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Abstract

Decision and policy-makers benefit from the utilization of computer codes in

an increasing number of areas and applications. Several authorities and agen-

cies recommend the utilization of proper sensitivity analysis methods in order

to confidently entrust model results. In this respect, density-based techniques

have recently attracted interest among academicians and practitioners, for their

property to characterize uncertainty in terms of the entire distribution of an

output variable. However, their estimation is a challenging task and, without

a proper methodical approach, errors in the estimates can lead to misleading

conclusions. In this work, we propose sampling plans for reducing the com-

putational burden of sensitivity estimates while improving and controlling the

accuracy in the estimation. We compare designs based on column substitutions

and designs based on permutations. We investigate their behavior in terms

of type I and type II errors. We apply the methods to the Level E model, a
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computational tool developed by the Nuclear Energy Agency of the OECD for

the assessment of nuclear waste disposal sites. Results show that application of

the proposed sampling plans allows one to obtain confidence in the sensitivity

estimates at a number of model runs several orders of magnitude lower than

a brute-force approach. This assessment, based upon the entire distribution of

the model output, provides us with ways to effectively reduce uncertainty in the

model output, either by prioritizing the model factors that need to be better

known or by prioritizing the areas where additional modelling efforts are needed.

Keywords: uncertainty, global sensitivity analysis, importance measures,

density-based, moment independent, computer experiments, sampling design.

1. Introduction

Computer models play a central role in studying physical phenomena and

in supporting the decision-making process in several disciplines. Especially in

the environmental, climate and physical sciences, scientific models are complex

machines (Craig et al. 2001, Drignei and Morris 2006). The intricacy of the

phenomena under investigation, their space and time scales and the variety of

features that models aim at capturing, make it impossible to obtain a straight-

forward (let alone analytical) understanding of the input-output relationship.

Lack of transparency limits analyst’s ability in defending inferences from criti-

cism and can lead to model rejection by stakeholders (see Stokstad (2008) for

an example in the food industry). Several regulatory bodies and institutions

[the Unites States Environmental Protection Agency, (US EPA 2009), the Eu-

ropean Commission (European Commission 2009; p. 24), the White House

office of Management and Budget (Saltelli 2009, White House 2006)] explicitly

recommend the utilization of uncertainty and global sensitivity analysis meth-

ods as part of model audit and validation. By probabilistic sensitivity, in facts,
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analysts are helped in pinpointing which assumptions are appropriate candi-

dates for additional data collection to narrow the degree of uncertainty in the

results (White House 2006). In the environmental literature, sensitivity anal-

ysis methods are the subject of increased attention by both academicians and

practitioners (Campolongo and Braddock 1999, He et al. 2000, Newham et al.

2003, Pappenberger et al. 2006, Campolongo et al. 2007, Norton 2008, Ziehn

and Tomlin 2009, Saltelli and Annoni 2010, Ravalico et al. 2010, Confalonieri

et al. 2010, Nossent et al. 2011).

Scientists have shown interest in the analysis of datasets that are obtained

from computer codes since the early 1990s. The works of Sacks et al. (1989a;b),

Welch et al. (1992) have pioneered future developments in the solutions of is-

sues as: i) approximating the input/output mapping provided by the computer

model with simplified constructs (surrogate models) (Sacks et al. 1989b, Fried-

man and Stuetzle 1981, Friedman 1991, Santner et al. 2003, Sudret 2008, Bayarri

et al. 2009, Marrel et al. 2009, Ratto and Pagano 2010) ; ii) characterizing the

uncertainty of predictions given the uncertainty in factors (uncertainty analy-

sis) (see Helton et al. (2006) for a review); and iii) identifying the factors that

mostly affect the output uncertainty (global sensitivity analysis, see Saltelli

et al. (2000), Oakley and O’Hagan (2004)). In this work, we focus on item iii),

namely the identification of key-uncertainty drivers by means of global sensi-

tivity analysis methods. Our numerical experiments are performed through the

Level E computer code (OECD 1989). LevelE is a case study designed by the

OECD Nuclear Energy Agency for the performance assessment of nuclear waste

disposal sites. By its frequent use in sensitivity studies, LevelE has become the

benchmark for sensitivity analysis and , practically , all global sensitivity meth-

ods have been tested through LevelE [non-parametric methods in Saltelli and
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Marivoet (1990), variance-based methods in Saltelli and Tarantola (2002), and

a new type of emulator associated with variance-based methods in Ratto et al.

(2007)]. The first benchmark study was launched specifically on this model by

OECD (OECD 1993), with the purpose of ranking uncertain factors in order of

importance. The results of that benchmark were difficult to interpret because

of lack of a rigorous definition of importance. Working on Level E, Saltelli and

Tarantola (2002) addressed the problem in a rigorous fashion, identifying the

so-called variance-based sensitivity analysis settings.1
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Figure 1: Unconditional and conditional densities of the maximum radiological dose simulated
by the Level E model. The conditional densities are obtained for given values of the streamflow
rate W . Due to the large positive skewness of the model output probability density function,
a monotonic transformation (y1/4) is displayed.

Figure 1 displays probability density functions of the main output of LevelE,

namely the maximum radiological dose released to humans over a given time-

1SA settings are specific questions that the sensitivity analysis is supposed to answer. Two
examples are: Which is the factor that should be fixed to achieve the greatest reduction of the
output uncertainty? ; and What is the minimal subset of factors that one should fix in order to
achieve a prescribed reduction in the output uncertainty?. These questions have been called
later on factor prioritization and variance cutting (Saltelli et al. 2004).
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frame. The conditional densities are obtained by fixing one of the uncertain

factors (stream flow rate W , in the specific case). The distributions in Figure 1

are skewed and can be multimodal. Under these circumstances, several works

have underlined that variance is not a sufficient descriptor of uncertainty (Soofi

1994, Oakley 2009). Alternative (to variance) approaches for measuring the

effect of a random factor on the model output based on high-order conditional

moments are presented in Ratto et al. (2009). Approaches that do not rely

on any specific moment but, instead, measure the separation between the con-

ditional and unconditional densities have been introduced by several authors

(Park and Ahn 1994, Krykacz-Hausmann 2001, Auder and Iooss 2008, Chun

et al. 2000, Borgonovo 2007, Liu and Homma 2009, Borgonovo et al. 2011b;a).

