Macroeconomics III

Spring 2016

A Cashless Economy with Imperfect Competition and Sticky Prices

Tommaso Monacelli

Università Bocconi and IGIER

- Cashless Economy
- Firms have market power in setting power
- Goods prices: flexible vs. sticky (predetermined or staggered)
- Market structure
(i) Competitive producer of homogenous final good
(ii) Many monopolistic producers of differentiated intermediate goods
- Producers of homogenous final good Y : perfect competition
- Production function

$$
\begin{equation*}
Y_{t}=\left[\int_{0}^{1} Y_{t}(i)^{\frac{\varepsilon-1}{\varepsilon}} d i\right]^{\frac{\varepsilon}{\varepsilon-1}} \varepsilon>1 \tag{1}
\end{equation*}
$$

- Problem: choose $Y_{t}(i), Y_{t}$

$$
\max P_{t} Y_{t}-\int_{0}^{1} P_{t}(i) Y_{t}(i) d i
$$

with P_{t} and $P_{t}(i)$ given

- Rewrite

$$
P_{t}\left[\int_{0}^{1} Y_{t}(i)^{\frac{\varepsilon-1}{\varepsilon}} d i\right]^{\frac{\varepsilon}{\varepsilon-1}}-\int_{0}^{1} P_{t}(i) Y_{t}(i) d i
$$

- FOC wrt to $Y_{t}(i)$:

$$
\frac{\varepsilon}{\varepsilon-1} P_{t} \frac{Y_{t}}{Y_{t}^{\frac{\varepsilon-1}{\varepsilon}}}\left(\frac{\varepsilon-1}{\varepsilon}\right) Y_{t}(i)^{-\frac{1}{\varepsilon}}=P_{t}(i)
$$

- Rearranging \rightarrow Demand function for intermediate good i

$$
Y_{t}(i)=\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} Y_{t}
$$

- Derive aggregate price level
- Under zero profits:

$$
\begin{gathered}
P_{t} Y_{t}=\int_{0}^{1} P_{t}(i) Y_{t}(i) d i \\
P_{t} Y_{t}=\int_{0}^{1} P_{t}(i)\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} Y_{t} d i \\
P_{t}=P_{t}^{\varepsilon} \int_{0}^{1} P_{t}(i)^{1-\varepsilon} d i
\end{gathered}
$$

- Obtain

$$
P_{t}=\left(\int_{0}^{1} P_{t}(i)^{1-\varepsilon} d i\right)^{\frac{1}{1-\varepsilon}}
$$

- Households: Intertemporal Problem with Complete Markets

$$
\begin{gather*}
E_{0}\left\{\sum_{t=0}^{\infty} \beta^{t} U\left(C_{t}, N_{t}\right)\right\} \tag{2}\\
\underbrace{P_{t} C_{t}}_{\begin{array}{c}
\text { purchase } \\
\text { final good }
\end{array}}+\mathbb{E}_{t}\left\{Q_{t, t+1} B_{t+1}\right\} \leq W_{t} N_{t}+T_{t}+B_{t}+\underbrace{\int_{0}^{1} \Gamma_{t}(i)}_{\text {profits of int.firms }} \tag{3}
\end{gather*}
$$

\rightarrow Usual FOCs

$$
\begin{equation*}
U_{c, t}=P_{t} \lambda_{t} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{t} W_{t}=-U_{n, t} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
Q_{t, t+1}=\beta \frac{\lambda_{t+1}}{\lambda_{t}} \tag{6}
\end{equation*}
$$

- Producer of intermediate good \mathbf{i}
- Production function

$$
\begin{equation*}
Y_{t}(i)=A_{t} N_{t}(i) \tag{7}
\end{equation*}
$$

- Price Setting under Flexible Prices
- Representative firm chooses $\left\{P_{t}(i), Y_{t}(i), N_{t}(i)\right\}$ to maximize:

$$
\begin{equation*}
P_{t}(i) Y_{t}(i)-W_{t} N_{t}(i) \tag{8}
\end{equation*}
$$

subject to (7) and to demand function for good i

$$
Y_{t}(i)=\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} Y_{t}
$$

- Substituting for $Y_{t}(i)$ and $N_{t}(i)$
- Firm's problem becomes choosing $P_{t}(i)$ to max:

$$
\left(\frac{P_{t}(i)}{P_{t}}\right)^{1-\varepsilon} Y_{t} P_{t}-W_{t} \frac{Y_{t}}{A_{t}}\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon}
$$

- FOC:

$$
\begin{equation*}
(1-\varepsilon)\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} Y_{t}+\varepsilon W_{t}\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon-1} \frac{Y_{t}}{A_{t} P_{t}}=0 \tag{9}
\end{equation*}
$$

Simplifies to

$$
\begin{equation*}
P_{t}(i)=\left(\frac{1}{1-\frac{1}{\varepsilon}}\right) \frac{W_{t}}{A_{t}}=\mu M C_{t} \tag{10}
\end{equation*}
$$

$M C_{t}$ is nominal marginal cost and $\mu \equiv \frac{\varepsilon}{\varepsilon-1}$ desired (constant) markup value.

