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Abstract

Recent works [Epstein and Rauzy (2005)] have questioned the validity of traditional fault

tree/event tree (FTET) representation of probabilistic risk assessment problems. In spite

of whether the risk model is solved through FTET or binary decision diagrams (BDDs),

importance measures need to be calculated to provide risk managers with information on the

risk/safety signi�cance of system structures and components (SSCs). In this work, we discuss

the computation of the Fussel-Vesely (FV), Criticality, Birnbaum, Risk Achievement Worth

(RAW) and Di¤erential Importance Measure (DIM) for individual basic events, basic event

groups and components. For individual basic events, we show that these importance measures

are linked by simple relations and that this enables to compute basic event DIMs both for

FTET and BDD codes without additional model runs. We then investgate whether/how

importance measures can be extended to basic event groups and components. Findings show

that the estimation of a group Birnbaum or Criticality importance is not possible. On the

other hand, we show that the DIM of a group or of a component is exactly equal to the sum

of the DIMs of the corresponding basic events and can therefore be found with no additional

model runs. The above �ndings hold for both the FTET and the BDD methods.

Keywords: Importance Measures, Probabilistic Risk Assessment, Event Trees, Binary

Decision Diagrams.



1 Introduction

Importance measures are used by risk managers to derive information about the risk/safety

signi�cance of events, and systems structures and components (SSCs). This information is

crucial in risk-informed applications both from the regulatory and the industry perspectives

(Cheok et al (1998) [6], Vesely (1998) [14], Brewer and Canady (1999) [5], Borgonovo and

Apostolakis (2001) [2], Borgonovo et al (2003) [3], Vinod (2003) [15].)

Importance measures utilized in the PRA realm are the Fussell-Vesely (FV ), the Risk

Achievement Worth (RAW ), the risk reduction worth (RRW ), the criticality importance

factor (CIF ) and the Birnbaum importance (BI) measure (Birnbaum (1969) [4], Cheok et

al (1998) [6].) The investigation in Cheok et al (1998) [6] exposes several limitations in the

�exibility of the above mentioned indicators in revealing the risk/safety signi�cance of basic

event groups. Borgonovo and Apostolakis (2001) [2] introduce the di¤erential importance

measure (DIM), which overcomes such limitations thanks to the additivity property. Vinod

et al (2003) [15] present an application of DIM to risk informed inservice inspection.

Epstein and Rauzy (2005) [7] estimate the CIF , RAW and RRW importance measures

of a nuclear power plant PRA. They obtain results for the same PRA model, �rst solved

through a Fault Tree/Event Tree (FTET) method and then solved encoding the model in a

Binary Decision Diagram (BDD) algorithm. The comparison shows notable discrepancies in

the estimation of the importance indicators. Not only, but on a broader perspective, Epstein

and Rauzy (2005) [7] question approximations made by traditional FTET codes as the rare

event approximation or minimal cut set (MCS) truncation, arguing that better logical and

numerical estimates can be achieved if calculations are based on BDDs. However, no matter

the type of method with which a PRA is solved, to identify basic events or SSCs �contribution

to the risk (Epstein and Rauzy (2005) [7]),�importance measures need to be estimated, and

it is this estimation which is the subject of the investigation of the present work.

We start by analyzing the relationships among FV , RAW , CIF , BI and DIM , illus-

trating that they are linked by manageable and simple expressions at the individual basic
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event level. These relationships allow us to show that one is capable of computing DIM

with no additional model runs, from the knowledge of any of the other importance measures,

independently of whether the software is utilizing the FTET or the BDD technology. Indeed,

given a BDD or FTET software that estimates one or more importance measure for basic

events, exploiting such relationships one can compute any of the other importance measures

with no further model runs.

We next shift to the analysis of importance measures for basic event groups and com-

ponents/SSCs. Findings are as follows. BI and CIF cannot be extended to multiple basic

events, due to mathematical reasons. The FV importance measure and the RAW can be

extended to groups, although RAW requires further model runs (see also Cheok et al (1998)

[6]). DIM endeavours analysts with full �exibility when computing joint basic event impor-

tance and thanks to the additivity property it is possible to �nd the DIM of a group with

no additional model runs. Since these results are linked to the de�nition and properties of

the importance indicators, they hold both for the FTET and the BDD technologies, .

We then inquire whether/how the importance of a component can be derived from the

importance of the group of basic events related to that component. The analysis shows that

theDIM of a component coincides with the sum of the DIMs of the basic events related to the

component, and therefore the DIM of a component can be found without additional model

runs. However, it is not possible to infer a component CIF or BI from the corresponding

set of basic event CIFs or BIs, since they are not de�ned for multiple basic events.

We illustrate the above concepts by application to a numerical example, deriving the

DIM of individual basic events, groups and component, both for the FTET and the BDD

methods from the importance measures estimated in Epstein and Rauzy (2005).

The remainder of the work is organized as follows. In the next Section, we summarize

the importance measures utilized in PRA, highlighting their interrelationships for individual

basic events. In Section 3, we discuss the extension of the de�nition of importance measures

to basic event groups and investigate the link between group and SSC importance. In Section
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4, we provide numerical results and observations. Section 5 o¤ers conclusions.