Some authors rely on a distance-based metric (Chun et al. 2000, Borgonovo

2007, Liu and Homma 2009) others on an entropy-based one (Park and Ahn

1994, Krykacz-Hausmann 2001, Auder and Iooss 2008). However, independently

of the selected metric, the estimation of density-based sensitivity statistics re-

quires the assessment of the unconditional and conditional densities of the model

output. A brute force estimation is associated with a computational cost M of

the order of k ∗N2 model runs (where k is the number of uncertain factors and

N is the sample size). In this work, we present and compare alternative designs

for the estimation of density-based sensitivity statistics, with the purposes of

reducing computational burden and improving estimation accuracy. The first

design rests on the combination of column substitution and quadrature (Davis

and Rabinowitz 1984). This design achieves an overall computational cost of

M = k ∗Next ∗N , with Next << N . 2 The second method rests on column per-

2This design is thoroughly discussed for the first time in this work. However, it is em-
ployed in Borgonovo et al. (2011a), where the estimation of density-based sensitivity measures
through emulators is studied.
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mutations (Morris et al. 2006; 2008) for the generation of conditional samples.

A permutation-based scheme eliminates the dependence of the numerical cost

on the number of model factors k. M is, then, reduced to (r+1)∗N , where r is

the number of replicates. Two permuted-column sampling plans are proposed,

the first relying on random permutations [replicated Latin Hypercube sampling

(McKay 1995)], the second on deterministic sampling based on orthogonal ar-

rays (Morris et al. 2008). Robustness of the sampling plans is tested first on

analytical case studies. Convergence is obtained for all the proposed sampling

plans as M increases. Nevertheless, spurious estimates of the sensitivity mea-

sures of the least influential factors are registered in the rLHS design, especially

for low sample sizes. To reduce the bias, we study a sampling plan in which

orthogonal arrays replace random permutations. Results show an evident re-

duction of the low-sample-size bias. We then challenge the proposed designs

through of computationally intensive model, namely, LevelE. In this case, the

determination of the degree of confidence in the numerical estimates is obtained

by bootstrap (Efron (1979); see Davison et al. (2003) for a review). In sensitivity

analysis, assessing as important a non important factor corresponds to a Type

I error and assessing as non important an important factor is a Type II error.

Both the analytical test cases and the LevelE results reveal the following. i) A

notable reduction in computational burden is achieved by using the proposed

approaches in respect to current practice; ii) substitution-based sampling plans

identify the least influential factors already at a small sample size with good

accuracy, buy they are prone to type I errors; conversely, permutation meth-

ods identify the most important factors at a reduced sample size, but they are

prone to type II errors. We discuss that, by combining the advantages of the

two approaches, one obtains the identification of the key-uncertainty-drivers at

a relatively small sample size, albeit in the presence of an intensive model as
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LevelE.

The remainder of the paper is organized as follows. The sensitivity measures

of interest are described in section 2. The sampling plans are proposed and

discussed in section 3. In section 4, we assess numerically the performance of

the sampling strategies on several test cases. In section 5 , the most efficient

strategies are compared in the context of the LevelE model. Finally , section 6

offers conclusions.

2. Density-based sensitivity analysis

In this section, we briefly review the principles of global sensitivity analysis.

Some notation is offered first. Let ΩX ⊆ Rk denote the model input space,

X the random model factor vector and x one of its realizations. µX is the

probability measure that reflects the decision-maker’s degree of belief on X.

The joint probability density of X has to be provided by the analyst. Using

the scientific literature, expert judgment or physical experiments, it is usually

provided as marginal distributions (noted fXi) supplemented by a correlation

matrix when factors are correlated.

y = g(x), g : ΩX ⊆ Rk → ΩY ⊆ R, is the relationship that links the

model factors to the model output. It can be a simple expression or a complex

computer code. ΩY , the image of g, coincides with the model output (y) support.

Uncertainty in x makes y a random variable, which we denote by Y . As in

Gelfand and Smith (1990), we assume that densities for both the model factor

and output and for all marginal and conditional distributions exist.

Global sensitivity methods can be categorized as follows. Screening meth-

ods have the purpose of identifying the non-influential model factors through a

limited number of model runs (Morris 1991, Campolongo et al. 2007). For the

identification of the most relevant factors, Morris method can provide results
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comparable to those obtained with more computationally intensive techniques

(Confalonieri et al. 2010). However, this method can produce inaccurate mea-

sures for non-monotonic functions when their characteristic length of variation

is much smaller than the step size used for building the trajectories exploring

the input space (Sobol and Kucherenko 2009). Non-parametric methods make

use of correlations and rank-correlations to identify the main uncertainty drivers

(Saltelli and Marivoet 1990, Helton 1993, Storlie et al. 2009). Variance based

methods are based on the functional ANOVA decomposition of the model out-

put (Efron and Stein 1981, Takemura 1983, Sobol’ 1993, Rabitz and Alis 1999,

Owen 2003, Sobol’ 2003) and are among the most widely utilized ones (Saltelli

et al. 2000, Saltelli and Tarantola 2002, Oakley and O’Hagan 2004). The found-

ing SA setting of variance-based methods is established in Saltelli and Tarantola

(2002): “We are asked to bet on the factor that, if determined (i.e., fixed to its

true value), would lead to the greatest reduction in the variance of Y [Saltelli

and Tarantola (2002), p. 705].” The associated sensitivity measures are defined

as (Iman and Hora 1990, Homma and Saltelli 1996, Saltelli and Tarantola 2002)

Si =
V [Y ]− EXi [V {Y |Xi}]

V [Y ]
=
VXi [E {Y |Xi}]

V [Y ]
(1)

where V [Y ] is the model output variance. Si > Sj implies that fixing Xi leads

on average to a greater reduction in V [Y ] than fixing Xj .

Under the assumption µX =

k∏
i=1

µXi
(factor independence) the sensitivity

measures in eq. (1) are generalized to global sensitivity indices of order m,

defined as

Si1,i2,...,im :=
Vi1,i2,...,im
V [Y ]

(2)

where

Vi1,i2,...,im =

∫
g2i1,i2,...,imdµi1dµi2 ...dµim (3)

is a partial variance in the functional ANOVA expansion of g (Hoeffding 1948)
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which is defined as

g = g0 +

k∑
m=1

∑
i1<i2,...<im

gi1,i2,...,im(xi1 , xi2 , ..., xim) (4)

In Equation 4, g0 = E[g] and the functions gi1,i2,...,im(xi1 , xi2 , ..., xim) are ob-

tained by conditional expectations and nested subtractions following a Gram-

Schmidt orthogonalization procedure (Sobol’ 1969, Efron and Stein 1981, Take-

mura 1983).