Notice: flexible price allocation involves a constant real marginal cost:

$$
\begin{equation*}
M C_{t}^{r} \equiv \frac{\frac{W_{t}}{P t}}{A_{t}}=\frac{\varepsilon-1}{\varepsilon} \tag{11}
\end{equation*}
$$

Staggered Prices: the Calvo Model

- Staggered Prices: the Calvo Model
- Assume now that firms adjust their price infrequently and that the opportunity to adjust follows an exogenous Poisson process.
- Each period there is a constant probability $(1-\alpha)$ that the firm will be able to adjust its price, independently of past history.
- The expected time between price adjustments is therefore $\frac{1}{1-\alpha}$.
- If the law of large numbers holds this implies that the fraction of firms not setting prices at t is α.
- The draw is independent of history, so that we do not need to keep track of firms changing prices over time.
- Dynamics of the Aggregate Price Level
\rightarrow If the law of large number holds a fraction $(1-\alpha)$ of firms will reset the price at each point in time.
\rightarrow Evolution of the aggregate price index:

$$
\begin{equation*}
P_{t}=\left[\alpha P_{t-1}^{1-\varepsilon}+(1-\alpha)\left(P_{t}^{n e w}\right)^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}} \tag{12}
\end{equation*}
$$

\rightarrow In log-linear terms:

$$
\begin{equation*}
p_{t}=\alpha p_{t-1}+(1-\alpha) p_{t}^{n e w} \tag{13}
\end{equation*}
$$

\rightarrow Rate of inflation:

$$
\pi_{t}=(1-\alpha)\left(p_{t}^{n e w}-p_{t-1}\right)
$$

Interpretation: positive inflation arises if and only if firms adjusting prices in any given period choose to charge prices that are above the average price level that prevailed in the economy in the previous period.

- Optimal Price Setting

\rightarrow Problem of firm i able to reset its price
\rightarrow Choose $P_{t}^{\text {new }}(i)$ to maximize

$$
\sum_{k=0}^{\infty} \alpha^{k} Q_{t, t+k} Y_{t+k}(i)\left[P_{t}^{n e w}(i)-M C_{t+k}\right]
$$

subject to

$$
\begin{equation*}
Y_{t+k}(i)=\left(\frac{P_{t}^{n e w}(i)}{P_{t+k}}\right)^{-\varepsilon} Y_{t+k} \tag{14}
\end{equation*}
$$

FOC

$$
\begin{equation*}
\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \alpha^{k} Q_{t, t+k}\left[Y_{t+k}(i)+\left[P_{t}^{n e w}(i)-M C_{t+k}\right] \frac{\partial Y_{t+k}(i)}{\partial P_{t}^{n e w}(i)}\right]\right\}=0 \tag{15}
\end{equation*}
$$

Notice

$$
\frac{\partial Y_{t+k}(i)}{\partial P_{t}^{n e w}(i)} P_{t}^{n e w}(i)=-\varepsilon Y_{t+k}\left(\frac{P_{t}^{n e w}(i)}{P_{t+k}}\right)^{-\varepsilon}=-\varepsilon Y_{t+k}(i)
$$

Rewrite:

$$
\begin{aligned}
& \mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \alpha^{k} Q_{t, t+k}\left(Y_{t+k}(i)-\varepsilon Y_{t+k}(i)\right)\right\} \\
= & \mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \alpha^{k} Q_{t, t+k} M C_{t+k}\left(-\varepsilon\left(\frac{P_{t}^{n e w}(i)}{P_{t+k}}\right)^{-\varepsilon-1} \frac{1}{P_{t+k}} Y_{t+k}\right)\right\}
\end{aligned}
$$

\rightarrow Equivalently:

$$
\begin{aligned}
& \mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \alpha^{k} Q_{t, t+k} Y_{t+k}(i)(1-\varepsilon)\right\} \\
= & -\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \alpha^{k} Q_{t, t+k} M C_{t+k} \varepsilon Y_{t+k}(i) \frac{P_{t+k}}{P_{t}^{\text {new }}(i)} \frac{1}{P_{t+k}}\right\}
\end{aligned}
$$