2 PRA Importance Measures: relevant relationships

From a sensitivity analysis point of view, importance measures belong to the family of local

sensitivity indicators (Helton (1993) [8], Saltelli et al (2000) [11].)

The goal of an importance measure is to provide numerical guidance about the safety/risk

signi�cance of an SSC. With this respect, we need to recall that, as Apostolakis (2005) [1]

underlines, results derived from the quantitative analysis ought not be the sole basis for a

decision on the safety/risk relevance of an SSC, but they should be integrated by an expert

panel peer review process.

PRA importance measures and their de�nitions are reported in Table 1. In Table 1, Y

stands for the best estimate of the risk metric; Xj for the probability of basic event j, Y j+ for

the value of the risk metric when basic event j is set to �True�, and Y j� when it is set to

�False.�

FV is de�ned as the fraction of the risk that is associated with the generic PSA element

Z. Z can be a component, a system, or a basic event. For basic events, FV is de�ned as the

ratio of probability of the union of all the minimal cutsets (MCS) containing basic event j,

and the nominal value of the risk metric (Y ) [Table 1.] The FV of a component is de�ned

as the ratio of the probability of all the MCSs that contain basic events that belong to that

component over the nominal risk. Analogously, a system FV is the ratio of the probability of

all the MCSs that contain basic events that belong to the system of interest over the nominal

risk.

RAW is de�ned to measure the risk that the system achieves when one of its component

fails. It is de�ned as the ratio of Y j+, the value of the risk metric when the Boolean variable

associated to basic event j is set to �true�. Thus, RAWj is the ratio of the risk that is

achieved when basic event j happens over the nominal risk.

Similarly, RRW is the risk (Y j�) which is achieved if basic event j cannot happen, i.e.,

its boolean variable is set to 0.
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The Birnbaum importance of basic event j, BIj , is de�ned as the partial derivative of

the risk metric w.r.t. basic event j probability [Birnbaum (1969) [4], Cheok et al (1998) [6]]:

BIj =
@Y

@Xj
(1)

From standard reliability results, under the conditions of a coherent structure function and

of independent failures [Huseby (2004)], it holds that:

BIj = Y
j+ � Y j� (2)

i.e., BIj is the di¤erence between the value of the risk metric achieved when basic event j

happens (Y j+) and when it cannot happen (Y j�). Now, for the risk metric of PRA models,

the partial derivative w.r.t. a probability is given by:

@Y

@Xj
= Y (Xj = 1)� Y (Xj = 0) (3)

where Y (Xj = 1) is the value of the risk metric obtained susbtituting the value 1 for Xj

in the model, and Y (Xj = 0) the value obtained susbtituting 0 for Xj . We must note

that Y (Xj = 1) is not equal to Y j+ in the presence of dependencies (see Appendix A.)

Dependencies make it necessary, after setting Xj = 1, to adjust the remaning probabilities

conditioning over Xj [see Smith (1998) for a discussion.]

One main criticism moved towards the BI measure, consists of the fact that the impor-

tance of a component/basic event does not depend upon its own reliability/probability. The

CIF importance measure, de�ned as:

CIFj =
@Y

@Xj

Xj
Y
= BIJ

Xj
Y

(4)

can then be looked at as a generalization of the BI importance measure, as it normalizes

BIj through the ratio of the probability of basic event j and the nominal value of the risk

metric (XjY .) CIF enables to discriminate among components that have the same BI, since

the less reliable component, i.e., the one with higher Xj , is registered as more �critical.�

We further refer to Cheok et al (1998) [6] and Vesely (1998) [14] for discussion of the

de�nitions of FV , RAW , RRW , CIF and BI.
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It is possible to �nd that manageable mathematical relationships hold between RAW ,

RRW , BI and CIF based on their de�nition for PRA models. For example, multiplying

RAWj and RRWj times Y , and subtracting, one �nds BIj . Proceeding in a similar fashion,

one �nds the relationships summarized in Table 2.
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We now investigate the relationship between DIM and other PRA importance measures.

Borgonovo and Apostolakis (2001) [2] de�ne the local sensitivity measure of Y on Xj as

follows:

DIMj =
djY

dY
=

@Y
@Xj

dXjPn
s=1

@Y
@Xs

dXs
(5)

In eq. (5), djY is the change in the risk metric provoked by a small change (dXj) in the

probability of basic event j, @Y
@Xj

the partial derivative of Y w.r.t. Xj , and the denominator

sum is extended to all basic events (s = 1; 2; :::; n). Borgonovo and Apostolakis (2001) [2]

show that DIM shares the following properties:

Property 1 Additivity. The joint DIM of a set of basic events is the sum of the individual

basic event importances in the group. Suppose that the group is composed of basic

events j, k; :::; and l. Then the importance of the group is:

DIMj;k;:::;l = DIMj +DIMk + :::+DIMl (6)

Property 2 The sum of the DIM�s of all basic events equals unity, that is:

DIM1;2;:::;n = DIM1 +DIM2 + :::+DIMn = 1 (7)

Property 3 Let us consider uniform changes in the parameters (H1), i.e.

