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Abstract

Risk Achievement Worth is one of the most widely utilized importance measures. RAW

is de�ned as the ratio of the risk metric value attained when a component has failed over

the base case value of the risk metric. Traditionally, both the numerator and denominator

are point estimates. Relevant literature has shown that inclusion of epistemic uncertainty i)

induces notable variability in the point estimate ranking and ii) causes the expected value of

the risk metric to di¤er from its nominal value. We investigate the conditions under which the

equality of the nominal and expected values of a reliability risk metric holds. We then study

how the presence of epistemic uncertainty a¤ects RAW and the associated ranking. We propose

an extension of RAW (called ERAW) which allows one to obtain a ranking robust to epistemic

uncertainty. We discuss the properties of ERAW and the conditions under which it coincides

with RAW. We apply our �ndings to a probabilistic risk assessment model developed for the

safety analysis of NASA lunar space missions.

Keywords: Reliability Analysis; Risk Analysis; Importance Measures; Uncertainty Analysis.

1 Introduction

In the risk analysis of complex operational systems, risk analysts often make use of quantitative

models to support decision-making [Dillon et al. (2003)]. Decision-support models help them in

reproducing system behavior and in assessing several measures of system performance and safety.

Importance measures play a central role in informing analysts about how system risk is contributed

by systems, structures and components (SSCs). Importance measure ranking is then used by

decision-makers in applications such as the prioritization of maintenance activities, the assignment

of SSCs to graded quality assurance programs, the safety categorization of SSCs, etc. [Borgonovo

and Smith (2011)]. One of the most widely used importance measures is risk achievement worth

(RAW). Among the reasons of RAW�s widespread di¤usion is its ability to produce clear and

essential insights to risk analysts. RAW informs about the potential increase in risk associated

with the occurrence of an event. It is de�ned as follows. Let Unom be the nominal value of the risk

metric1. Let E denote the event of interest. Typically, E is the failure of a given component or the
1 In reliability applications, U is usually a reliability or unreliability function, in probabilistic risk assessment a

core damage frequency or large early release frequency, in space applications it can be a loss of crew or loss of mission.
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occurrence of a basic event. Then, letting U+ denote the conditional value of the risk metric given

E, one de�nes[Vesely et al. (1986)]2

RAWE :=
U+E
Unom

: (1)

One of the main assumptions underlying the de�nition of RAW [eq. (1)], is that exogenous variables

(e.g., failure probabilities) are known. Both U+E and U
nom, in fact, are obtained with the exogenous

variables �xed at a certain value. This assumption is common across importance measures: the

Birnbaum [Birnbaum (1969)], Fussell-Vesely [Fussell (1975)], Risk Reduction Worth [Vesely et al.

(1986)], Criticality [Cheok et al. (1998)], Di¤erential [Borgonovo and Apostolakis (2001)], Com-

posite [Ramirez-Marquez and Coit (2005)], Joint [Gao et al. (2007)] and Total-order [Borgonovo

(2010), Do Van et al. (2010)] are all de�ned with the reliability model calculated at the nominal

value of the parameters.

We recall that the nominal value of the risk metric captures aleatory uncertainty [Apostolakis

(1990), Aven (2010)], namely, our lack of knowledge in the �nal result of a the statistical exper-

iment under scrutiny (i.e., system or component failures in our case). However, a second type of

uncertainty characterizes most practical applications, i.e., epistemic (or parametric) uncertainty.

Epistemic uncertainty refers to our lack-of-knowledge about the values of the parameters of the

model through which the risk metric is evaluated [for a recent discussion of aleatory vs epistemic

uncertainty in operations research modelling, see Kleijnen et al. (2011)]. Systematic approaches

for including epistemic uncertainty in reliability importance measures are o¤ered by Modarres and

Agarwal (1996) and Borgonovo (2008). These works propose to investigate variability in importance

measure by simple Monte Carlo simulation. The values of the importance measures are computed

at each Monte Carlo run and the corresponding variation ranges are registered. The authors of the

present work applied this type of approach in a realistic application. Results are produced through

a standard reliability analysis software package [SAPHIRE, Smith et al. (2008)]. Figure 1 presents

numerical �ndings for uncertainty in RAW.

Figure 1 allows the decision-maker to appreciate her con�dence in the importance measure

(RAW in this case) results. However, the overlapping between the distributions of the RAWs is such

that she cannot separate with certainty important from non-important elements. Thus, the problem

emerges of con�dently entrusting the ranking obtained through importance measures computed

with the parameters at the nominal values, when one is in the presence of epistemic uncertainty.

This issue is also encountered in Borgonovo (2008), where the assignment of components to safety

categories becomes probabilistic.

In this work, we address this issue proposing an extension of the de�nition of RAW that makes it

robust to epistemic uncertainty. Our goal is to utilize the same (no more and no less) information

available to the decision-maker for performing a Monte Carlo simulation. Thus, the decision-

maker�s degree-of-belief about U is represented by its state-of-knowledge distribution (see also

Kaplan and Garrick (1981), Apostolakis (1990), Aven (2010), Kleijnen et al. (2011)). Knowing

2Vesely et al. (1986) discuss that an alternative de�nition is represented by RAWDifference
E = U+�U0. However,

as they already recognize, the ratio de�nition in eq. (1) is the most widely applied [see also Cheok et al. (1998)]
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Figure 1: Uncertainty in RAW as displayed by the SAPHIRE computer code for the NASA
space mission PSA model used in this work. The horizontal axis displays basic events. The

vertical axis the corresponding distribution of RAW provoked by epistemic uncertainty. The bars
extend from the 5th to the 95th quantiles of the RAW distributions.

that �E has happened�[eq. (1)] alters more than the sole nominal value of U , because it changes

the distribution of U . We then propose an extension of the de�nition of RAW that considers the

e¤ect of E on the distribution of U . We call this extension epistemic RAW (ERAW). We discuss

its properties and study the conditions under which RAW and ERAW coincide. This leads us to

investigate the assumptions under which the nominal value of a reliability function coincides with

its state-of-knowledge expected value. As we are to see, separability and composite multilinearity

of the risk metric play an essential role in the investigation [on the relevance of multilinearity in

operational research problems, we refer to Grabisch et al. (2003)]. We address the properties of

ERAW for series and parallel systems. For systems with single points of failure, results show that

information on component failure resolves both the aleatory and epistemic uncertainty about the

system state. This leads us to address in greater detail an early problem in the computation of

RAW: the presence of dependencies. Stochastic dependencies and state-of-knowledge dependencies3

in the computation of RAW and ERAW are discussed in detail by means of a three-components in

parallel system example.