\rightarrow Rearranging:

$$
\begin{equation*}
P_{t}^{n e w}(i)=\frac{\varepsilon}{\varepsilon-1} \frac{\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \alpha^{k} Q_{t, t+k} M C_{t+k} Y_{t+k}(i)\right\}}{\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \alpha^{k} Q_{t, t+k} Y_{t+k}(i)\right\}} \tag{16}
\end{equation*}
$$

Interpretation: dynamic markup equation.
\rightarrow Notice

1. For $\alpha=0$ equation (16) reduces to:

$$
P_{t}(i)=\frac{\varepsilon}{\varepsilon-1} M C_{t}
$$

as in the flexible price model, i.e., firms set price as a simple (static) markup over the marginal cost.
2. Optimal price depends on a forecast of future values of aggregate demand conditions as well as on the future evolution of the marginal cost.

- Equilibrium with Price Dispersion

$$
\begin{equation*}
Y_{t}=C_{t} \tag{17}
\end{equation*}
$$

We should now write:

$$
\begin{align*}
N_{t} & =\int_{0}^{1} \frac{Y_{t}(i)}{A_{t}} d i \tag{18}\\
& =\frac{Y_{t}}{A_{t}} \int_{0}^{1}\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} d i \\
& =\frac{Y_{t}}{A_{t}} D_{t}
\end{align*}
$$

where $D_{t} \equiv \int_{0}^{1}\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} d i$ is a term that captures the dispersion of relative prices across producers.

- Possibility that D_{t} is time-varying hinges crucially on the assumed price setting structure.
- Under Calvo pricing, whereby firms adjust prices in a non-synchronized fashion, the dispersion of relative prices is potentially an important feature of the equilibrium.
- We prove that dispersion D_{t} is bounded below by 1

$$
D_{t} \geq 1
$$

\rightarrow Define $v_{i, t} \equiv\left(\frac{P_{t}(i)}{P_{t}}\right)^{1-\varepsilon}$

- We first have:

$$
\begin{align*}
{\left[\int_{0}^{1} v_{i, t} d i\right]^{\frac{\varepsilon}{\varepsilon-1}} } & =\left[\int_{0}^{1}\left(\frac{P_{t}(i)}{P_{t}}\right)^{1-\varepsilon} d i\right]^{\frac{\varepsilon}{\varepsilon-1}} \tag{19}\\
& =P_{t}^{\varepsilon}\left[\int_{0}^{1} P_{t}(i)^{1-\varepsilon} d i\right]^{\frac{\varepsilon}{\varepsilon-1}} \\
& =1
\end{align*}
$$

- Also:

$$
\begin{aligned}
{\left[\int_{0}^{1} v_{i, t}^{\frac{\varepsilon}{\varepsilon-1}} d i\right] } & =\int_{0}^{1}\left[\left(\frac{P_{t}(i)}{P_{t}}\right)^{1-\varepsilon}\right]^{\frac{\varepsilon}{\varepsilon-1}} d i \\
& =\int_{0}^{1}\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} d i \\
& =D_{t}
\end{aligned}
$$

- Combining (19) with (20) we have

$$
\underbrace{\left[\int_{0}^{1} v_{i, t}^{\frac{\varepsilon}{\varepsilon-1}} d i\right]}_{D_{t}} \geq\left[\int_{0}^{1} v_{i, t} d i\right]^{\frac{\varepsilon}{\varepsilon-1}}=1
$$

where the inequality follows from Jensen's inequality \bullet

- Monetary Policy Rule

$$
\begin{equation*}
i_{t}=\gamma+\phi_{\pi} \pi_{t}+\varepsilon_{t} \tag{21}
\end{equation*}
$$

- Dispersion of Relative Prices and Inflation

$$
\begin{align*}
D_{t} & =\int_{0}^{1}\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} d i \tag{22}\\
& =\int_{1-\alpha}\left(\frac{P_{t}^{n e w}}{P_{t}}\right)^{-\varepsilon} d i+\left(\frac{P_{t-1}}{P_{t}}\right)^{-\varepsilon} \int_{\alpha}\left(\frac{P_{t-1}(i)}{P_{t-1}}\right)^{-\varepsilon} d i \tag{23}\\
& =(1-\alpha) \widetilde{P}_{t}^{-\varepsilon}+\alpha \Pi_{t}^{\varepsilon} D_{t-1}
\end{align*}
$$

where $\widetilde{P}_{t} \equiv \frac{P_{t}^{n e w}}{P_{t}}$

- Rewrite price adjustment equation (12) (dividing through by $P_{t}^{1-\varepsilon}$):

$$
\begin{equation*}
1=\alpha \Pi_{t}^{\varepsilon-1}+(1-\alpha)\left(\widetilde{P}_{t}\right)^{1-\varepsilon} \tag{24}
\end{equation*}
$$