(H1) dXj = dXk 8j; k = 1; 2; ::; n (8)

If eq. (8) holds, then

DIMH1
j =

@Y
@XjPn
s=1

@Y
@Xs

=
BIjPn
s=1BIs

(9)

Let us introduce �BI =
Pn
s=1BIs and rearrange eq. (9). We have:

@Y

@Xj
= BIj = �BI �DIMH1

j / DIMH1
j (10)

which means that partial derivatives are proportional to DIM under an assumption

of uniform changes in the parameters. This implies that ranking inputs based on BI

is equivalent to state the assumption that all basic event probabilities are varied by
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the same (small) quantity. This result has the following practical consequence: if in a

model two parameters have di¤erent dimensions, the corresponding partial derivatives

cannot be compared. Thus, one cannot compare the BI an initiating event frequency

to the BI of a basic event probability, since the �rst has units [Y/time], while the

second has units [Y] (see also Borgonovo and Apostolakis (2001)[2].)

Property 4 Let us consider proportional relative changes in the parameters (H2), i.e.:

(H2)
dXj
Xj

=
dXk
Xk

= ! 8j; k = 1; 2; ::; n (11)

If eq. (11) holds, then:

DIMH2
j =

@Y
@Xj

Xj
YPn

s=1
@Y
@Xs

Xs
Y

=
CIFjPn
s=1CIFs

(12)

where CIFj is the criticality importance factor of basic event j. Proceeding in a similar

way as we did for the relationship between BIj and DIMj , one can rearrange the above

equations expressing CIFj as a function of DIMj : Calling �CIF =
Pn
s=1CIFs, we

have:

CIFj = �CIF �DIMH2
j / DIMH2

j (13)

Eqs. (12) and (13) imply that ranking basic events with CIF is equivalent to rank

them with DIM under H2, i.e. it is equivalent to stating the implicit assumption

that all basic event probabilities are varied by the same proportion. Note that CIFj is

known also in Economics with the name of Elasticity (Samuelson (1947) [12].)

We note that Properties 3 and 4 hold for any model, independently of the type of input-

output relationship.

We now report the relationship between DIM , FV and RAW for PRA models, since the

link between DIM and FV also turns into a link between FV and CIF . In PRA, the risk

metric (let us call it Y ) assumes the following additive multiplicative form as a function of

the basic event probabilities [see Borgonovo and Apostolakis (2001) [2] eq. (20)]:

Y = akXk +OT (14)
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where Xk is the probability of basic event k, ak the corresponding coe¢ cient and OT the

terms in the expression of Y not containing basic event k. Eq. (14) allow the following

property 5 to hold, as proven in Borgonovo and Apostolakis (2001).

Property 5 The following relationships hold between DIM and FV (Borgonovo and Apos-

tolakis (2001) [2]):

DIMH1
j =

FVj=XjPn
s=1 FVs=Xs

(15)

and

DIMH2
j =

FVjPn
s=1 FVs

(16)

From eq. (16), one notes that, under H2, FV and DIMH2 would produce the same

ranking. In fact, one can rewrite eq. (16) as:

FVj =

 
nX
s=1

FVs

!
�DIMH2

j () DIMH2
j / FVj (17)

In their turn, eqs. (13) and (17) imply that the ranking induced by FV , CIF and

DIMH2 is the same for models of the type of eq. (14). There is, however, one wor-

thy remark. The relationship between FV and DIM [eq. (17)] holds only for PRA

models, while the one between DIM under H2 and CIF [eqs. (12) and (13)] holds

independently of the model.

We now recall the relationship between DIM and RAW . As Cheok et al (1998) [6]

underline, computing the RAW of a basic event setting to unity the corresponding basic

event probability is not entirely correct, since one ought �rst to resolve the PRA model with

the Boolean variable set to unity, and then compute the conditional value of the risk metric.

However, standard PRA software utilizes this �direct way�as a numerical approximation. If

that is the case, the following relationship holds between DIM and RAW :

H1 H2

DIMH1
j =

(RAWj�1)=(1�Xj)Pn
s=1(RAWs�1)=(1�Xs) DIM

H2
j =

(RAWj�1)=(1=Xj�1)Pn
s=1(RAWs�1)=(1=Xs�1)

(18)

From eq. (18), one notes that, in general, DIM and RAW would always produce di¤erent

basic event ranking.
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Note that, thanks to Table 2, eq. (16) and eq. (18), one is able to link all PRA importance

measures for basic events. The presence of a relationship does not mean that they produce

the same ranking; however, it has the immediate practical consequence that given a software

that estimates one or more of the measures, the other ones can be gained without further

model runs, independently of whether the importance measures are the output of a PRA

model solved with the FTET technique or with the BDD technique. For instance, from

the knowledge of FV one can compute DIMH2 and DIMH1 utilizing eqs. (15) and (16)

respectively. Besides, the ranking induced by FV coincides with the ranking produced by

CIF . [We would also like to refer to Table 4 in Borgonovo and Apostolakis (2001).] If, in

addition, one computes RAW , then from Table 2, one can see that all the other indicators

can be derived. The following pairs of measures allow the computation of all the others for

equations of the form of eq. (14): (FV, RAW), (CIF, RAW)

In the next Section, we discuss how the importance of basic event groups and SSCs can

be derived from the individual basic event importance.