Besides first and higher order sensitivity indices, of particular relevance are

the total order indices (ST
i ). They are formally defined as

ST
i :=

E[V (Y |X∼i)]
V [Y ]

= 1− V [E(Y |X∼i)]
V [Y ]

(5)

where X∼i denotes the set of all model factors excluding Xi. S
T
i is the expected

variance that would be left if all factors but Xi could be fixed

Being eqs. (2) and (5) the expectation of conditional moments, the numer-

ical estimation of all sensitivity indexes (up to order k) involves a double loop

computation to be repeated 2k − 1 times, for a total of k ·N2 · (2k − 1), where

N is the Monte Carlo sample size. Such cost would make their estimation in-

feasible for most realistic models. Several works have then focussed on their

estimation and led to a notable reduction in computational burden (Jansen

et al. 1994, Homma and Saltelli 1996, Saltelli et al. 1999; 2000, Saltelli 2002,

Saltelli et al. 2010). Saltelli et al. (2010) provide a recent review and compar-

ison of existing and new practices. Theorem 1 in Saltelli (2002) states that,

under the independence assumption, it is possible to compute Si, S
T
i and each

of the

(
k

2

)
second order indices, Vit,is , at the cost of N(k + 2) model evalua-

tions. Variance-based sensitivity measures have been extensively studied both

from the theoretical and numerical viewpoints (Cukier et al. 1978, Efron and

Stein 1981, Bedford 1998, Rabitz and Alis 1999, Saltelli et al. 2000, Saltelli and
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Tarantola 2002, Owen 2003, Oakley and O’Hagan 2004) . Similar considera-

tions cannot be stated for the estimation of density-based sensitivity methods.

The growing attention and utilization of these methods by both academicians

and practitioners makes research on this aspect necessary. However, when the

factors are dependent, Bedford (1998) shows that the value of Vi1,i2,...,im de-

pends on the order with which factors are considered. Consequently, sensitivity

indices of order 2 or higher are not univocally defined, making the creation of

a corresponding sensitivity setting cumbersome3. Also, variance is sufficient to

characterize uncertainty under either a) the assumption of a quadratic utility

function of the decision-maker (Oakley (2009)); or b) the assumption of normal

distributions (Huang and Litzenberger (1998); p. 61). However, contradictory

results can be obtained if either of these assumptions fail. In Borgonovo (2006)

, a test case is presented where a decision-maker representing uncertainty by

means of variance would refuse perfect information about an uncertain factor.

In Soofi (1994)[p. 1244], it is shown that variance cannot be used for comparing

uncertainties associated with two Pareto distributions when a < 2 for one or both

distributions. If a < 2, in fact, the variance of a Pareto random variable is in-

finite. Nonetheless, comparison of uncertainties associated with any two Pareto

variables is always possible using density separation (Soofi 1994). In fact, Figure

1, shows that the effect of fixing W is a modification in the entire density of the

model output. The rationale of density-based sensitivity measures is, then, to

quantify the change in shape between the conditional and unconditional model

output densities, without reference on a particular moment (e.g., variance). In

this way, one can also capture oscillations in higher order moments as skewness,

kurtosis, etc. The corresponding setting is, then: We are asked to bet on the

3Research for coming to a unified definition of variance-based sensitivity measures is on-
going (Rabitz 2010, Mara and Tarantola 2011)
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model factor that, if determined, would lead to the greatest expected modifica-

tion in the distribution of Y (Borgonovo and Tarantola 2008). To the authors’s

knowledge, the first work introducing a global sensitivity measure based on den-

sity separation is Park and Ahn (1994), where the Kullback-Leibler divergence

is employed. This intuition is next generalized by Chun et al. (2000), where the

Minkowski-distance of order 2 is used and in Borgonovo (2006) and Borgonovo

(2007) — an historical overview in the development of distributional sensitiv-

ity methods is offered in Borgonovo et al. (2011b). The sensitivity measure of

interest in this work is:

Definition 1.

δi :=
1

2
EXi

[si(Xi)] =
1

2

∫
fXi

(xi)si(xi)dxi (6)

where

si(xi) :=

∫ ∣∣fY (y)− fY |Xi=xi
(y)
∣∣ dy (7)

δi [eq. (6)] has the following interpretation. si(xi) quantifies the shift be-

tween the unconditional and the conditional output distribution given that Xi is

fixed at xi. As proven in Glick (1975), the operation

∫
(
∣∣fY (y)− fY |Xi

(y)
∣∣)dy

is a separation measurement with respect to the L1 norm, for the set of all

probability densities. More generally, one can use the Minkowski-distance of

order p:

∫
(
∣∣fY (y)− fY |Xi

(y)
∣∣p)1/pdy. For instance, p = 2 is used in Chun

et al. (2000) (for a thorough overview of alternative metrics in distributional

sensitivity analysis, we refer to Borgonovo et al. (2011b)). The choice p = 1,

however, grants one with the advantage that the sensitivity measure has a di-

rect geometrical interpretation and possesses attractive normalization and scale

invariance properties. Geometrically, si(xi) represents the area between fY (y)

and fY |Xi
(y) (Fig. 2).

δi possesses the following properties (Borgonovo 2007, Borgonovo et al.

2011b):
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Figure 2: Geometric interpretation of si(Xi)

1. individual normalization: 0 ≤ δi ≤ 1, with δi = 0 if and only if Y is

independent of Xi ;

2. joint normalization ;

3. scale invariance.

The first property insures that the importance of an uncertain factor is

normalized between zero and unity. If Y is unaffected by Xi (whatever the

value), δi = 0. Property 2 states that the distance between the unconditional

distribution of Y and the distribution corresponding to the situation in which

all model factors are known is unity. This is explained as follows. The δ1,2,...,k

for getting to know all factors is given by:

δ1,2,...,k =
1

2
EX [

∫ ∣∣fY (y)− fY |X1=x1,X2=x2,...,Xn=xk
(y)
∣∣ dy] (8)

where fY |X1=x1,X2=x2,...,Xk=xk
(y) is the density of Y given that all model fac-

tors are fixed at x. This density is, then, Dirac δ−density centered at y = g(x).
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One can then show that the distance between any density and the Dirac-δ−

density is equal to 2, independently of x (unity after normalization). Property

3 follows by the invariance for monotonic transformation of the L1-norm. Scale

invariance is particularly useful in practical applications when the numerical

model output spans several orders of magnitude. A technique often adopted

by analysts to improve numerical processing is re-scaling (typically one uses

log-transformations). For instance, Iman and Hora (1990) underline a lack of

robustness in the estimation of variance-based sensitivity measures, which are

highly influenced by outliers in the presence of fat-tailed input/output distri-

butions. In order to circumvent this problem, Iman and Hora (1990) employ a

log transformation. However, as emphasized by Saltelli and Sobol’ (1995), and

investigated in detail for rank transformation, the outcomes of a variance-based

sensitivity analysis on re-scaled data cannot be easily transferred back to the

original model. By the scale invariance property, δ does not suffer from this

limitation. In fact, it assumes the same values if computed on y or on data

obtained through any monotonic transformation of y (e.g., log y). The trans-

formed data can then be fully exploited in applications (see section 5).