We then investigate the utilization of ERAW by application to the Probabilistic Safety As-

sessment (PSA) model developed by the US Idaho National Laboratory for the risk analysis of

NASA space missions [Borgonovo and Smith (2011)]. We discuss an algorithm for the numerical

estimation of ERAW. Several numerical experiments are performed. As expected from the theo-

retical investigation, RAW and ERAW assume di¤erent values if state-of-knowledge dependences

are factored into the analysis. The level of agreement between the ranking induced by ERAW and

3The terms stochastic and state-of-knowledge dependece are de�ned in Apostolakis and Moieni (1987). See also
Section 2.
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RAW is examined through Savage scores [Iman and Conover (1987)] and decision-making insights

are discussed.

The remainder of the work is organized as follows. Section 2 discusses stochastic dependence and

the de�nition of RAW, as well as its properties for parallel and series systems. Section 3 addresses

the general framework of epistemic uncertainty in reliability functions, with focus on composite

multilinearity and separability. Section 4 de�nes ERAW. Section 5 proposes an illustrative example.

Section 6 presents the application to a NASA space mission model. Conclusions are o¤ered in

Section 7.

2 Risk Achievement Worth and Multilinearity: Some Properties

In this section, we brie�y review the traditional de�nition of RAW and some of its properties.

We consider a system whose state is determined by the state of n components or, more generally,

basic events. Let ' be the vector of basic event Boolean indicator variables. 'j = 1 denotes the

occurrence of basic event j. 	 is the system indicator variable. 	 = 1 is called top event and

can denote system failure or success. The Boolean logic expression that maps ' onto 	 is called

system structure function. We denote it by 	('). For instance, for a system of n components in

series, it is 	(') = 1 �
nQ
i=1
(1 � 'i). Let U = P (	 = 1) denote the probability of the top event

occurring within mission time T . U is called risk metric. Let Zi denote the indicator variable of a

generic prime implicant (minimal cut set or minimal path set) and let M be the number of prime

implicants. A prime implicant is a minimal collection of basic events whose occurrence causes the

top event. Formally, 	 = Z1 _ Z2 _ ::: _ Zn. Then,

U = P (

M[
i=1

fZi = 1g) =
MX
i=1

P (Zi = 1)�
MX

i;j=1;i6=j
P (fZi = 1g\fZj = 1g)+:::+(�1)n+1P (

M\
r=1

fZr = 1g)

(2)

In turn, Zi is realized when all the indicator variables of the basic events contained in Zi are unity.

Let 'ik denote that indicator variable of the k
th basic event in Zi and let mi be the number of

basic events in Zi. Then, it is Zi = 'i1 ^ 'i2 ^ ::: ^ 'imi . Hence,

P (Zi = 1) = P (\mi
k=1

�
'ik = 1

	
) = P ('imi

j'imi�1 ; 'imi�2 ; :::; 'i1)�P ('imi�1j'imi�2 ; 'im�3 ; :::; 'i1)�:::�P ('i1)
(3)

Eq. (3) suggests that P (Zi = 1) is the product of mi conditional probabilities. Denoting the kth

one by qik = P ('ik j'ik�1 ; 'ik�2 ; :::; 'i1), we come to

P (Zi = 1) =

miY
k=1

qik (4)

For second order terms, a similar notation applies, but with a caveat. In fact, by de�nition

P (Zi = 1 \ Zr = 1) = P (
�
\mi
k=1

�
'ik = 1

�	
\
�
\mr
c=1

�
'ic = 1

�	
) (5)
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Note that some basic events in \mi
k=1

�
'ik = 1

	
and \mr

c=1

�
'ic = 1

�
can be identical. By idempo-

tency, identical basic events simplify in the Boolean expression. Then, the number of basic event

probabilities required to assess P (Zi = 1 \ Zr = 1) is mi +mj �mir, where mir is the number of

basic events shared by Zi and Zr. Also, the generic basic event probability is now conditional not

only on the basic events in Zi but also on the basic events in Zr. To denote this fact, we use the

notation qirs , where s = 1; 2; :::; mi +mj �mir. Then, we have

P (fZi = 1g \ fZj = 1g) =
mj+mj�mirY

s=1

qirs (6)

A similar notation can be used for the higher order terms of eq. (2), obtaining:

U = U(q) =
MX
k=1

mkY
l=1

q
kl
�

MX
i;r=1;i6=r

mj+mr�mirY
s=1

qirs +
MX

i;r;l=1;i6=r 6=l

mj+mr+ml�mirlY
t=1

qirlt � ::: (7)

where q denotes the vector of (all) conditional basic event probabilities. Eq. (7) states that U

is a multilinear polynomial in q. As proven in Borgonovo (2010), this statement holds for both

coherent and non-coherent systems.

We can now come to the computation of RAW. This involves a two steps calculation. First, one

evaluates Unom = U(qnom). Then, let E =
�
'j = 1

	
. To get U+j , one �rst sets 'j = 1 in 	('),

and next re-evaluates the risk metric utilizing the conditional probabilities given that 'j = 1 [for

further discussion about the calculations of conditional risk metrics with stochastic dependences, we

refer to Smith (1998)]. Thus, qnomik
needs to be reassessed becoming q+ik = P ('ik j'ik�1 = 1; 'ik�2 =

1; :::; 'i1 = 1; 'j = 1), in general. The corresponding new vector of conditional probabilities is

denoted by q+. Substituting into eq. (1), we obtain

RAWj =
U+j
Unom

=

XM

k=1

mkQ
l=1

q+
kl

�
MP

i;r=1;i6=r

mj+mr�mirQ
s=1

q+irs +
MP

i;r;l=1;i6=r 6=l

mj+mr+ml�mirlQ
t=1

q+irlt � :::XM

k=1

mkQ
l=1

qnom
kl

�
MP

i;r=1;i6=r

mj+mr�mirQ
s=1

qnomirs
+

MP
i;r;l=1;i6=r 6=l

mj+mr+ml�mirlQ
t=1

qnomirlt
� :::

(8)

A note. To obtain RAWj a computational shortcut is often followed by standard software. It

consists in directly setting qi = 1 in eq. (7), leaving the remaining probabilities unchanged. This

procedure is correct, provided that the rare event approximation is not used and the independence

assumption is stated. Conversely, if stochastic dependences are present, one needs to adjust the

basic event probabilities substituting q+ for qnom.

In the remainder, the following two properties of RAW for single points of failure and parallel

systems are useful.
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1. If basic event j is in series with the top event (single point of failure), then

RAWj = 1=U
nom (9)

2. If a system is made of n parallel components, then

RAWj = 1=q
nom
j (10)

Item 1 implies that, if basic event j is in series with basic event i, then RAWj = RAWi. Thus,

all single point of failures have the same RAW. Item 2 states that, in a parallel system, the most

unreliable component is the one associated with the highest RAW.

