Macroeconomics III- Ph.D.

Prof. Tommaso Monacelli
Spring 2016

Problem Set 1

due April 13, 2016 in class

Consider an economy with two agents, households (who are unproductive) and entrepreneurs. The households solve:

$$
\begin{gathered}
\max \sum_{t=0}^{\infty} \gamma^{t}\left(C_{h, t}+\eta K_{h, t}\right) \\
\underbrace{C_{h, t}}_{\text {consumption }}+\underbrace{q_{t}\left(K_{h, t}-K_{h, t-1}\right)}_{\text {durable investment }}+\underbrace{R_{t-1} B_{h, t-1}}_{\text {interest on loan contract signed in t-1 }} \leq \underbrace{B_{h, t}}_{\text {new debt }}
\end{gathered}
$$

where q_{t} is the price of a durable good (e.g, "land") in units of consumption good. The durable good is in fixed supply (normalized to 1).

1. Derive FOCs of the household's problem. Show that they imply that the real interest rate R_{t} is constant and that the price of the durable asset K is also constant.

The second set of agents, the entrepreneurs, have a technology for the production of a homogeneous final good which employs land:

$$
Y_{t}=A_{t} K_{e, t-1}^{\alpha}
$$

They face a constraint on borrowing:

$$
\begin{equation*}
R_{t} B_{e, t} \leq(1-\chi) q_{t+1} K_{e, t} \tag{1}
\end{equation*}
$$

At any time t, the amount $R_{t} B_{e, t}$ that the entrepreneur agrees to repay in $\mathrm{t}+1$ is tied to the future value of the durable asset $q_{t+1} K_{e, t}$.

The entrepreneurs solve:

$$
\max \sum_{t=0}^{\infty} \beta^{t} \log C_{e, t} \quad \beta<\gamma
$$

subject to the budget constraint:

$$
C_{e, t}+q_{t}\left(K_{e, t}-K_{e, t-1}\right)+R_{t-1} B_{e, t-1} \leq B_{e, t}+Y_{t}
$$

2. Let ψ_{t} be the multiplier on (1). Derive the FOCs. Explain in detail the intuition for the FOC on K_{e}. Compare the two cases: $\psi_{t}=0$ vs $\psi_{t}>0$.
3. Write down the equilibrium conditions in the consumption and durable good market, and the one in the credit market
4. Use the steady state version of the entrepreneurs' Euler condition to derive the condition under which the borrowing constraint is binding in the steady state. Provide an intuition.
5. Assume that the borrowing constraint is binding. Show that in this case the equilibrium can be described in terms of two equations in the two endogenous variables $\left\{C_{e, t}, K_{e, t}\right\}$, with $\left\{A_{t}\right\}$ exogenous. What are the endogenous predetermined and the endogenous predetermined variables? What is the state space of the model?
6. Assume, for simplicity, that $\chi=0$. Guess a solution of the form:

$$
C_{e, t}=(1-d) Y_{t}=(1-d) A_{t} K_{e, t-1}^{\alpha}
$$

where d is a constant to be determined. Show that the equilibrium process for $\log \left(Y_{t}\right)$ can be written:

$$
\log \left(Y_{t+1}\right)=\phi_{1}+\phi_{2} \log \left(Y_{t}\right)+\log A_{t+1}
$$

with ϕ_{1} and ϕ_{2} are constant that need to be determined. Provide an intuition for this result.
7. What does this result imply for the persistence properties of the model? Compare with the case in which the borrowing constraint is not binding.