3 Basic Event Groups and SSCs Importance

Section 2 has discussed the de�nition and interrelationships for importance measures of in-

dividual basic events. In this Section, we deal with how/whether the importance measure

de�nitions can be extended from individual to basic event groups. In our analysis, we distin-

guish �joint importance�from SSC importance. By joint importance we mean the importance

of a group (G) of basic events j; k; ::l, (G = fj; k; :::; lg), with the basic events that can refer

to the same or di¤erent components. Concerning SSC importance we inquire whether it is

necessarily true that the importance of a component can be identi�ed with the importance

of the group containing all basic events related to the component.

The relevance for applications of computing the joint importance is underlined in Cheok

et al (1998): �to obtain a measure of the importance of an SSC with respect to the particular

application, all basic events representing the a¤ected modes of the particular SSC should be

consider as part of a group (Cheok et al (1998) [6]).�We then analyze the behavior of the
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�ve importance measures discussed in Section 2, beginning with DIM .

1. DIM . The computation of the DIM of a group is straightforward. In fact, it holds

that DIMj;k;:::;l = DIMj +DIMk + :::+DIMl; i.e. DIMG is the sum of the DIMs of

the basic events in the group [eq. (6)].

2. RAW . The computation of the RAW (and also RRW ) for multiple basic events asks

for some attention, as Cheok et al (1998) maintain. Extending the de�nition of RAW

for individual basic events, Cheok et al (1998) propose the following RAW of a basic

event group:

RAWj;k;:::;l =
Y (j;k;:::;l)+ � Y

Y
(19)

where Y (j;k;:::;l)+ means the value of the risk metric which is obtained by setting to

�true� the Boolean variable of basic events j; k; :::; l: According to the de�nition it

is necessary to re-run the model, as proposed in Cheok et al (1998). In eq. (19),

Y (j;k;:::;l)+ does not need to coincide with the value of the risk metric obtained setting

the basic event probabilities equal to unity (i.e. Xj = Xk = ::: = Xl = 1) which is a

shortcut (�direct way�) taken by most of standard PRA software [Cheok et al (1998)

and Borgonovo and Apostolakis (2001).] Appendix C in Borgonovo and Apostolakis

(2001) discusses in detail the properties of RAWj;k;:::;l. In particular, it holds that

RAWj;k;:::;l = RAWj = RAWk = ::: = RAWl if j, k and l are related by an �or�gate.

3. FV . The FV of a basic event group can be found by extending its de�nition as:

FVj;k;:::;l =
P [[MCSj;k;:::;l]

Y
(20)

whereMCSj;k are the minimal cut sets that contain either one of basic events j; k; :::; l.

Borgonovo and Apostolakis (2001) show that:

FVj;k;:::;l = FVj + FVk + :::+ FVl if basic events j; k; :::; l appear under the same �or�

gate,

and
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FVj;k;:::;l = FVj = FVk = ::: = FVl if j; k; :::; l. appear under the same �and�gate.

4. BI. Cheok et al (1998) show that there is no meaningful extension of the de�nition

of BI to group of basic events. More precisely, the BI of a set of basic events is not

de�ned for any model. In fact, BIj = @Y
@Xj

is the partial derivative of Y w.r.t. Xj . The

natural extension of the de�nition would consider BIj;k;:::;l as the partial derivative of

Y w.r.t. Xj , Xk,...,Xl which is a non-de�ned mathematical quantity. In fact, partial

derivatives are de�ned and account for the change of one variable at a time. The e¤ect

of joint changes is registered by the di¤erential. With this respect, we recall that for

individual basic events BI coincides with DIM under H1. Hence, to account for the

joint change in basic events for uniform changes, DIMH1
j;k;:::;l ought to be utilized.

5. CIF . CIF is not de�ned for basic event groups. As one can see from the de�nition

in Table 1, CIFj = @Y
@Xj

Xj
Y ; which is a normalized partial derivative. Hence, since

@Y
@Xj

is not de�ned for multiple Xj�s, it is not possible to extend the de�nition of CIF to

multiple basic events (see Point 4.) However, we recall that CIFj allows the ranking

of basic events for proportional relative changes and this ranking coincides with the

one produced by DIMH2
j . Hence, to account for the importance of joint proportional

changes in the parameters DIMH2
j;k;:::;l is the proper importance measure.

We note that the observations in points 1-5 above hold due to the de�nition of the

importance indicators. Thus, eventual di¢ culties in deriving joint importance measures hold

independently of whether the indicator is estimated by a BDD or a FTET software.