The discussion carried out in this section has detailed the traditional de�nition of RAW, which

is computed with all basic event probabilities �xed at their nominal values. In order to address the

de�nition of RAW in the presence of epistemic uncertainty, we need �rst to analyze the consequences

of epistemic uncertainty on the risk metric. This is the subject of the next section.

3 Epistemic Uncertainty and Composite Multilinearity

In this section, we study generic multilinear functions in the presence of epistemic uncertainty.

The reason why we address generic functions is that multilinearity characterizes several operations

research models, besides reliability polynomials. Belief-network polynomials are multilinear in the

probabilities [Park and Darwiche (2004)]. An important role is played by multilinearity in game

theory [see Grabisch et al. (2003), Alonso-Meijide et al. (2008), Marichal and Mathonet (2011)],

multiattribute utility theory [Reeves and J.J. (1989), Saaty (1994), Bordley and Kirkwood (2004)],

global optimization (Floudas and Gounaris (2009)) (for a further review, see Borgonovo and Smith

(2011)).

We write a multilinear function as

y = g(x) =

nX
k=1

kX
i1<i2<:::<ik

�i1;i2;:::;ik � xi1 � xi2 � ::: � xik (11)

By eq. (11), if x is �xed at xnom, we obtain ynom = g(xnom).

In several applications, risk analysts utilize more elaborate expressions for the xi�s and they

become functions of one or more parameters. We write x = h(�), h : Rm ! Rn. Eq. (11) then

becomes composite multilinear:

y = g(x(�)) =

nX
k=1

kX
i1<i2<:::<ik

�i1;i2;:::;ik � xi1(�) � xi2(�) � ::: � xik(�) (12)

In eq. (12), for generality, we have allowed each exogenous variable xi to depend on all �0s. However,
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in some instances xir might depend upon just one speci�c parameter �ir :

y = g1(x(�)) =
nX
k=1

kX
i1<i2<:::<ik

�i1;i2;:::;ik � xi1(�i1) � xi2(�i2) � ::: � xik(�ik) (13)

If eq. (13) holds, we say that y is a separable composite multilinear function of the exogenous

variables.

Using eq. (12), the nominal value of the risk metric remains ynom, if � is set at value(s) �nom

that satisfy xnom = h(�nom). However, in most practical situations, the decision-maker is unable to

assign � a certain value. Uncertainty in � is called parametric or epistemic [Kleijnen et al. (2011)].

The distinction between aleatory and epistemic uncertainty has become an integral part of risk and

reliability analysis with the works of Kaplan and Garrick (1981), Apostolakis (1990), Paté-Cornell

(1996). Several approaches are available to address epistemic uncertainty, ranging from probability

to possibility theory and the most appropriate depends on the decision-maker�s state-of-information

as well as on the �nal purposes of the analysis. A wide literature describing these approaches is

available and its review is outside the scope of this paper. We refer to Aven (2010), Dubois et al.

(2001), Dubois (2010) and Garrick (2010) for a thorough discussion. Throughout, we assume that

available data allow the risk analyst to assess probability distributions on the parameters. �, then,

becomes a random vector denoted by �. We let (
�,B(
�),P�), F�(�) = P�(� < �); f�(�)

denote the associated probability space, cumulative and density functions, respectively. We note

that F�(�) is, in general, a joint distribution function. In the case an independence assumption is

stated, then F�(�) =
mQ
i=1
Fi(�i) , and one talks about state-of-knowledge independence [Apostolakis

and Moieni (1987)].

By eq. (12), y cannot be assigned a certain value and its value in a given state of the world

depends on the realization of � in such state. We use the notation y = g(xj� = �) for evidencing
this dependence. In the broader framework of model uncertainty, eq. (12) is called model of

the world [Apostolakis (1990)]. By world, one means the object of interest to the analyst in her

investigation. The unconditional solution of the model of the world is obtained by �nding the

weighted average of the solution of conditional models where the weights are the probabilities of the

parameters and the assumptions [see Apostolakis (1990), eq. (3), p. 1360]. We write:

Y =
Z
g(xj� = �)dP�(�) =

Z Z
:::

Z
g(xj� = �)f�(�)

NY
i=1

d�i = E�[Y ] (14)

If y has the form in eq. (12), one obtains

Y = E�[
nX
k=1

kX
i1<i2<:::<ik

�i1;i2;:::;ik � xi1(�) � xi2(�) � ::: � xik(�)] (15)

By comparing eqs. (12) and (11), it is clear that, generally, Y will be di¤erent from ynom, for two
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reasons: i) eq. (12) is more general than eq. (11) from a structural viewpoint; and ii), in eq. (15),

we are also considering a type of uncertainty (epistemic) not included in eq. (12).

We then investigate the conditions under which Y and ynom coincide. It is convenient to write
ynom =

Xn

k=1

Xk

i1<i2<:::<ik
�i1;i2;:::;ik � xnomi1

� xnomi2
� ::: � xnomik

. We have the following result.

Lemma 1 If
1) y is separable [eq. (13)]

2) state-of-knowledge independence holds [f�(�) =
Q
k

fik(�ik)]

3) the equality xnom = E�[x(�)] holds
then ynom = Y, that is

E�[
nX
k=1

kX
i1<i2<:::<ik

�i1;i2;:::;ik �xi1(�)�xi2(�)�:::�xik(�)] =
nX
k=1

kX
i1<i2<:::<ik

�i1;i2;:::;ik �xnomi1 �xnomi2 �:::�xnomik

(16)

Proof. Assumption 1 allows us to write

Y = E�[
nX
k=1

kX
i1<i2<:::<ik

�i1;i2;:::;ik � xi1(�i1) � xi2(�i2) � ::: � xik(�ik)] (17)

If assumption 2 holds, by the linearity of the expectation operator and by the fact that, under

independence, the expected value of a product is the product of the expected values, one obtains

E�[
Xn

k=1

Xk

i1<i2<:::<ik
�i1;i2;:::;ik � xi1(�i1) � xi2(�i2) � ::: � xik(�ik)]

=
Xn

k=1

Xk

i1<i2<:::<ik
�i1;i2;:::;ik � E[xi1(�i1)] � E[xi2(�i2)] � ::: � E[xik(�ik)]

(18)

If assumption 3 holds, then E[xik(�ik)] = xnomik
, which completes the proof.

Lemma 1 states that Y equals ynom if: 1) y is a separable composite multilinear function of

the parameters; 2) state-of-knowledge independence is assumed; and 3) the expected value of the

functions xi(�i) coincides with the nominal value xnomi . These three conditions may not be actually

encountered in practical applications, especially the ones concerning separability and independence.

However, the assignment of nominal values equal to the expected value of a failure probability is

part of common practice. Especially in the early stages of model building, analysts start with the

nominal of the parameters and assess variation ranges around these values [Felli and Hazen (2004)].