Furthermore, consider all situations in which the model output acts as a decision-

support criterion, and is used by policy-makers to make environmental decisions.

Then, most generally, the decision-maker preferences are represented by assess-

ing a von Neuman-Morgenstern utility function over y, that we denote by u(y).

In many situations, however, it is difficult to assess the precise functional form

of u(y). However, monotonicity of u(y) is a standard requirement. In fact, if

u(y) and t(y) are two monotonic functions, then they are equivalent represen-

tations of a decision-maker preferences. Then, if a sensitivity measure is scale

invariant, it produces the same ranking for u(y) and t(y). That is, the ranking

obtained by computing the sensitivity on y is unaffected by imprecisions in the
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assessment of u(y). These properties are connected with the scale-invariance of

the L1-norm and do not hold if p 6= 1.

Finally, we emphasize that δi and Si/ST are complementary sensitivity mea-

sures. δi is a measure of statistical dependence and allows one to detect whether

a factor is influential on the model output, no matter what moment of the dis-

tribution she is considering. In this respect, δi allows one to avoid type I errors.

Conversely, Si/ST by their link to the functional ANOVA decomposition allow

one to obtain insights on model structure (e.g., interactions).

As mentioned in the introduction, the estimation of density-based sensitivity

measures can be challenging in the presence of model output generated by large

computer codes. In the next section, we address the principles of numerical

estimation of δi and propose ways for reducing the computational burden.

3. Description of alternative sampling plans

In this section, the computational and numerical aspects underlying the esti-

mation of density-based importance measures are discussed. It is readily noted

that a key-role is played by the estimation of the internal-loop statistics, si(xi),

in eq. (7). In the estimation of δi, an essential aspect is the generation of

conditional and unconditional model output vectors that allow an efficient ap-

proximation of the conditional (fY |Xi=xi
(y)) and unconditional model output

densities (fY (y)). In fact, fY |Xi=xi
(y) and fY (y) are essential to insure that

the internal statistics (si(xi)) is properly computed. In a numerical estimation,

fY |Xi=xi
(y) and fY (y) are obtained by processing the conditional and uncon-

ditional model output vectors using kernel density estimation (Parzen 1962,

Silverman 1986). However, the problem is generating samples of the uncertain

factors at which to evaluate the model to obtain the conditional and uncondi-

tional output vectors efficiently. In the remainder, therefore, we focus on the
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description of the sampling strategies. The terminology used by Morris et al.

(2006) is adopted in order to classify the different sampling plans evaluated in

this paper.

3.1. Substituted column sampling plans

The family of plans we discuss in this subsection is based on substituted col-

umn (substituted columns) sampling. We describe a basic substituted column

design first.

Let A0 denote the unconditional sample of size N ( A0 an N × k matrix)

drawn from fX(x) using any (quasi) random sampling scheme. Evaluating the

model in correspondence of A0, one obtains the unconditional model output

vector b0. b0 can then be used for the estimation of fY (y) through kernel

density.

In order to obtain the conditional model output vectors required for the

estimation of fY |Xi=xi
(y) (for different values xi), one needs to generate a con-

ditional input sample from fX|Xi=xi
(x). Assuming that x

(j)
i is the value of Xi

sampled for the jth Monte Carlo run, let us denote by A
(j)
i the corresponding

conditional input sample and by b
(j)
i the calculated model output vector. To

obtain the conditional input sample A
(j)
i , one needs to distinguish the cases

of dependent and independent model factors. In the latter, one can simply fix

all elements of the ith column of A0 at x
(j)
i to obtain A

(j)
i . In the former, one

has to re-sample from the conditional factors distribution given that Xi = x
(j)
i .

Repeating this procedure for j = 1, 2, · · · , N , one obtains N conditional sample

matrices A
(j)
i of size N×k. The operation needs then also to be repeated for the

k model factors. Correspondingly, the computational cost associated with the

substituted columns design is M = N(1 + kN) model runs (Table 1). This cost

makes the estimation prohibitive for most models as N or k grow, unless the

computational time is negligible (this could be done by substituting the model
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Sampling plans Tot. numb. of eval. (M)
Substituted Columns M = N(1 + kN)
Improved Substituted Columns M = N(1 + kNext) Next << N
Permuted columns M = N(1 + r) with r ' N

Table 1: Summary of the computational cost for the various sampling plans with k number of
model factors, N unconditional sample size, Next number of explored conditional values and
r number of replicates for rLHS

through a surrogate model; see Borgonovo et al. (2011a)). However, a first way

for lowering M is to use a quadrature method (Davis and Rabinowitz 1984) to

estimate the one-dimensional integral given by eq. 6

The number of conditional input points x
(j)
i to be explored for an accurate

estimation of δi is then limited to Next << N . The total number of model

evaluations associated with this improved substituted columns sampling plan

is N(1 + kNext) (Table 1). In our numerical experiments we shall adopt a

Gauss-Legendre quadrature proceeding as follows. The Next abscissas used

for quadrature are first given by the roots of Legendre polynomials and then

transformed using the inverse of the marginal cumulative distribution function

of Xi.

We observe that both substituted columns and improved-substituted col-

umn sampling plans are independent of the random number generation method.

Therefore, one can adopt stratification procedures (McKay et al. 1979) or low

discrepancy sequences (Sobol’ 1976) to improve the numerical accuracy of δi.

In this work, both techniques are used and compared.

Let us denote by X−i all factors but Xi. An interesting feature of substituted

column sampling plans is that when the model factors are independent the same

sampling points for X−i are used for the calculation of the outputs b0 and b
(j)
i

(i.e. the base case vs. the conditional case). The resulting advantage is that any

change between fY (y) and f
Y |Xi=x

(j)
i

(y) is due to Xi = x
(j)
i and not spuriously
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provoked by sampling variability4 for the factors X−i.