We conclude this Section with some observations on whether it is possible to infer SSC

importance starting from the joint importance of the corresponding basic events. We suppose

that the component or SSC (C) is represented by basic events 1, 2,...,k and we denote

its failure probability or unavailability with XC . Since we want to study the link joint

importance!component importance and a joint CIF or BI is not de�ned (see points 4, 5),

we restrict our attention to FV , RAW and DIM .
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Extending the formulation for basic event groups, a possible de�nition of the FV of a

component is:

FVC =
P [[MCSC ]

Y
(21)

where MCSC are the MCSs including C. Now, one only needs to specify what is meant

by inclusion of a component in a MCS. This ought probably to be considered a matter of

convention, and the convention is usually to consider all MCSs involving one or more of the

basic events related to C.

The de�nition of RAW can be readily extended to a component as follows:

RAWC =
Y (C)+ � Y

Y
(22)

where Y (C)+ is the new risk metric obtained with the component failed. The component

RAW provides the importance of an existing condition �e.g. a component being down. [Vesely

(1998) [14], p. 257].�Now, to re�ect the dependence on the events and conditions involving

the component (see Vesely (1998) [14],) a rigorous calculation of RAWC would require one

to adjust the PRA model in order to re�ect the failure of C and evaluate the conditional risk

metric. Smith (1998) [13] notes that to thoroughly account for the component failure one

should (the next three points are direct quote from Smith (1998), p. 302):

1. Find the a¤ected basic events in the PRA in order to change their failure probabilities

to re�ect the inoperable component;

2. Assess the likelihood that the a¤ected component could be recovered;

3. Determine other impacts on PRA model such as changes to common-cause failure

probabilities and initiating event frequencies.

Now, let us denote with Y (C)+ the conditional estimate of the risk metric based on a

thorough recomputation as recommended in Smith�s points 1-2-3. It is clearly �C = true�

if all the corresponding basic events 1; 2; :::; k are set to true. However, Smith�s observations

suggest that the value of the risk metric, Y (1;2;:::;k)+, obtained with basic events 1; 2; ::k set

13



to true, could di¤er from Y (C)+, if no readjustments are applied. In virtue of eqs. (19) and

(22), Y (C)+ 6= Y (1;2;:::;k)+; implies RAWC 6= RAW1;2;:::k, i.e. the RAW of a component is

not necessarily equal to the RAW1;2;:::k of the corresponding basic event group.

Let us now turn to DIM and ask the question of whether the DIM of a component is

related to the DIMs of the corresponding basic events. The de�nition of DIM for component

C is:

DIMC =
dCY

dY
=

@Y
@XC

dXCPn
s=1

@Y
@Xs

dXs
(23)

where dCY denotes the change in Y provoked by a change in the failure probability or

unavailability of C, @Y
@XC

is the partial derivative of Y w.r.t. XC , dXC is the (small) change

in C 0s failure probability. As far as the interpretation of eq. (23) is concerned, we note that

eq. (23) addresses the problem of measuring the relative �risk change�provoked by a (small)

change in an SSC unavailability, stated in Vesely (1998), p. 258. We now investigate whether

DIMC has some relationship to the DIM of the basic events corresponding to component

C. The component failure probability or unavailability, XC , depends in a complicated way

on the basic event probabilities:

XC = XC(X1; X2; :::; Xk) (24)

Eq. (24) can be di¤erentiated to produce:

dXC =

kX
i=1

@XC
@Xi

dXi (25)

Substituting eq. (25) in eq. (23), DIMC can be rewritten as:

DIMC =
dCY

dY
=

@Y
@C

@C
@X1

dX1 +
@Y
@C

@C
@X2

dX2 + :::+
@Y
@C

@C
@Xk

dXkPn
s=1

@Y
@Xs

dXs
(26)

Now, let us look at the partial derivatives:

@Y

@XC

@XC
@Xi

(27)

We recall that, thanks to the well known di¤erentiation result called the �Chain Rule� it

holds for any function that:

@Y

@Xi
=

@Y

@XC

@XC
@Xi

(28)
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Eq. (28) allows one to write:

DIMC =
dCY

dY
=

@Y
@X1

dX1 +
@Y
@X2

dX2 + :::+
@Y
@Xk

dXkPn
s=1

@Y
@Xs

dXs
(29)

Eq. (29) states that the DIM of a component [eq. (23)] is the sum of the DIMs of basic

events 1; 2; :::; k that refer to the component.

Finally, we note that the above results or observations (i.e. impossibility of de�ning CIF

and BI for multiple basic events, procedures for the derivation of RAW for basic events and

components, interpretation of FV for components and properties of DIM) depend on the

de�nition of the importance measures themselves and hence hold independently of whether

one is using FTETs or BDDs.

4 DIM for basic events, groups and components for BDDs and FTETs

In this Section, we present numerical examples that illustrate the calculation of DIM for

individual basic events, groups and components based on the results of Sections 2 and 3.