Then, the mean value of xi coincides with its nominal value.

In the next section, we discuss the case in which y is a reliability polynomial.

4 Epistemic Uncertainty and Risk Achievement Worth

In this section, we focus on the case in which y is the output of a reliability model. In this

context, aleatory uncertainty expresses the fact that we are uncertain about the top event. Epistemic

uncertainty refers to our uncertainty in the parameters of the model utilized to characterize U .
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Thus, U(qj�) becomes a random variable and u = U(qj� = �) is a possible realization of the

value of the risk metric. To get the unconditional model solution, one averages over epistemic

uncertainty obtaining

U =
Z
U(qj� = �)dP�(�) =

Z Z
:::

Z
U(qj� = �)f�(�)

NY
i=1

d�i = E�[U ] (19)

Suppose now that the decision-maker is informed that basic event j has happened, i.e., 'j = 1.

The new decision-maker�s degree-of-belief about U is portrayed by the conditional value of the

risk metric, namely U(qj� = �;'j = 1). Then, let (
�j'j ,B(
�j'j ),P�j'j=1) the new probability
space associated with the uncertain factors, after the information 'j = 1 has been gathered. The

conditional expected value of the risk metric is given by

U+j := E�j'j=1[U j'j = 1] =
Z Z

:::

Z
U(qj� = �;'j = 1)f�j'j=1(�j'j = 1)

NY
i=1

d�i (20)

Eqs. (19) and (20) allow us to extend the de�nition of RAW.

De�nition 1 We call epistemic risk achievement worth the quantity

RAWj :=
U+j
U (21)

Eq. (21) de�nes the importance of basic event j as the ratio of: a) the conditional expected risk

metric given that the decision-maker receives evidence that basic event j has happened; and b) the

expected value of the risk metric; both the numerator and denominator fully account for epistemic

uncertainty.

We now show that De�nition 1 is a natural extension of the traditional RAW.

Proposition 1 If
1) qik = qik(�ik)

2) f�(�) =
Q
k

fik(�ik)

3) f�j'j=1(�j'j = 1) =
Q
k

fikj'j=1(�ik j'j = 1)

and

4) qnom = E[q] and q+ = E�j'j=1[q
+j'j = 1]

then

ERAWj = RAWj (22)
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Proof. To prove eq. (22), it is necessary to prove that

E[U j'j = 1]
E[U(q)]

=

XM

k=1

mkQ
l=1

q+
kl

�
MP

i;r=1;i6=r

mj+mr�mirQ
s=1

q+irs +
MP

i;r;l=1;i6=r 6=l

mj+mr+ml�mirlQ
t=1

q+irlt � :::XM

k=1

mkQ
l=1

qnom
kl

�
MP

i;r=1;i6=r

mj+mr�mirQ
s=1

qnomirs
+

MP
i;r;l=1;i6=r 6=l

mj+mr+ml�mirlQ
t=1

qnomirlt
� :::

(23)

We start with the denominator of the left hand side. By de�nition, it is

U = E[U(q)] = E[
MX
k=1

mkY
l=1

qnom
kl

�
MX

i;r=1;i6=r

mj+mr�mirY
s=1

qnomirs +
MX

i;r;l=1;i6=r 6=l

mj+mr+ml�mirlY
t=1

qnomirlt � ::: ]

(24)

Under assumption 1 and 2 and 4, Lemma 1 holds. Therefore, U =U0. For the numerator, by
assumption 1, we have

U j'j =
MX
k=1

mkY
l=1

q+
kl
(�kl)�

MX
i;r=1;i6=r

mj+mr�mirY
s=1

q+irs +

MX
i;r;l=1;i6=r 6=l

mj+mr+ml�mirlY
t=1

q+irlt(�irlt)� ::: (25)

and, by assumption 3,

U+j =
XM

k=1

mkQ
l=1

E�j'j=1[q
+
kl
j'j = 1]]�

MP
i;r=1;i6=r

mj+mr�mirQ
s=1

E�j'j=1[q
+
irs
j'j = 1]]+

+
MP

i;r;l=1;i6=r 6=l

mj+mr+ml�mirlQ
t=1

E�j'j=1[q
+
irlt
j'j = 1]]� :::

(26)

Finally, by assumption 4, the base case of the conditional probabilities is set equal to the conditional

expectations, then

U+j =
MX
k=1

mkY
l=1

q+
kl
�

MX
i;r=1;i6=r

mj+mr�mirY
s=1

q+irs +

MX
i;r;l=1;i6=r 6=l

mj+mr+ml�mirlY
t=1

q+irlt � ::: (27)

which concludes the proof.

Proposition 1 establishes the conditions under which ERAW coincides with RAW for any generic

system, coherent and non-coherent. In the next two propositions, we analyze ERAW in the case

of two types of systems which are widely studied in the reliability literature, namely series and

parallel systems.

Proposition 2 Consider a generic system and let basic event j be in series with the Top event

(single point of failure). Then,

U+j = 1 and ERAWj =
1

U (28)

The fact that U+j = 1 in Proposition 2 has the following interpretation. For single points of

failure, the resolution of aleatory uncertainty on basic event j leads to certainty about the system
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state (it is failed), independently of the aleatory uncertainty on the remaining components�failure

probabilities and of the state-of-knowledge uncertainty on the model parameters. Note that the

distribution of U collapses into a Heaviside function centered at 1 (its density, fU (u), is a Dirac-�

function centered at unity.) Eq. (28) then states that, for ERAWj to equal RAWj it su¢ ces that

U =Unom, without requirements on the conditional failure distributions. In other words, for single
points of failure, assumptions 1, 2 in Proposition 1 su¢ ce for ERAWj = RAWj .

For parallel systems, the following holds.

Proposition 3 Consider a system made of n components in parallel. Let4

qn = P ('n = 1j'n�1 = 1; :::; 'j = 1); qn�1 = P ('n�1 = 1j'n�2 = 1; :::; 'j = 1), etc. (29)

Then, in general:

1.

ERAWj =
E�j'j=1[qnqn�1:::qi+1; qi�1; :::; q1]
E�[qnqn�1:::qi+1; qi; qi�1; :::; q1]

(30)

2. If f�j'j=1(�j'j = 1) =
nQ

s=1;s 6=j
fs(�s) then

ERAWj =
1

E[qj ]
(31)

3. If E[qj ] = qnomj , then ERAWParallel
j = RAWParallel

j

Proof. Item 1. In a parallel system, it is

	 =
nY
i=1

'i (32)

Thus,

P (	 = 1) = P (

n\
s=1

's = 1) = P ('n = 1j'n�1 = 1; :::; 'j = 1):::P ('1 = 1j'j = 1)P ('j = 1) (33)

P (	 = 1j'j = 1) = P ('n = 1j'n�1 = 1; :::; 'j = 1):::P ('1 = 1j'j = 1) (34)

Recalling that U = P (	 = 1) and U+j = P (	 = 1j'j = 1), we have

E�[U ] = E[qnqn�1:::qi+1; qi�1; :::; q1; qi] (35)

E�[U j'j = 1] = E[qnqn�1:::qi+1; qi�1; :::; q1] (36)

4 In this case, because we have a unique MCS, the notation with the double index qik becomes redundant. In fact,
it is always i = 1. We then switch to a 1 subscript notation.
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Thus, eq. (30) is proven.