This prevents the occurrence of bias. In fact, given that the L1-norm is used

for the difference between the unconditional and conditional densities, if Xi is a

dummy factor which does not play any role in the calculation of Y , the statistic

δi cannot be strictly null if different sampling points are used for the factors

X−i (see Sections 3.2 and 4).

A limitation, common to both substituted columns and improved-substituted

column sampling plans, is that the conditional sample matrices A
(j)
i ,∀j =

1, 2, . . . , N are used only once for estimating δi. Consequently, the total com-

putational cost depends on the number of factors k. A way for reducing the

computational burden is to make use of permuted column sampling.

3.2. Permuted columns sampling plans

McKay (1995) introduces a permuted column (PC) sampling plan for the

numerical estimation of first-order variance-based importance measures, Si. The

proposed design, named replicated Latin Hypercube sampling, is denoted rLHS

in the remainder of the paper. It relies on a base Latin Hypercube sample

A0 of size N and on r additional matrices (i.e. {A1, · · · , Ar} N × k matrices)

obtained by r independent permutations of all columns of A0. Each replicate of

N sample points is therefore constructed by random combination of the set of

sampled values available of each factor Xi in the base sample A0. We now show

that rLHS can be used for the estimation of density-based sensitivity measures.

In fact, by construction, each of the arrays Aj (j = 1, · · · , r) contains the same

N values of Xi that are matched with different values of the other factors. By

sorting the rows of the whole sample matrix according to the values of Xi, the

entire sample can be seen as made of N groups of r points sharing the same

4Sampling variability refers to how much the estimate varies from sample to sample.
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value x
(j)
i . This is valid for all factors Xi.

With rLHS, the number of required replicates r is equal to the number

of points considered over a conditional value (i.e. the sample size used for

approximating fX|Xi
(x) in Eq. 7). Therefore, r has to be set not too far from

N (see section 4).

The total number of sample points required for the computation of δ is inde-

pendent of the number of model factor k. The computational cost is, therefore,

reduced to N(1 + r). As emphasized by Morris et al. (2006), an attractive fea-

ture of this sampling strategy is that all model runs (i.e. the whole sample of

size N(r + 1)) contribute to the estimation of each sensitivity index Si.

Because the number of model evaluations characterizing rLHS is independent

of the number of model factor k, this method can be cheaper than improved-

substituted column for high values of k. The reader is referred to Table 1 for a

comparison of the numerical costs.

Conversely to both substituted columns and improved-substituted column,

the limitation of rLHS is that permutations lead to spurious changes between

fY (y) and f
Y |Xi=x

(j)
i

(y), which are not necessarily provoked by conditioning on

a model factor. As we are to see, a dummy variable can be associated with a

non-null (albeit small) value of the global sensitivity measures (both variance-

based and density-based).

As noted, the motivation for the randomized rLHS is that random recombina-

tion of N distinct values for each factor yields a collection of r runs over which

any one factor can be fixed, while the others vary randomly. However, because

N is finite, distinct combinations of pairs (or even triples, et cetera) of factors

can appear by chance in these arrays. The result is that estimates of sensitivity

indices are biased under these plans, and this bias is relatively larger for small

N and/or large k. Morris et al. (2008) showed how this bias could be eliminated
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by using orthogonal arrays of strength 2, rather than random permutation, as

the basis for recombining factor values in these plans. Briefly, an orthogonal

array of strength 2 is, in our context, an array or matrix in which each column

contains N distinct values, and for which, for every pair of columns, every com-

bination of N2 pairs of values appear together in the same number of rows. As

a result, the total number of rows in the orthogonal array must be a multiple

of N2. The approach calls for constructing an orthogonal array of strength 2 in

k + 1 columns. For each of the first k columns (independently), the N coding

values are replaced by the mid-points of equal-probability intervals derived from

the distribution specified for the corresponding factor. The last column is used

to split the orthogonal array into N sub-arrays, r of which are retained and

used as {A1, · · · , Ar} as described above. This retains the general structure

of the rLHS, while assuring that distinct pairs of values are not repeated for

any two factors across the collection of arrays, and eliminating the estimation

bias associated with rLHSs in which the arrays are constructed through uncon-

strained random permutation within columns. There are a number of algebraic

techniques available for constructing orthogonal arrays; an excellent general ref-

erence on this topic is the book by Hedayat et al. (1999). (For readers interested

in more detail, we note that the particular construction technique we have used

in the examples is described as Construction 2 by these authors, following The-

orem 3.20 on page 50, but will not repeat that description here because it is well

beyond the technical scope of this paper, and because any other construction

technique would be equally valid for this purpose.)

The performance of the different sampling plans is discussed in the next section.
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4. Comparative analysis of the sampling plans

In this section, we investigate the efficiency and accuracy of the sampling

plans by means of analytical test cases.

The first test case consists of the additive model:

y =

10∑
i=1

Xi (9)

with Xi distributed as follows: X1 ∼ N(0,
√

16), X2 ∼ N(0,
√

14), X3 ∼

N(0,
√

8), X4 ∼ N(0,
√

7), X5 ∼ N(0,
√

6), X6 ∼ N(0,
√

3), X7 ∼ N(0,
√

2),

X8 ∼ N(0,
√

1), X9 ∼ N(0,
√

0.5), X10 ∼ N(0,
√

0.5). This configuration of

model factors and output allows us to obtain δi analytically (Proposition 4 in

Borgonovo et al. (2011b)). In fact, letting

y =

n∑
i=1

aixi (10)

with X ∼N(x,m,Σ) with mean values mi = E[Xi] and non degenerate covari-

ance matrix Σ (det Σ 6= 0), then

δi = EXi
[N(y1;mY , VY )+N(y2;mY |Xi

, VY |Xi=xi
)−N(y2;mY , VY )−N(y1;mY |Xi

, VY |Xi=xi
)]

(11)

where

VY = aΣaT

VY |Xi
= aΣY |Xi

aT

mY =

n∑
s=1

asms

mY |Xi
=

n∑
s=1,s6=i

as

[
ms + (xi −mi)

σs,i
σi

]
, i = 1, 2, ..., n.

y1,2 =
1

VY − VY |Xi

(
VYmY |Xi

− VY |Xi
mY ±

√
VY VY |Xi

[
(aixi)2 + (VY − VY |Xi

) ln

(
VY
VY |Xi

)])
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For our particular choice of the parameters one obtains

{δ1, · · · , δ10} = {0.196, 0.180, 0.128, 0.119, 0.109, 0.074, 0.060, 0.042, 0.029, 0.029}

This result shows that the model factors can be divided in groups of high

(δ1,δ2), moderate (δ3,δ4,δ5), low (δ6,δ7,δ8) and very low (δ9,δ10) importance.