We �rst deal with how individual basic event DIMs can be computed both for FTET and

BDD codes, through the relationships presented in Section 2. Numerical results are gained

with reference to Epstein and Rauzy (2005) [7] in which basic event importance measures

are estimated for a PRA model making use both of a BDD and an FTET code. To compute

DIM , one can choose either one of the relationships between DIM and the FV , BI, CIF

of RAW indicators. Figure 1 reports the values of the �rst 20 basic events CIF shown in

Table 9 of Epstein and Rauzy (2005) [7].1

We start with utilizing the CIFj estimated via a BDD code reported in the second

column of Table 9 in Epstein and Rauzy (2005) (Figure 1.) From the knowledge of CIF ,

one can immediately compute DIMH2
j : employing eqs. (12) and (13), one can determine

1The discussion has the purpose of highlighting the method, and therefore it su¢ ces to consider the 20 basic

events in Table 9 of Rauzy. However, for the sake of precision, Epstein and Rauzy (2005)�s original sequence

contains more than 1000 basic events. Hence, our results should be used only for illustration purposes. As

the reader can easily see, our method can be immediately extended to a Table listing all the 1000 basic events

CIFs.
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Figure 1: Table 9 from Epstein and Rauzy (2005) shows the CIF for 20 basic events, estimated

with BDDs (second column) and FTETs (third column).

�CIF =
Pn
j=1CIFj . In our case, we have: �CIF = 2:610: DIM

H2
j is then found by dividing

each CIFj in the second column of Figure 1 by �CIF . The results are reported in the second

column of Figure 2.

Adopting the same procedure, the calculation of DIMH2
j estimated by FTET codes is

readily performed utilizing as input the basic event CIFj o¤ered in column 3 of Figure 1.

The results are reported in the third column of Figure 2.

We note that in the above discussion, DIMH2 has been found with no additional model

runs, independently of whether a BDD or an FTET code output were under consideration.

One can also �nd DIMH1
j and BIj from the numbers of Figure 1. In fact, one can

re-write the de�nition of CIF (Table 1) as:

@Y

@Xj
= CIFj �

Y

Xj
= BIj (30)

Eq. (30) restates the relationship between CIFj and BIj (see also Table 2) and enables one

to calculate @Y
@Xj

by a simple manipulation. For our numerical exercise, given the CIFj of
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j DIM H2 BDD DIMH2 Event Trees
1 0.23192 0.27776
2 0.16919 0.21086
3 0.11069 0.05896
4 0.05413 0.04656
5 0.05258 0.07675
6 0.05258 0.07675
7 0.05258 0.07675
8 0.02384 0.01419
9 0.02384 0.01419

10 0.02384 0.01419
11 0.02384 0.01419
12 0.02384 0.01419
13 0.02384 0.01419
14 0.02197 0.01752
15 0.02197 0.01752
16 0.02000 0.01218
17 0.01999 0.01218
18 0.01646 0.01036
19 0.01646 0.01036
20 0.01646 0.01036

Figure 2: Basic events DIMs for a BDD or a FTET code, are derived from the relationship

between DIM and CIF with no further model runs.
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j Xj BI (BDD) DIM H1 (BDD) BI (Cutsets) DIM H1 (Cutsets)
1 2E11 60.5 0.066 81.0 0.088
2 2.2E11 40.2 0.043 55.9 0.061
3 2.6E11 22.2 0.024 13.2 0.014
4 2.4E11 11.8 0.013 11.3 0.012
5 3.4E11 8.1 0.009 13.2 0.014
6 2.8E11 9.8 0.011 16.0 0.017
7 4.2E11 6.5 0.007 10.7 0.012
8 3.8E11 3.3 0.004 2.2 0.002
9 3.6E11 3.5 0.004 2.3 0.002

10 2.4E11 5.2 0.006 3.4 0.004
11 4.2E12 29.6 0.032 19.7 0.021
12 1.4E12 88.9 0.096 59.1 0.064
13 1.8E12 69.1 0.075 46.0 0.050
14 1E12 114.7 0.124 102.2 0.111
15 8E13 143.4 0.155 127.8 0.138
16 1E12 104.4 0.113 71.1 0.077
17 1.6E12 65.2 0.071 44.4 0.048
18 1.8E12 47.7 0.052 33.6 0.036
19 1.9E12 45.2 0.049 31.8 0.034
20 1.94E12 44.3 0.048 31.2 0.034

Figure 3: DIMH1 and BI for basic events computed from the CIF output of the BDD and

FTET models in Epstein and Rauzy (2005).

the BDD code (Column 2 of Figure 1), one �nds the BIj reported in Column 3 of Figure

3. Utilizing eq. (9), one can then obtain DIMH1
j following the same procedure utilized for

obtaining DIMH2. In this case, �BI = 924 and one �nds the values of DIMH1
j reported in

Column 4 of Figure 3. Figure 3 also shows the result for BI and DIMH1 obtained from the

knowledge of CIFj estimated via the FTET code of Figure 1. For completeness, in Figure

3, we have also reported the Xj values we adopted in our calculations2.

Figure 4 reports the ranking obtained with CIFj=DIMH2
j and BIj=DIMH1

j for BDDs.

