allocation10

of working hours on a 4-work-week-type basis rather than on a 3-work-week-type basis leads to a reduction11

in the total cost to the �rm (in fact, �1H = �Hf is negative). �
1
A is negative, but it is much smaller than12

�1C , �
1
H . This has the following managerial interpretation. The shift in hourly cost pro�le from scenario13

0 to scenario 1 reduces the total cost, but with a much lower individual e¤ect than the shift in H. Let14

us then consider interaction e¤ects (Setting 2). Interaction e¤ects are reported in bars 4 to 6 of Figure15

2. The most signi�cant interaction is the one between C and A, with �2C;A ' 500. The magnitude of �2C;A16

indicates that this interaction plays a relevant role, as it accounts for around 40% of the change. The positive17

sign of �2C;A indicates that the interaction between C and A is, indeed, a cooperation, and ampli�es their18

individual e¤ects. In particular, it is worth noting thatA has no individual e¤ect, and becomes relevant only19

in interaction with C. �2C;H and �2A;H are much smaller than �2C;A, i.e., the interactions between (C and H)20

and (A and H) have a low impact on �f�. Finally, �
3
C;H;A, the residual e¤ect three-factor interaction, is21

negative and non-negligible.22

Overall, Figure 2 shows that the model response cannot be interpreted as the superimposition of individual23

e¤ects, but interactions play a relevant role. We recall that if an analyst were to use di¤erential techniques24

to explain the change, she/he would not be able to estimate interaction e¤ects (see also Borgonovo (2009)).25

We turn to the identi�cation of the key-drivers (Setting 3). Through step 4 in Table 3, one obtains the26

total order FCSI�s reported in Figure 3.27
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[Insert Figure 3 about here]1

Figure 3 shows that C is the key-driver of the scenario results, followed by H and A. The above2

discussion, however, points out that the relevance of A is not determined by its individual e¤ect, but is due3

to its interaction with C; similarly, part of the relevance of C is due to its cooperation with A.4

The above results deliver the following additional insights on �the factors on which to focus managerial5

attention during implementation (Eschenbach (1992))�. The positive sign of �TC , and the negative sign of �
T
H6

indicate that a change in demand from seasonal to peaked is softened by a simultaneous change of work-hours7

allocation from the three-working-week type to the four�working-week type scheme. However, the capacity8

curve shift is ampli�ed by the simultaneous change in extra-hous costs. The cooperation e¤ect of these two9

factors causes an additional 40% increase in costs. We note that interaction e¤ects between two factors 110

and 1 disappears as soon as one of them stays put � it is a consequence of eq. (8). � In this respect,11

management is probably more likely to have partial control over A (through negotiations) rather than over12

C (which is driven by external forces). Then, in the case of a seasonal-to-peaked demand shift, being able13

to hold extra-hour costs still would reduce losses considerably (40% in the present case). In summary, the14

analysis also reveals two keys in the hands of management to hedge potential losses provoked by a change15

in demand from seasonal to peaked. We �nally note that these insights could not have been obtained by a16

purely qualitative observation of the scenario results.17

6 Conclusions18

Several new quantitative decision-support models have been developed to assist decision-making in the19

service industry sector. The models capture an increasing number of aspects of the managerial problems20

under analysis. However, the lack of a proper methodical approach to gaining managerial insights exposes21

analysts to the risk of partially exploiting the modelling e¤orts. A literature review has indicated scenario22

analysis as the most widely utilized method for corroborating and understanding service industry model23

results.24

This work has proposed a new method to support the acquisition of managerial insights from scenario25

analysis. Central to the method is the integration of scenario analysis and the HDMR theory. The HDMR26
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theory, in fact, allows to preserve the main features of scenario analysis: simultaneous and �nite parameter27

variations and non-smooth model response. We have proven that the HDMR decomposition of model output1

in terms of factors preserves the structure of the HDMR decomposition with respect to exogenous variables.2

It has then been possible to introduce factor �nite change sensitivity indices (FCSI). We have shown that3

the �rst order FCSI of a factor equals the sum of all FCSI�s of the parameters contained in the factor. A4

closed-form expression for the relationship between higher order factor FCSI�s and parameter FCSI�s has5

also been derived. Knowledge of the factor FCSI�s enables a scenario analyst to: i) apportion the change6

to its sources in an exact fashion; ii) quantify the e¤ect of interactions; iii) identify the key drivers of the7

decision-making problem. Thus, scenario analysts are provided with a quantitative explanation of scenario8

analysis results, that reduces the reliance on purely qualitative statements. A 4-step estimation procedure9

has been introduced. Once the main scenarios have been developed, the procedure foresees to run the model10

on sub-scenarios selected according to the HDMR theory and enables the estimation of the factor FCSI�s.11