By combining (22) and (24) we can link relative price dispersion and inflation as follows:

$$
\begin{equation*}
D_{t}=(1-\alpha)\left(\frac{1-\alpha \Pi_{t}^{\varepsilon-1}}{1-\alpha}\right)^{\frac{-\varepsilon}{1-\varepsilon}}+\alpha \Pi_{t}^{\varepsilon} D_{t-1} \tag{25}
\end{equation*}
$$

- Log-linearize around a steady state with positive inflation $\pi>0$

$$
e^{\log \left(D_{t}\right)}=(1-\alpha)\left(\frac{1-\alpha\left(e_{t}^{\log \left(\Pi_{t}\right)}\right)^{\varepsilon-1}}{1-\alpha}\right)^{\frac{-\varepsilon}{1-\varepsilon}}+\alpha\left(e^{\log \left(\Pi_{t}\right)}\right)^{\varepsilon} e^{\log \left(D_{t-1}\right)}
$$

\rightarrow Obtain

$$
\begin{equation*}
d_{t}=\left\{\alpha \varepsilon \Pi^{\varepsilon}\left[1-\frac{1}{\Pi D}\left(\frac{1-\alpha \Pi^{\varepsilon-1}}{1-\alpha}\right)\right]^{\frac{1}{\varepsilon-1}}\right\} \pi_{t}+\alpha \Pi^{\varepsilon} d_{t-1} \tag{26}
\end{equation*}
$$

where $d_{t} \equiv \log \left(\frac{D_{t}}{D}\right)$.

In the particular case of zero net steady state inflation (i.e., $\Pi=1$), we have (from 26) that $D=1$. In this case we have:

$$
A \equiv\left\{\alpha \varepsilon \Pi^{\varepsilon}\left[1-\frac{1}{\Pi D}\left(\frac{1-\alpha \Pi^{\varepsilon-1}}{1-\alpha}\right)\right]^{\frac{1}{\varepsilon-1}}\right\}=0
$$

and (26) reduces to:

$$
d_{t}=\alpha d_{t-1}
$$

- Even in the first-order approximation of the model the term d_{t} cannot be ignored if the point of approximation is a steady-state with $\Pi>1$.
- If log linearize around zero inflation steady state

$$
\begin{equation*}
y_{t}=a_{t}+n_{t} \tag{27}
\end{equation*}
$$

- Log-Linearization and the New Keynesian Phillips Curve

$$
\begin{align*}
p_{t}^{n e w} & =(1-\alpha \beta) \mathbb{E}_{t}\left\{\sum_{k=0}^{\infty}(\alpha \beta)^{k} m c_{t+k}\right\} \tag{28}\\
& =(1-\alpha \beta) \mathbb{E}_{t}\left\{\sum_{k=0}^{\infty}(\alpha \beta)^{k}\left(m c_{t+k}^{r}+p_{t+k}\right)\right\}
\end{align*}
$$

where we used $m c_{t}=m c_{t}^{r}+p_{t}$.

- Hence firms that are allowed to reset the price choose to do so as a weighted average over the expected future nominal marginal cost. Equation (28) above points clearly to the two factors that drive the decision of a firm to deviate from the average price level prevailing in the previous period:
- The presence of the aggregate price level denotes the willingness to maintain (in expectations) the relative price unchanged.
- The term involving $m c_{t}^{r}$ denotes the desire to change the expected relative price in order to avoid any gap that may emerge between expected and desired markup.
- Rewrite equation (28) as a first order difference equation in $p_{t}^{\text {new }}$

$$
\begin{equation*}
p_{t}^{n e w}=(1-\beta \alpha)\left(m c_{t}^{r}+p_{t}\right)+\beta \alpha p_{t+1}^{n e w} \tag{29}
\end{equation*}
$$

- By combining equation (29) with (13) we can obtain a forward looking equation for inflation :

$$
\begin{equation*}
\pi_{t}=\beta E_{t}\left\{\pi_{t+1}\right\}+\left[\frac{(1-\alpha)(1-\beta \alpha)}{\alpha}\right] m c_{t}^{r} \tag{30}
\end{equation*}
$$

- The longer prices are fixed (i.e., for higher α, since prices are kept fixed for an average length of $1 /(1-\alpha)$ periods), the less firms are sensitive to changes in the real marginal cost, as current demand conditions matter less.