As we are to see, this allows one to compare the performance of the proposed

sampling plans with respect to their ability in identifying the most (factor pri-

oritization) or least (factor fixing) important model factors.

We start by analyzing substituted columns sampling plans (i.e. substituted

columns and improved-substituted column). As we mentioned in Section 3,

these designs could be obtained using any random generation scheme, which

can be a crude Monte Carlo, a quasi-Monte Carlo or some form of stratified

sampling.

We then compare the performance of substituted columns and improved-

substituted column schemes using both standard Latin Hypercube Sampling

(LHS) (McKay et al. 1979) and quasi-Monte Carlo (quasi-Monte Carlo) gener-

ation. The latter is obtained by using Sobol’ sequences (Sobol’ 1976). In order

to establish the accuracy of the estimates a root mean square error (RSME) is

computed. For each sample size, RMSE is calculated repeating the exercise 100

times. Figure 3 shows convergence results for δ1, δ3,δ6, δ9 (a representative of

each category is shown for space reasons).

21



10
−3

10
−2

10
−1

10
0

10
2

10
3

10
4

10
5

10
6

a
v
e
ra

g
e
 R

M
S

E
 o

n
 δ

1
 e

s
ti
m

a
ti
o
n

total number of model evaluations

Substituted column with QMC

Substituted column with LHS

Improved substituted column with QMC

Improved substituted column with LHS

Permuted column (replicated LHS)

10
−3

10
−2

10
−1

10
0

10
2

10
3

10
4

10
5

10
6

a
v
e
ra

g
e
 R

M
S

E
 o

n
 δ

3
 e

s
ti
m

a
ti
o
n

total number of model evaluations

Substituted column with QMC

Substituted column with LHS

Improved substituted column with QMC

Improved substituted column with LHS

Permuted column (replicated LHS)

10
−4

10
−3

10
−2

10
−1

10
0

10
2

10
3

10
4

10
5

10
6

a
v
e
ra

g
e
 R

M
S

E
 o

n
 δ

6
 e

s
ti
m

a
ti
o
n

total number of model evaluations

Substituted column with QMC

Substituted column with LHS

Improved substituted column with QMC

Improved substituted column with LHS

Permuted column (replicated LHS)

10
−4

10
−3

10
−2

10
−1

10
0

10
2

10
3

10
4

10
5

10
6

a
v
e
ra

g
e
 R

M
S

E
 o

n
 δ

9
 e

s
ti
m

a
ti
o
n

total number of model evaluations

Substituted column with QMC

Substituted column with LHS

Improved substituted column with QMC

Improved substituted column with LHS

Permuted column (replicated LHS)

Figure 3: RMSE (average across 100 replicates) for the different sampling plans, for model
factors δ1, δ3,δ6, δ9.

The first four lines in Figure 3 represent the RMSE as a function of N

for substituted columns and improved-substituted column with quasi- Monte

Carlo and LHS, respectively. One notes that the RMSE tends to zero as N in-

creases, with improved-substituted column outperforming substituted columns

both when an LHS and a quasi-Monte Carlo scheme are used. The choice of

the sampling method (LHS or quasi-Monte Carlo) does not affect the improved-

substituted column performance significantly. Figure 3 also reports the results

obtained with rLHS. In these experiments, we have set r = N (number of repli-

cates equal to the unconditional sample size) for the reasons discussed earlier

and that we now investigate further.

Figure 3 shows that rLHS outperforms both improved-substituted column
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and substituted columns for the most important model factor δ1. However,

performances gradually deteriorate for factors featuring moderate to very low

importance (δ3,δ6, δ9). Using rLHS the estimation of the change between un-

conditional and conditional densities is also influenced by sampling variability

(i.e. not strictly due to conditioning on a given value of Xi) and a positive bias

for the estimates of δi occurs.

To investigate this feature, we perform additional numerical experiments

using a well-known sensitivity analysis case study, namely the Ishigami func-

tion (Ishigami and Homma 1990). The model output is given analytically by:

Y (X1, X2, X3, X4) = sinX1 + 7 sin2X2 + 0.1X4
3 sinX1.

The four factors used for the calculation are Xi (i = 1, · · · 4) ∼ U [−π− π].

X4 is a dummy factor. Because Y is independent of X4 the value of δ4 is known

to be null. Figure 4 reports the results of the computational experiments.
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Figure 4: si(xi) across the model factors range for the Ishigami function, using substituted
columns (top left figure where s(x4) is strictly null), rLHS (with r = N , top right figure) and
Morris et al. (2008) design (with r = N − 1, bottom figure). In order to have a comparable
total number of model evaluations, we set N = 100 for substituted columns, N = 200 for
rLHS and N = 173 for Morris et al. (2008) design (see table 1).

Figure 4 displays the separation si(xi) (i.e. across the range) for the four

model factors obtained with substituted columns, rLHS and Morris et al. (2008)

design . For a comparable number of model runs M (i.e. M = 100(1+4×100) =

40100 , M = 200(1 + 200) = 40200) and M = 173(1 + 172) = 29929), the shape

of the curves is much smoother using the substituted columns sampling plan.

The noise observed in the curves obtained with rLHS is another consequence

of the positive bias on δi which appears visible for less important factors. This
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noise is less pronounced with Morris et al. (2008) design for a smaller total

number of model runs. As a result, one notes that s4(x4) is always null when

using substituted columns, while it is non-null using permuted column sampling.

For the same case study, let us compare in more detail rLHS with the or-

thogonal array replication scheme of Morris et al. (2008), with the construction

described in Section 3.2. Figure 5 reports the results.
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Figure 5: Results for the dummy variable of the Ishigmi model; comparison of the Morris et
al. (2008) design with rLHS

Figure 5 reports the numerical estimates of δ4 at 300, 1000, 3000, 10000,

and 30000 model runs obtained using rLHS and Morris et al. (2008) designs.

Because δ4 is a dummy, its importance is expected to be null; this is indeed

the case with both rLHS and the orthogonal array designs for increasing M .