One notes that there is some discrepancy. Numerically, the explanation is straightforward.

2The Xj were not directly available in Epstein and Rauzy (2005). We have utilized �ctitious values

respecting the indications available in the paper, which speci�ed a value of Y around 10�9, and and truncation

at 10�4Y . Again, our calculations have only a demonstrative purpose, i.e. to show the methodology.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

CIF / DIMH2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
BI / DIMH1 7 11 13 14 16 15 17 20 19 18 12 4 5 2 1 3 6 8 9 10

Figure 4: Comparison of Basic Event Ranking with CIF/DIMH2 vs BI/DIMH1:

Table 3: Coponent Importance with DIM

H1 (BDD) H1 (FTET) H2 (BDD) H2 (FTET)

DIME 0:51 0:42 0:42 0:43

DIMO 0:49 0:58 0:58 0:57

Since BIj = CIFj � YXj ; if Xj is very small, a parameter low ranked with CIF can jump

up in the ranks with BI. In Appendix A, we discuss the use of Savage Scores (Iman and

Conover (1987) [10]) as a tool for comparing the ranking agreement of di¤erent importance

indicators.

The last task of our numerical analysis is the determination of DIM for basic event

groups and components. Let us divide the basic events into two groups, the �evens�E =

(X2; X4; :::; X20) and the �odds�O = (X1; X3; :::; X19): Thanks to the additivity property,

the importance of the two groups can be found by adding of the importances of the basic

events in the groups, and hence requires no further model runs. That is DIME = DIM2 +

DIM4 + ::+DIM20, and similarly for DIMO. We have the results in Table 3.

The second and third columns of Table 3 report DIMH1
E and DIMH1

O estimated by the

BDD and the FTET codes respectively. The sum is performed over the DIMs in Columns

4 and 6 of Figure 3. The fourth and �fth columns of Table 3 display DIMH2
E and DIMH2

O

which are sum of the DIMs in Figure 2. Under H2, O results as the most important group,

both with the BDD and the FTET estimates. Under H1, O is the most important group if

one utilizes an FTET code, while the order is reversed if one were to utilize a BDD code.

This result shows that the ranking can depend on the technology adopted. In this case,

BDD estimates are more accurate according to Epstein and Rauzy (2005). However, the
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importance of groups is found without further model runs independently of whether one is

using a BDD or a FTET method, thanks to the properties of DIM .

Finally, one can note that if E and O were components, Table 3 would also produce the

exact di¤erential importance of the components.

5 Conclusions

In this work, we have dealt with importance measures for basic events, groups and SCCs

of PRA models solved utilizing the Fault Tree/Event Tree method or the Binary Decision

Diagrams technology.

Our investigation has concerned the following indicators: Fussel-Vesely (FV ), Criticality

Importance Factor (CIF ), Birnbaum (BI), Risk Achievement Worth (RAW ) and di¤eren-

tial importance measure (DIM .) We have seen that simple mathematical relationships hold

among these importance measures at the individual basic event level of PRA models. These

relationships have allowed us to show that one is capable of computing DIM with no ad-

ditional model runs, given a software that estimates any of the other importance measures,

independently of whether the software is utilizing the FTET or the BDD technology.

We have then turned our attention to how the �ve importance measures address the

importance of basic event groups. We have seen that CIF and BI cannot be extended to

multiple basic events, independently of whether one is using an FTET or BDD based code.

However, the FV , DIM and RAW importance measures can be de�ned for groups. In

particular, the DIM of groups is straightforward thanks to the additivity property.

We have then investigated whether, once the importance of a group has been de�ned, the

importance of a component can be found from the importance of the group of basic events

referring to that component. We have seen that the answer depends on the measure. It is not

possible to use the CIF or BI of a basic event group to �nd the CIF or BI of a component,

since CIF and BI are not de�ned for groups. For RAW , we have argued that if one applies

a rigorous conditional calculation of the risk metric as suggested in Smith (1998), the RAW

of a component might not coincide with the RAW of the corresponding basic event group.

20



As far as DIM is concerned, it has been possible to show that the DIM of a component is

the sum of the DIM�s of the basic events referring to that component.

The analysis has revealed that di¢ culties in the computation of CIF and BI for groups

hold due to the de�nition of the indicators, independently of whether one is using an FTET

or a BDD software. However, the DIM of groups or components can be inferred directly

from the DIMs of the corresponding basic events with no additional model runs (both for

FTET and BBDs).

Numerical results have demonstrated the computation ofDIM for individual basic events,

basic event groups and components by application to both the FTET and BDD code results

presented in Epstein and Rauzy (2005).