Item 2. If f�j'j=1(�j'j = 1) =
nQ

s=1;s 6=i
fsj'j=1(�sj'j = 1), then

RAWj =
E�[qnqn�1:::qi+1; qi�1; :::; q1]

E�[qnqn�1:::qi+1; qi�1; :::; q1]E[qi]
=

1

E[qi]
(37)

Item 3 then follows by E[qi] = qnomi and by eq. (31).

Item 1 in Proposition 3 reports the generic expression of ERAW for a parallel system. Item 2

specializes this expression in the case the conditional epistemic distribution is a product distribution.

Item 3 adds the usual assumption that the nominal value is selected as reference value (expected

value) around which the distribution of qi is assessed.

In the next section, we illustrate the discussion and results obtained sofar by means of an

illustrative example.

5 An Illustrative Example

This section describes the results and concepts introduced sofar by means of an illustrative 3-

component-in-parallel system. Throughout the example, we also try and evidence the role of

assumptions about stochastic and state-of-knowledge (in)dependencies.

The structure function of the system is 	 = '1'2'3: Then, the system unreliability is

U = P (	 = 1) = P ('1 = 1 \ '2 = 1 \ '3 = 1) (38)

Case 1: no epistemic uncertainty and stochastic dependencies. Eq. (38) becomes

U = P (	 = 1) = P ('3 = 1j'2 = 1; '1 = 1)P ('2 = 1j'1 = 1)P ('1 = 1) (39)

If there is no epistemic uncertainty, then the decision-maker is certain about the values of the

failure probabilities. For simplifying the notation a bit, we assume failure of component 3 to be

stochastically independent of the failures of components 1 and 2 in the next computations. Hence,

eq. (39) becomes:

U = P ('3 = 1)P ('2 = 1j'1 = 1)P ('1 = 1) (40)

Setting the nominal values of the failure probabilities qnom1 = P ('1 = 1) = 1=3, qnom2 = P ('2 =

1) = 2=7 and qnom3 = P ('3 = 1) = 1=4, q
+
2 = P ('2 = 1j'1 = 1) = 3=7 we obtain Unom = 0:036.

This set of probabilities also allows us to compute RAW. We need to compute the numerator

in eq. (1) [the denominator is Unom]. The value of the risk metric computed with '1 = 1 is given

by: U+1 = P (	 = 1j'1 = 1) = P ('3 = 1)P ('2 = 1j'1 = 1). Hence, we have

RAW1 =
P (	 = 1j'1 = 1)

P (	 = 1)
=

P ('3 = 1)P ('2 = 1j'1 = 1)
P ('3 = 1)P ('2 = 1j'1 = 1)P ('1 = 1)

=
1

qnom1

= 3 (41)
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Similarly, one obtains

RAW2 =
P (	 = 1j'2 = 1)

P (	 = 1)
=

P ('3 = 1)P ('1 = 1j'2 = 1)
P ('3 = 1)P ('1 = 1j'2 = 1)P ('2 = 1)

=
1

qnom2

=
7

2
(42)

RAW3 =
P (	 = 1j'3 = 1)

P (	 = 1)
=

P ('2 = 1j'1 = 1)P ('1 = 1)
P ('3 = 1)P ('1 = 1j'2 = 1)P ('2 = 1)

=
1

qnom3

= 4 (43)

Eqs. (41)-(43) indicate that component 3 is associated with the highest RAW, followed by compo-

nents 2 and 1 [see also eq. (10)]

Case II: failure rates. In case I, the analysis is carried out at the basic event level of the reliability

model. In the practice, analysts utilize additional models for assessing the failure probabilities. One

of the most familiar is the exponential model in which qi = 1� e��iT , where �i is the failure rate
corresponding to qi. For our example, we would write q1 = 1 � e��1T , q+2 = 1 � e��+2 T and

q3 = 1� e��3T . Letting T = 1 for simplicity, we obtain

U = (1� e��1)(1� e��
+
2 )(1� e��3) (44)

If the analyst wishes to retain the same numerical value of Unom, she needs to select the failure

rates [see also Section 3] from

�ln(1� qnomi ) = ��i (45)

In our case, we have ��1 = 0:405, ��2 = 0:336, ��3 = 0:290 and �+�2 = 0:560. This assignment also

insures invariance of the component RAW�s. In fact,

RAW1 =
P (	 = 1j'1 = 1)

P (	 = 1)
=

(1� e��+�2 )(1� e���3)
(1� e���1)(1� e��+�2 )(1� e���3)

=
1

1� e���1
= 3 (46)

One obtains similar results for components 2 and 3.

Case III: epistemic uncertainty, state-of-knowledge independence and separability. Cases I and

II have discussed the computation of U and RAW in the absence of epistemic uncertainty. Suppose

the decision-maker is uncertain about the values of the parameters and wishes to take such epistemic

uncertainty into consideration. Let f�(�1; �2; �
+
2 ; �3) denote the joint density of the parameters.

By eq. (19), the unconditional solution of the problem is

U =
Z Z Z Z

(1� e��1)(1� e��
+
2 )(1� e��3)f�(�1; �2; �+2 ; �3)d�1d�2d�

+
2 d�3 (47)

Eq. (47) leads to U 6= Unom; in general. However, Lemma 1 indicates the conditions under which
U coincides with Unom. Let us explore them. First, the analyst needs to assume state-of-knowledge
independence. Setting

f�(�1; �2; �
+
2 ; �3) = f1(�1)f2(�2)f2+(�

+
2 )f2(�3) (48)
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Because eq. (44) is separable, eq. (47) becomes

U = E�[q1]E�[q+2 ]E�[q3] (49)