However, one notes the bias reduction obtained by orthogonal arrays, especially

at a small sample sizes (low M).
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Finally, we explore how different combinations of r and N in the rLHS

sampling plan influence the estimation of δ considering a dummy factor X4 in

the Ishigami function.
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Figure 6: Error of density-based sensitivity measure for a dummy factor introduced for the
Ishigami function.

Figure 6 shows the estimation error on δ4 revealing that for a fixed value of N

the approximation error significantly decreases when r grows towards N . Given

the range of values explored for this specific experiment (N ranging from 10 to

80) and the convergence rate reported by figure 5, the reduction of the error is

not really significant after N = 30.

In the remainder of the work, we shall maintain r = N . [We investigated

the effects of the combination of N and r for other analytical test cases (not
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reported here for space reasons) and the results confirm the observations stated

above.]

In the next section, the performance of the proposed sampling plans is in-

vestigated by means of the benchmark model for sensitivity analysis, namely,

LevelE.

5. Application to safety assessment for nuclear waste disposal

The Level E code5 is a case study designed to forecast the radiological dose

to humans due to the underground migration of radionuclides from a nuclear

waste disposal site over geological timescales (from 0 to 107 years). The ra-

dionuclides are iodine (129I) and the neptunium, uranium and thorium chain

(237Np → 233U → 229Th) . The repository is represented as a point source

and the migration happens in two geosphere layers characterized by different

hydro-geological properties. The processes being considered in the model are

radioactive decay, dispersion, advection and chemical reaction between the mi-

grating nuclides and the porous medium. The resulting model is then a set of

coupled partial differential equations, whose analytical expression can be found

in Saltelli and Tarantola (2002). Twelve uncertain model factors are present,

whose distributions have been assigned on the basis of expert judgment (OECD

1989; 1993) and are listed in Table 2 together with a set of parameters which

are assumed constant.

In Saltelli and Tarantola (2002), variance-based sensitivity analysis tech-

niques were applied on the same model with the same factor distributions and

the effect of dependence among factors were analysed. The results obtained

through density-based sensitivity measures estimated via the proposed sampling

5The computer code is available from
http://sensitivity-analysis.jrc.ec.europa.eu/software/index.htm
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plans are presented in the following paragraphs.

Notation Definition Distribution Range Units
T containment time uniform [100, 1000] y
kI leach rate for iodine log-uniform [10−3, 10−2] mol/y
kC leach rate for Np chain nuclides log-uniform [10−6, 10−5] mol/y
V (1) water velocity in geosphere’s 1st layer log-uniform [10−3, 10−1] m/y
L(1) length of geosphere’s 1st layer uniform [100, 500] m

R
(1)
I retention factor for I (1st layer) uniform [1, 5] -

R
(1)
C factor to compute retention

coefficients for Np chain nuclides (1st layer) uniform [3, 30] -
V (2) water velocity in geosphere’s 2nd layer log-uniform [10−2, 10−1] m/y
L(2) length of geosphere’s 2nd layer uniform [50, 200] m

R
(2)
I retention factor for I (2nd layer) uniform [1, 5] -

R
(2)
C factor to compute retention

coefficients for Np chain nuclides (2nd layer) uniform [3, 30] -
W stream flow rate log-uniform [105, 107] m3/y

Table 2: List of model inputs for LevelE.

The output of interest here is the maximum radiological dose to humans due

to the joint effect of the four radionuclides. We perform uncertainty analysis

first, using a Sobol’ quasi random sample (Sobol’ 1967) of size 215 (i.e. 32768),

which allows us to obtain the unconditional model output distribution. Model

output values range across several orders of magnitude. The unconditional

distribution has skewness γ1 = 7.7841 and kurtosis γ2 = 106.8809. We then

apply a log transformation to the model output. This leads to γ1 = −0.0339

and γ2 = 2.5011. We process both the raw and the log-transformed data to

appreciate the impact of the log-transformation. The registered effect is an

improvement in the estimation accuracy for all sampling strategies when the

log-transformed data are employed. We recall that the scale invariance property

of δi allows us to use directly results for the log-transformed data [see Section

2].
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Figure 8: Moment independent sensitivity analysis for the LevelE maximum dose, convergence
of δi estimates using substituted column sampling with Sobol’s quasi-random sequences, con-
fidence intervals obtained by bootstrapping for the 4 most important model factors (i.e. W ,

V (1) , R
(1)
I and L(1)). The factor of interest is evidenced using a grid pattern and the others

are displayed in background.

Figure 7 displays convergence results obtained using the substituted columns

with Sobol’ quasi-Monte Carlo for the 12 uncertain model factors. On the

horizontal axis is the total number of model evaluations (M). M ranges from

50 to almost 8∗105. On the vertical axes, the point estimates of δi are displayed

as M varies. Overall, Figure 7 shows that W and V (1) are identified as most

important factors, followed by R
(1)
I and L(1), which have a moderate importance,

while the remaining factors have a minor influence. The analysis of Figure 7

reveals that the most important model factors (i.e. W and V (1)) are identified
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by point estimates even at very low values of M . However, as M increases,

we observe instability of the point estimates, that lead to a ranking reversal

between W and V (1) at M ' 103 model evaluations. Conversely, Figure 7

reveals a rapid convergence in the importance measures of the moderate and

least important model factors. The bootstrap analysis (Figure 8) confirms these

observations. In fact, there is a notable overlapping of the confidence intervals

of W and V (1), which does not allow us to draw a definitive conclusion about

their ranking until M ' 105. Furthermore, only starting with M > 104 we

register a neat separation between the values of (δW ,δV (1)) and the sensitivity

measures of the remaining 10 factors. The results in Figure 7 and 8 indicate

that using a simple substituted column approach a large number of model runs

is required to obtain convergence. This finding is a consequence of the fact that

this sampling strategy is a plain brute force approach. Let compare the results

Figure 7 and 8 to the results obtained using an improved-substituted column

plan with quasi-Monte Carlo generation (Figure 9 and 10) .
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Figure 9: Moment independent sensitivity analysis for the LevelE maximum dose, convergence
of δi estimates using improved-substituted column sampling plan (Gauss-Legendre quadrature
with 4 points for the external loop) with Sobol’s quasi-random sequences (point estimates)
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Figure 10: Moment independent sensitivity analysis for the LevelE maximum dose, con-
vergence of δi estimates using improved-substituted column sampling plan (Gauss-Legendre
quadrature with 4 points for the external loop) with Sobol’s quasi-random sequences, confi-
dence intervals obtained by bootstrapping for the 4 most important model factors (i.e. W ,

V (1) , R
(1)
I and L(1)). The factor of interest is evidenced using a grid pattern and the others

are displayed in background.