A note on further research. Subject of further investigation could be to explore whether

BDDs allow greater �exibility than FTETs in performing the readjustment procedure pre-

sented in Smith (1998) [13], thus allowing better estimates of component and group RAW

while maintaining a comparable computational time.
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6 Appendix A: Computation of the Birnbaum Measure and the Rare

Event Approximation

In this Appendix, we would like to place some further considerations on the compuation and

additivity of the Birnbaum measure. Consider a fault tree where a component is represented

by 3 failure modes. System failure is achieved when the component fails. Then we have:

Y = p(1) + p(2) + p(3)� p(12)� p(13)� p(23) + p(123) (31)

If one assumes the rare event approximation (we�ll relax such an approximation shortly),

then

Y = X1 +X2 +X3 (32)

Now, it is clear that

Y +1 = 1 (33)

while if one simply sets X1 to unity, one would �nd:

Y1(1) = 1 +X2 +X3 (34)

Note that Y1(1) is a probability greater than unity. The error is due to the fact that one is

using the rare event approximation and, at the same time, violating it by setting one of the

probabilities equal to 1.

Thus, the Birnbaum importance of failure mode 1 (denoted as BI1) is, using eq. (33):

BI1 = Y
+
1 � Y �1 = 1�X2 �X3 (35)

(which is correct) or, using eq. (34):

gBI1 = Y1(1)� Y1(0) = 1 (36)

We have used the notation e� to signal that gBI1 is an approximatrion of BI1. Clearly gBI1 �=
BI1 if X2 and X3 are small. Similarly, for basic event 2, one gets:

BI2 = Y
+
2 � Y �2 = 1�X1 �X3 (37)
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or:

gBI2 = Y2(1)� Y2(0) = 1 (38)

and again gBI2 �= BI2 if if X1 and X3 are small. Suppose now that one wants the joint

Birnbaum importance of basic events 1 and 2, BI1;2. Neglecting the reservations provoked

by the fact that partial derivatives are not de�ned for joint variables, one has to compute

the risk obtained when both basic events 1 and 2 happen:

Y +1;2 = 1 (39)

and subtract the value of the risk metric obtained when both 1 and 2 do not happen:

Y �1;2 = X3 (40)

Note that, the direct numerical substitution of X1 = X2 = 1 would lead to:

Y1;2(1) = 2 +X3 (41)

which, in this case, is a probability greater than 2 (things are getting worse.) Thus, using

eq. (39) one gets:

BI1;2 = Y
+
1;2 � Y

�
1;2 = 1�X3 (42)

(which is correct) or, using eq. (41):

]BI1;2 = Y1;2(1)� Y1;2(0) = 2 (43)

Note that in this case ]BI1;2 6= BI1;2 even when X3 is small. One needs some further

observations:

1 One can note that:

gBI1 +gBI2 = ]BI1;2 (44)

which is a consequence of the approximations made in the calculation. Sometimes this

result leads to consider that the Birnbaum importance is additive for disjoint basic

events.
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2 We would like to point out that the system we have considered possesses a coherent struc-

ture function and independent failures. Under these assumptions, general reliability

theory shows that BI is the probability that the system works given that the basic

event(s) of interet has(have) not happened and is failed otherwise. Thus, BI (of one or

more basic events) cannot be greater than unity. There follows that ]BI1;2 is not only

numerically wrong, but also conceptually and therefore the above mentioned additivity

is only the numerical result of an erroneous approximation.

Finally, let us relax the rare event approximation and see what happens. Still assuming

independence, eq. (31) becomes:

Y = X1 +X2 +X3 �X1X2 �X1X3 �X2X3 +X1X2X3 (45)

Now, one has:

BI1 = Y
+
1 � Y �1 = gBI1 = Y1(1)� Y1(0) = 1�X2 �X3 +X2X3 (46)

and, similarly:

BI2 = Y
+
2 � Y �2 = gBI2 = Y2(1)� Y2(0) = 1�X1 �X3 +X1X3 (47)

The joint importance, is, still:

BI1;2 = Y
+
1;2 � Y

�
1;2 = 1�X3 = Y2(1)� Y2(0) = gBI2 (48)

and note that still BI1;2 6= BI1 +BI2, i.e., the Birnbaum measure is not additive.

7 Appendix B: Savage Scores

The following lines have the purpose of illustrating how Savage Score correlation coe¢ cients

(Iman and Conover (1987) [10]) can be utilized to compare the ranking agreement of di¤erent

importance measures.

The Savage Score of each basic event (SSi) is de�ned as:

SSi =
nX

t=r(i)

1=t i = 1; 2; :::; n (49)
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

CIF / DIMH2 3.6 2.6 2.1 1.8 1.5 1.3 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1
BI / DIMH1 1.1 0.7 0.5 0.4 0.3 0.3 0.2 0.1 0.1 0.2 0.6 1.8 1.5 2.6 3.6 2.1 1.3 1.0 0.9 0.8

Figure 5: Savage Scores corresponding to the Ranking in Figure 4:

where r(Xi) is the rank of basic event i, and n is the number of basic events. Figure 5

reports the results for the basic event SSi corresponding to the ranking in Figure 4.After

transforming the ranks of CIF=DIMH2 and BI=DIMH1 in Figure 4 in the corresponding

SSi through eq. (49), the correlation coe¢ cient on the two series can be computed (Iman

and Conover (1987) [10].) and results in a value equal to �0:32. The presence of a minus

sign indicates a trend for reversal in ranks.
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