As it is often the case in risk assessment of complex systems, suppose she selects lognormal distri-

butions. For clarity, the lognormal densities are denoted by

fi(�i) =
1

�i& i
p
2�
e
�
(ln(�i)� �i)2

2&2i (50)

where �i and & i are the parameters of the lognormal distribution. If the analyst selects the pa-

rameters of the lognormal distributions so that the expected value of the parameters is equal to

their nominal value, [E[�i] = �nomi
5], she obtains U = 0:012. Thus, U 6=Unom, even if state-of-

knowledge independence and separability are assumed. The di¤erence is motivated by the fact that

assumption 3 in Lemma 1 is not respected by the assignment E[�i] = �nomi . In fact, E[�i] = �nomi

is equivalent to imposing

�nomi =

Z
1

w& i
p
2�
e
�
(ln(w)� �i)2

2&2i dw; (53)

while the assignment E�[qi] = qnomi requires

qnomi =

Z
(1� e�w)
w& i
p
2�

e
�
(ln(w)� �i)2

2&2i dw (54)

By choosing the parameters �i and & i so eq. (54) is satis�ed, all assumptions in Lemma 1 hold,

and U = Unom.
Let us now come to the assessment of ERAW. We start with component 1. By eq. (21), we

have U+1 :
U+1 = E�j'j=1[P ('3 = 1)P ('2 = 1j'1 = 1)] (55)

Here, the notation E�j'j=1 implies that we have to consider the distribution of the parameters after
the decision-maker has received information that '1 = 1. In a Bayesian framework, given evidence

E = ('1 = 1), the density of any �s is updated according to:

fsj'j=1(�sj'j = 1) =
L('j = 1j�s)fs(�s)R
L('s = 1jr)fs(r)dr

(56)

where L('j = 1j�s) is the likelihood of 'j = 1 given �s. Thus, fsj'j=1(�sj'j = 1) 6= fs(�s).

5The corresponding parameters of the lognormal distributions are found solving

�i = ln[(�
nom
i )2=

p
1 + (�nomi )2] (51)

�i =
p
ln[1=(�nomi )2 + 1] (52)

where we have set the variance of �i equal to unity.
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We emphasize that this step is not usually performed in practice. Updates of distributions follow

information and data collection at the level of the whole model and are not tied to the computation

of RAW. Thus, for practical purposes fsj'j=1(�sj'j = 1) = fs(�s), 8s 6= i. From a degree-of belief

viewpoint, setting fsj'j=1(�sj'j = 1) = fs(�s) is equivalent to assuming that the event 'j = 1 has
a negligible e¤ect on the decision-maker�s state-of-knowledge of �s, (s 6= i). Under these conditions,
all assumptions in Proposition 1 are veri�ed and we obtain ERAW1 = RAW1, ERAW2 = RAW2

and ERAW3 = RAW3:

Note that in the above discussion it has not been necessary to invoke stochastic-independence.

To now, in this section, we have carried out a search of the conditions under which RAW and

ERAW produce the same ranking. The reason is as follows: if the assumptions of Proposition

1 are satis�ed, then results obtained at the nominal value of the probabilities hold also in the

presence of epistemic uncertainty, no matter what functional form is assigned to distributions of

the parameters. Thus, a decision-maker is insured that the nominal RAW ranking is robust and

does not need to propagate epistemic uncertainty.

However, the assumptions in Proposition 1 are restrictive. For instance, �2 and �+2 are, nat-

urally, expected to be highly correlated. Their independence is arti�cially used in this example

for meeting all conditions under which Proposition 1 holds. The hypotheses of Proposition 1 are

readily violated in realistic applications and we expect ERAWj 6= RAWj . The next two cases

illustrate this point.

Case IV: complete state-of-knowledge dependence. The clearest example is the case of identical

components. In this case, as noted by Apostolakis and Kaplan (1981), a unique failure rate has to

be utilized. In our example, if one considers that components 1 and 3 are identical, then one needs

to assign �1 = �3. Eq. (44) becomes:

U = (1� e��)2(1� e��
+
2 ) (57)

whence,

U = E[(1� e��)2]E[(1� e��
+
2 )] (58)

Because E[(1�e��)2] 6= E[(1�e��)]2, U 6= Unom. Note that assumption 1 (separability) in Lemma
1 is violated in eq. (57). Furthermore, we have

ERAW1 =
E[(1� e��)]E[(1� e��+2 )]
E[(1� e��)2]E[(1� e��+2 )]

=
E[(1� e��)]
E[(1� e��)2] (59)

Eq. (59) leads to values of ERAW1 generally di¤erent from the nominal RAW1. The reason is that

both assumptions 1 and 2 in Proposition 1 are violated. Similar considerations hold for ERAW2

and ERAW3.

Case V: common-cause failures. A very important class of dependencies in reliability analysis

is generated by the presence of common-cause failures. The literature on common-cause failure

modelling is vast and a thorough discussion cannot be comprised within the scope of the present
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paper. We refer to the works by Apostolakis and Moieni (1987), Mosleh (1991), Sagan (2004),

Paté-Cornell et al. (2004), and the review in Hoepfer et al. (2009). We illustrate the case of the

�-factor model. Assuming that our system is made of are three identical redundant components,

using the �-factor model one writes:

U = 1� ([1� (1� e��)3](e
�
��

1� � )) (60)

U in eq. (60) is a composite multilinear function of the parameters, but it is not separable anymore.

More speci�cally, for the �-factor model of n identical components, note that E[(1�e��)n(e
�
��

1� � )]

cannot be split into E[(1� e��)n] �E[(e
�
��

1� � )] even if � and � are assumed independent, because
of the product term �� in the second exponential of eq. (60). Hence, assumption 1 in Lemma 1 is

violated and we expect U 6= Unom, in general. �
Similarly, the assumptions in Proposition 1 are violated. In general, when common-cause failures

are factored into the reliability model, one expects ERAW to di¤er from RAW . For our example,

we have

ERAW1 = ERAW2 = ERAW3 =
E[(1� e��)2(e

�
��

1� � )]

E[(1� e��)3(e
�
��

1� � )]

(61)

Eq. (61) shows clearly that ERAWj 6= RAWj .

This section has had the purpose of describing our �ndings through a simple example. In the

next section, we discuss ERAW, Lemma 1 and Proposition 1 for a realistic application.

6 Application to a Space PSA Model

This section describes the application of the previous �ndings and methodology in the context of

a realistic decision-making application: providing risk-informed insights in the design of a lunar

space mission. The model is presented synthetically below and we refer to Borgonovo and Smith

(2011) for further details.

After the Space Shuttle accident in 2002, NASA has adopted probabilistic safety assessment

(PSA) as part of its risk management procedures. The PSA model utilized in this work has been

built to support decision-making in the safety assessment of the next generation of lunar space mis-

sions, in accordance with NASA�s Probabilistic Risk Assessment Procedures Guide [Stamatelatos

et al. (2002)]. Mission success is evaluated based on two attributes: safety and performance. The

top events loss of crew (LOC) and loss of mission (LOM) are considered as proxy measures of safety

and performance, respectively. LOC refers to conducting the mission safely and returning the crew

safely to earth. LOM refers to successfully (or not) carrying out the lunar activities. Each key part

of the mission is modelled via a fault tree, whose top-event represents either LOM or LOC. The

fault trees contain the details of what has to fail in order to cause either LOM or LOC at each
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phase. As observed in Borgonovo and Smith (2011), LOM and LOC are not mutually exclusive.