Figure 9 shows that, using an improved-substituted column sampling plan,

the identification of the two most important factors occurs at a much lower M .

Compare, for instance, the confidence intervals at M = 103 in Figure 10 against

the ones at M = 104 in Figure 8. In fact, the confidence intervals of W and

V (1) are sharpely separated from the remaining factors already at M ' 103.

That is, at a value of M at least one order of magnitude lower than with basic

substituted column sampling. Furthermore, the asymptotic separation of the

confidence bounds occurs around 104 model evaluations, i.e., again for M one
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order of magnitude lower than for the previous sampling plan (Figure 9). Both

Figure 9 and 10 show that for the moderate and non-influential factors one

obtains a very sharp distinction of the sensitivity measures by this sampling

scheme.

Let us now compare these results with those obtained using permuted columns

sampling schemes (Section 3.2). Results for rLHS are reported in Figure 11 and

12.
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Figure 11: Moment independent sensitivity analysis for the LevelE maximum dose, con-
vergence of δi estimates using a permuted column sampling plan based on replicated Latin
Hypercube with r = N (point estimates)
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Figure 12: Moment independent sensitivity analysis for the LevelE maximum dose, conver-
gence of δi estimates using a permuted column sampling plan based on replicated Latin Hy-
percube with r = N , confidence intervals obtained by bootstrapping for the 4 most important

model factors (i.e. W , V (1) , R
(1)
I and L(1)). The factor of interest is evidenced using a grid

pattern and the others are displayed in background.

Figure 11 shows that rLHS provides a stable ranking of W and V (1) already

at few hundreds model runs and ranking reversal never occurs. However, the

sensitivity estimates for the factors featuring moderate (R
(1)
I , L(1)and V (2))

to low importance are overestimated at low sample size, with the bias that

progressively reduces as the number of model evaluations increases. Another

consequence of this bias is that the less important model factors cannot be

robustly distinguished (Figure 12)

As we discussed in Section 3.2 and evidenced in Section 4 , the biasing at
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low sample sizes can be reduced by using orthogonal arrays instead of random

permutations (Morris et al. 2008). Let us then analyse results obtained by the

last sampling scheme proposed in this work, namely, permuted column sampling

with orthogonal arrays (see Figure 13).
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Figure 13: Moment independent sensitivity analysis for the LevelE maximum dose, conver-
gence of δi estimates using a permuted column sampling plan with orthogonal arrays (point
estimates)
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Figure 14: Moment independent sensitivity analysis for the LevelE maximum dose, conver-
gence of δi estimates using a permuted column sampling plan with orthogonal arrays, confi-
dence intervals obtained by bootstrapping for the 4 most important model factors (i.e. W ,

V (1) , R
(1)
I and L(1)). The factor of interest is evidenced using a grid pattern and the others

are displayed in background.

Figure 13 confirms the efficacy of orthogonal arrays in reducing the bias

at low sample sizes. For instance, by comparing results for 102 6 M 6 103

in Figures 12 and 14, one observes the sharper confidence bounds obtained by

orthogonal arrays. Also, Figure 14 shows that W and V (1) are neatly identified

as the most important factors at all sample sizes. However, the precision of the

estimates for the less important model factors is not improved.

Let us now offer an overall comparison of results obtained with a substituted

column sampling scheme to a permuted column scheme (see Figures 7 to 14).
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We note that:

- both the improved-substituted column and the permuted column designs

represent a definitive improvement over the basic substituted column plan;

- the improved-substituted columns sampling plan is more prone to Type I

errors than permuted column sampling plan, but more robust to type II error.

This complementarity suggests the following way for identifying the min-

imum M at which the ranking obtained can be confidently entrusted. First,

one utilizes permuted column sampling and considers the bootstrap confidence

intervals as M increases. Then, one stops at the value M1, at which one is

confident about the most important factors. Then, one can decide between

continuing with permuted column with larger sample sizes or switch to the

improved-substituted column sampling. By this sampling scheme, in fact, one

obtains a neater assessment of the importance of the low relevance factors. For

the present case study, the application of this strategy allows one to obtain

confidence in the ranking of the model factors using density-based sensitivity

measure at a number of model runs of around M = 8000. [We note that to

obtain such confidence using a brute force approach one would have to set M

at around 1 million model runs.]

Finally, the insights obtained are as follows. W and V (1) are the most

influential variables. Variables of moderate influence are: L(1), R
(1)
I , V (2), L(2),

and R
(2)
I . The bootstrap confirms that the variables T , kI , kC , R

(1)
C and R

(2)
C

have negligible effect on the distribution of the maximum radiological dose.

Because this assessment is performed in a moment-independent fashion, this

information is then providing us indications on what factors to focus efforts in

data collection and further modelling for most effectively managing uncertainty

in the model predictions.
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6. Conclusions

In this work, we have presented sampling plans for density-based sensitivity

measures utilized in the context of global sensitivity analysis of model output.

This work adds to the contribution of Saltelli and Tarantola (2002) in which a

variance decomposition approach is used to identify key-uncertainty drivers and

to Morris et al. (2008), where orthogonal arrays are used for improving the esti-

mation of variance-based sensitivity measures, and to Borgonovo et al. (2011a),

where density-based sensitivity measures are estimated via an emulator. The

estimation of density-based importance measures is, in fact, a challenging task,

especially in the presence of numerically intensive models. Our work proposes

novel sampling plans that reduce the computational cost while improving accu-

racy of the estimation process. Building on a quasi-random generated sample,

we test column substitution designs (basic and improved via Gauss-Legendre

quadrature formulas) and column permutation designs (based on random per-

mutations and orthogonal arrays) on analytical tests to check convergence of

sensitivity estimates. We also test these designs on a model-based dataset for

the performance assessment of nuclear waste disposal sites.

Concerning sampling plans performance, results show that the improved

substituted column and the permuted column plans achieve a notable reduction

in computational burden. Also, using orthogonal arrays instead of random per-

mutations improves the estimation efficacy of permuted column sampling plans.

Convergence analysis performed using the root mean square error for analyt-

ical test cases and bootstrapping for LevelE, shows that column substitution

sampling plans are more robust to Type II errors, while column permutation

sampling plans are more robust to Type I errors.

Concerning environmental insights, results show that analysts are equipped with

effective tools for determining key-uncertainty drivers, thus identifying areas
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where further modelling and data collection are needed for reducing variability

in model predictions caused by parametric uncertainty.
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