To demonstrate the method, a numerical case study has been discussed, namely, the scenario analysis of12

Corominas et al (2004)�s workforce allocation model. In Corominas et al (2004), the model is run on two13

scenarios. A 155% increase in minimum (optimal) cost is registered. By application of the procedure (Table14

3), we have been able to identify the individual and cooperation e¤ects of the factors. The required capacity15

curve has been identi�ed as the most important factor, followed by the change in working week parameters16

and by extra hour costs. As far as interactions are concerned, the cooperation between required capacity and17

extra-hour costs leads to a 40% additional fall in total costs. Thus, hedging capacity changes with a proper18

extra-hour cost pro�le (i.e., being able to revert the sign of the interaction term) would be an important tool19

in the hands of management to smoothen potential losses.20

A �nal remark. The proposed scenario decomposition method nests naturally into scenario analysis.21

Thus, it enables one to gain additional insights while preserving the rigor in scenario development and22

the methodological advances achieved by scenario literature. As this is the �rst work in this direction,23

the present paper also paves the way to further research, with special reference to applications in di¤erent24

industry sectors (Manufacturing, Finance, Inventory � see Borgonovo and Peccati (2008b)) and to problems25

involving the implementation of non-small sets of scenarios.1
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Table 2: Notation and Symbols used in this work

Symbol Meaning

N number of sta¤ members

T planning horizon (non-holidays weeks)

C = fctg capacity required at t to satisfy demand; t = 1; 2; :::; T

K number of types of working weeks

hk number of hours corresponding to week of type k

rk number of working weeks of type k to be performed by each sta¤ member

�t hourly cost of external workforce at t

dt number of hours provided by temporary workers in period t

y model output (decision support criterion)

�l Parameter

l A factor (parameter group) [eq. (5)]

f(�) Model output relationship to the parameters or parameter groups

(1i1 ; :::; 
1
ik
; 0(�)) factors i1 ; :::; ik are shifted at scenario 1, the remainder are kept at scenario 0.

�i1;i2;:::;ikf Orthogonalized change in f due to the changes in i1 ; i2 ; :::; ik [eq. ()]

�ki1;i2;:::;ik Finite change sensitivity index (FCSI) of order k for factors [eq.(10)]

�1l First order FCSI for factor l [eq. (9)]

�Tl Total order FCSI for factor l [eq. (11)]

'ki1;i2;:::;ik FCSI of order k for parameters

C;A;H Groups of parameters in the scenario analysis of the model of Corominas et al (2004) [eq. ()]
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Table 3: Steps for scenario decomposition and estimation of the FCSI

Step Action Quantity Estimated

1 Develop scenarios and run the model accordingly f(0); f(1); :::

2 Determine the factors  = (1; 2; :::; Q) [eqs. (5) and (6)]

3

For k = 1; 2; :::Q

2:a For l1 < l2 < ::: < lk compute f(1l1 ; 
1
l2
; :::; 1lk ; 

0
(�))� f(0)

2:b If k > 1, subtract all e¤ects of order s = 1; 2; :::; k � 1

�l1;l2;::::;lk

4 For l = 1; 2; :::; Q sum all e¤ects related to factor l �Tl

Table 4: Working-week types (K), hours (h) and allocation (r) in Scenario 1

k hk rk k hk rk

1 30 11 1 30 8

Scenario 1 2 37.5 24 Scenario 2 2 35 15

3 45 11 3 40 15

4 45 8
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Capacity scenarios
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Figure 1: Capacity (C = fctg) and external workers hourly costs (A = f�tg) in Scenarios 1 and 2.
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Figure 2: FCSI of �rst order (�1C ; �
1
H ; �

1
A; bars 1 to 3), second order (�

2
C;H ; �

2
C;A; �

2
A;H , bars 4 to 6) and third

order (�3C;H;A;) in the scenario analysis of Corominas et al (2004)�s model.

28



1000

500

0

500

1000

1500

2000

C H A

T
sξ

Figure 3: Total e¤ects of factors C, H and A (�TC , �
T
H , �

T
A) in the scenario analysis of Corominas et al (2004)�s

model.
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