Figure 2 shows the main event tree utilized to model the mission.

LAUNCH

T = 0.0

PHASE_1

Enter Low Earth
Orbit

PHASE_2

Depart Earth

PHASE_3

Lunar Orbit
Injection

PHASE_4

Lunar Orbit
Injection

PHASE_5

Lunar Mission

PHASE_6

Lunar Orbit

PHASE_7

Return to Low
Earth Orbit

PHASE_8

Return to Earth # End State
(Phase  PH1)

Working

1 MISSION_SUCCESS

2 LOSS

3 LOSS

4 LOSS

5 LOSS

6 LOSS

7 LOSS

8 LOSS

Failed
9 LOSS

Figure 2: Mission phases for the lunar mission event tree.

The mission is divided into eight phases, from launch to earth return (Figure 2). Based on the

Exploration Systems Architecture Study [NASA (2005)], NASA vehicles are composed of systems

that perform 7 primary functions [see also Borgonovo and Smith (2011)]. These are: i) Propulsion,

which comprises the main engine, the reaction control system, and the propellant tanks. ii) Avion-

ics, that controls navigation, provides guidance, and performs internal state calculations receiving

inputs from the crew, the sensors and external communications. iii) Power Supply, which includes

batteries, solar arrays, electrical distribution and control subsystems. iv) Thermal Control, which

is responsible for heat removal from various components and comprises heaters, coolers, condensate

controller and mechanical equipment. v) Environmental Control and Life Support System, which

comprises oxygen tanks, pressure regulators, sensors and mechanical equipment. vi) The Launch

Abort System, which monitors the conditions under which the mission is aborted in the early stages.

vii) Pyrotechnic devices, that determine component separations. In particular, the model considers

13 systems for performing these functions, which are: (1) the Active Thermal Control System, (2)

The Crew Module in Orbit, (3) Crew Recovery, (4) Lunar Surface Access Module, (5) Parachutes,

(6) Crew Launch Vehicle, (7) Crew Module, (8) Environmental Control and Life Support, (9) Elec-

tric Power System, (10) Launch Abort System, (11) Lunar Surface Access Module, (12) Service
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Module, and (13) Structures. These systems are intrinsically interconnected and dependencies are

present.

150 fault trees are developed for modelling each system at each phase of the mission. The model

contains 872 basic events. The number of minimal cut sets is around 4500 at a truncation of 10�15.

Dependencies and common-cause failures are accounted for, these last ones using the Multiple

Greek Letter method [Mosleh (1991)]. As customary in probabilistic safety assessment, lognormal

state-of-knowledge distributions are assigned by analysts to the uncertain variables which, for this

model, are the basic event probabilities. The parameters of the distributions are either �tted from

data or elicited through expert opinion. These distributions are directly embedded in the SAPHIRE

code that has been made available to the authors.

Given the model complexity, it is not possible to obtain ERAWj analytically. However, the

following steps can be utilized for a numerical computation.

1) Generation of an unconditional sample of size N of the parameters, here denoted by b�.
2) Evaluation of the risk metric at b�, obtaining the vector of estimates bU of size 1�N .
3) Calculation of U via bU = PN

r=1
bU r

N
(62)

where bU r is the value of the risk metric realized in Monte Carlo run r, r = 1; 2; :::; N .
4) Calculation of U+ by setting of the Boolean variable of basic event j equal to unity as:

bU+j =
PN
r=1

bU+;rj

N
(63)

where bU+;rj (r = 1; 2; :::; N) is values of U obtained with 'j = 1 in a generic Monte Carlo run of the

repeated simulation. bUj denotes the corresponding vector of risk metric values. If dependencies

are present, bUj is obtained by evaluating the model at a new sample, here denoted by b�j ; obtained
by setting the proper conditional distributions of the parameters.

5) Estimation of RAWj from:

\RAWj =
bU+jbU (64)

Overall, n�N model evaluations are necessary to estimate the ERAW of n basic events following

these steps.

For the present application, we utilize N = 10000 and apply the method to the risk metric of

the NASA space PSA model described above. The overall time of the analysis is around 10 minutes

on a personal PC6.

Figure 3 displays the empirical CDFs of the risk metric obtained by applying steps 1-4. The

unconditional distribution, FU (u), is plotted as a red and thick line. FU (u) in Figure 3 is the

empirical CDF associated with bU. FU j'j=1(u) denotes a generic empirical CDFs associated withbUi, namely the values of the risk metric obtained from the conditional sample b�i (Step 4). bUi is

6The PC runs on Intel Core Duo Cpu, 2.4GHz, 2.39GB RAM.
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Figure 3: Unconditional distribution (thick) [FU (u)] and conditional distributions [FU j'i=1(u)] of
the risk metric for the NASA PSA application.

then summarized in bU+i , in accordance with eq. (63), which is the numerical implementation of eq.
(20).

Figure 3 con�rms the discussion carried out in Sections 1-3, showing that, in the presence of

epistemic uncertainty, the e¤ect of getting to know 'j = 1 is a modi�cation in the distribution of

U . One can also visually appreciate that some basic events leads to a slight modi�cation of FU (u),

while some basic events lead to notable discrepancies. In particular, single points of failure turn

FU (u) into a Heaviside function (green vertical lines in 3; see Proposition 2 and the subsequent

discussion).

Figure 4 displays the ERAW�s of the 872 basic events.

We note that 393 basic events are associated with an ERAW greater than unity, with the

remaining associated with ERAW equal to 1. RAWj = 1 indicates that these basic events are not

important as they leave the risk metric unchanged. This result is consistent with the �ndings in

Borgonovo and Smith (2011), where 393 active basic events are registered. Among these, 51 basic

events are single points of failure.

Before detailing the managerial insights of these results, let us compare the ranking induced

by ERAW and RAW . To do this, we perform a �rst numerical experiment assuming separability

and independence � this is achieved by assigning FQ(q) =
872Q
i=1
Fi(qi); in other words, one samples

872 independent failure probabilities.� This experiment is performed to test Proposition 1. In

fact, under the state-of-knowledge assumption, all hypothesis of Proposition 1 are veri�ed for this
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Table 1: Comparison of ERAW and RAW in the presence (abscence) of state-of-knowledge
dependencies.

i 1 2 4 5 17 24

RAW 1:0003 1:0047 1:0144 1:0 1:5241 10:5953

ERAW independence 1:0003 1:0046 1:0151 1:0 1:5202 10:5176

ERAW dependence 1:0005 1:0070 1:0090 1:0 1:7878 15:9273
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Figure 5: Di¤erences in ranking between RAW and ERAW in the presence of state-of-knowledge
dependencies.

model. Thus, we should obtain ERAW = RAW . The RAWs and ERAWs of representative basic

events for this experiment are displayed in Table 1.

The �rst two lines in Table 1 con�rm that, apart for numerical rounding, ERAW = RAW

under state-of-knowledge independence. However, for the present model, the state-of-knowledge

independence is conceptually incorrect and exposes us to the pitfalls signalled by Apostolakis and

Kaplan (1981). Therefore, we also performed experiments giving full credit to epistemic dependen-

cies. The third line in Table 1 shows the results of these calculations. As expected, the values of

RAW and ERAW now di¤er. Let us then investigate whether these di¤erences have repercussions

on the basic event ranking. The discrepancies are displayed in Figure 5.

Figure 5 shows the following:

� The majority of basic events do not undergo ranking changes. In fact, the 479 inactive basic
event have both RAW and ERAW equal to unity. The 51 single points of failure rank 1st,

both with RAW and ERAW;

� Of the remaining 342 basic events, however, 322 undergo a ranking change. The average
change is �13 positions. Nonetheless, some basic events undergo notable ranking changes.
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System 1 2 3 4 5 6 7 8 9 10 11 12 13
Number of Basic Events 142 8 6 10 18 11 216 8 48 301 9 38 57

Number of Single Points of Failure 17 3 0 0 3 1 13 3 3 0 1 4 3

Table 2: Number of single points of failure per system.

In order to assess the ranking agreement between RAW and ERAW, we utilize the Savage Score

correlation coe¢ cients. The methodology has been introduced in Iman and Conover (1987) to

provide a systematic way for quantifying the agreement between ranking obtained through di¤erent

criteria (see also Borgonovo et al. (2010)). Denoting the rank of basic event i by Ri, the associated

Savage score is de�ned as:

SSi =
nX

v=Ri

1

v
(65)

For instance, with n = 872, the Savage score of the basic event ranking �rst is 7:35. We denote by

RRAW and RERAW the ranking induced by RAW and ERAW, respectively. Let �RRAW ;RERAW the

correlation coe¢ cient of the raw ranks and �SSRAW ;SSERAW the correlation coe¢ cient of the cor-

responding Savage scores. Comparing �SSRAW ;SSERAW against �RRAW ;RERAW conveys information

on whether agreement (or disagreement) is at the level of the problem key-drivers. In fact, SSi
emphasizes high-ranked factors. In our case, we obtain �SSC1 ;SSC2 = 0:99 > �RRAW ;RERAW = 0:97.

This result signals that ranking disagreement between RAW and ERAW is at the level of the non-

relevant factors. This is reasonable, insofar the key-drivers are the 51 single points of failure, which,

both with RAW and ERAW, assume the maximum RAW and ERAW values.

From an operational viewpoint, these results show risk analysts that the ranking of the most

important factors obtained with RAW is robust to epistemic uncertainty. For the non-relevant

factors, however, an item-by-item inspection is necessary to check whether the classi�cation ob-

tained with nominal values is consistent with the one obtained including epistemic uncertainty in

the values of the risk measures.

ERAW results shed light on the nature of system under consideration. In fact, the model

addresses the reliability of a space vehicle, namely, a rocket. Space-vehicle-design is subject to

severe trade-o¤s for achieving the desired level of safety under tight structural constraints. For

instance, weight limits pose restrictions on the number of redundant systems that can be added.

This mark the main operational distinction between the system under investigation and systems

such as energy production plants, and especially nuclear reactors. These can count on a much

higher level of redundancy and are characterized by a lower number of single points of failure.

The question is then whether any of the 13 modelled systems is particularly vulnerable to single

basic event occurrences. The answer is obtained by the examination of how single points of failure

are distributed among the systems. We obtain the results reported in Table 2.

Table 2 shows that the Crew Module in Orbit (2) and the Environmental Control and Life

Support systems are the most vulnerable, because 3 out of their 8 basic events individually can

determine their failure. For the Active Thermal Control System (1), 17 out of the 142 basic events
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are single points of failure, while for the Crew Module (7), 13 out of 216 basic events are single

points of failure. Conversely, Crew Recovery (3), Lunar Surface Access Module (4) and Launch

Abort System (10) show some level of redundancy, because they are not exposed to single failures.

The information in Table 2, which is obtained by giving full credit to state-of-knowledge un-

certainty, points analysts to the systems that would deserve additional redundancies for improving

safety, compatibly with design constraints. This information which is particularly relevant given

the di¢ culty of adding redundancy to a system as the one analyzed in this application.

7 Conclusions

In this work, we have addressed the computation of Risk Achievement Worth (RAW) in the presence

of epistemic uncertainty.

Available literature [Modarres and Agarwal (1996)] has shown that uncertainty in reliability

model parameters induces variability in importance measure values, and therefore in RAW, which

can prevent risk analysts from con�dently entrusting the nominal value ranking. We have addressed

the problem studying an extension of the de�nition of RAW that makes it robust with respect to

epistemic uncertainty. We have called this extension ERAW.

The investigation of the conditions under which ERAW coincides with RAW has lead us to a

general result concerning the assumptions under which the state-of-knowledge expected value of

a reliability risk metric equals its nominal value. In details, because the unreliability (reliability)

function of any system (coherent or non-coherent) is multilinear in the basic-event probabilities,

then if: a) separability of the multilinear function and b) state-of-knowledge independence hold,

the nominal value of the risk metric coincides with it state-of-knowledge expectations. Under these

conditions, any nominal-value analysis is robust to epistemic uncertainty.

We have discussed in detail the relevance of stochastic and state-of-knowledge dependencies in

the computation of RAW and ERAW by application to a three-component-in-parallel system.

The �ndings have then been discussed in application to a realistic risk analysis model, namely,

the PSA model developed for the safety analysis of NASA next generation lunar space missions. We

have illustrated the information delivered by ERAW. The analysis has registered the presence of

several single points of failure, revealing a characteristic feature of the system under study. In space

vehicles a limited use of redundancy is imposed by design constraints (mainly mass restrictions). We

have seen that ERAW and RAW ranking di¤er, when state-of-knowledge dependencies are factored

into the analysis. We have then discussed how analysts can bene�t from the ranking comparison

to obtain robust information about the risk achievement worth of basic events.

Finally, an observation on future research. The fact that component failure or basic event

occurrence (E) changes the state-of-knowledge distribution of U can be used to obtain information

about the e¤ect of E on additional properties of U which are of interest to the decision-maker as,

for instance, its variance, percentiles or, even, the entire state-of-knowledge distribution.
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