- Canonical Representation

$$
U\left(C_{t}, N_{t}\right)=\frac{1}{1-\sigma} C_{t}^{1-\sigma}-\frac{1}{1+\varphi} N_{t}^{1+\varphi}
$$

- Log-linear approximation of the real marginal cost:

$$
\begin{align*}
m c_{t}^{r} & =\left(w_{t}-p_{t}\right)-a_{t} \tag{31}\\
& =\varphi n_{t}+\sigma c_{t}-a_{t} \\
& =(\varphi+\sigma) y_{t}-(1+\varphi) a_{t}
\end{align*}
$$

where the last expression follows from (27).

- Fully flexible prices $\rightarrow m c_{t}^{r}=0 \rightarrow$ natural level of output

$$
\begin{equation*}
y_{t}^{n}=\left(\frac{1+\varphi}{\sigma+\varphi}\right) a_{t} \tag{32}
\end{equation*}
$$

- Real Marginal Cost and Output Gap

$$
\begin{equation*}
x_{t} \equiv y_{t}-y_{t}^{n} \tag{33}
\end{equation*}
$$

From equation (31) we can write:

$$
\begin{aligned}
m c_{t}^{r} & =(\varphi+\sigma)\left(y_{t}-\left(\frac{1+\varphi}{\varphi+\sigma}\right) a_{t}\right) \\
& =(\varphi+\sigma) x_{t}
\end{aligned}
$$

- The New Keynesian Phillips Curve

$$
\begin{equation*}
\pi_{t}=\beta E_{t}\left\{\pi_{t+1}\right\}+\kappa x_{t} \tag{34}
\end{equation*}
$$

where

$$
\kappa \equiv \frac{(\varphi+\sigma)(1-\alpha)(1-\beta \alpha)}{\alpha}
$$

\rightarrow Notice:

$$
\frac{\partial \kappa}{\partial \alpha}<0
$$

for any given value of φ, σ, β. Hence a higher degree of price stickiness translates into a flatter aggregate supply curve.
\rightarrow Notice:

1. Inflation rises as output deviates from its natural level. Hence it is not a rise in output per se that produces inflation.
2. By iterating (34) forward we obtain:

$$
\begin{equation*}
\pi_{t}=\mathbb{E}_{t}\left\{\sum_{j=0}^{\infty} \beta^{j} \kappa x_{t+j}\right\} \tag{35}
\end{equation*}
$$

\rightarrow Inflation is a forward-looking variable, i.e., it depends on current and expected future deviations of output from its natural level.

- Dynamic IS Equation

\rightarrow From Euler

$$
\begin{equation*}
c_{t}=\mathbb{E}_{t}\left\{c_{t+1}\right\}-\sigma^{-1}\left(r_{t}-\gamma\right) \tag{36}
\end{equation*}
$$

where $r_{t} \simeq \log \left(1+r_{t}\right)$.

- Substituting $c_{t}=y_{t}$ yields:

$$
\begin{equation*}
x_{t}=\mathbb{E}_{t}\left\{x_{t+1}\right\}-\frac{1}{\sigma}\left(i_{t}-\mathbb{E}_{t}\left\{\pi_{t+1}\right\}-r_{t}^{n}\right) \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{t}^{n} \equiv \gamma+\sigma E_{t}\left\{y_{t+1}^{n}-y_{t}^{n}\right\}=\gamma+\frac{\sigma(1+\varphi)}{\sigma+\varphi} \mathbb{E}_{t}\left\{\Delta a_{t+1}\right\} \tag{38}
\end{equation*}
$$

\rightarrow Natural real rate of interest.

- Notice the the natural real rate of interest is determined by real factors outside the control of monetary policy.
- Integrating dynamic IS equation forward:

$$
\begin{equation*}
x_{t}=-\frac{1}{\sigma} \mathbb{E}_{t}\left\{\sum_{j=0}^{\infty}\left(r_{t+j}-r_{t+j}^{n}\right)\right\} \tag{39}
\end{equation*}
$$

- Canonical Model

For any given process for $\left\{r_{t}^{n}\right\}$ a for a given policy process $\left\{i_{t}\right\}$:

$$
\begin{equation*}
x_{t}=\mathbb{E}_{t}\left\{x_{t+1}\right\}-\frac{1}{\sigma}\left(i_{t}-\mathbb{E}_{t}\left\{\pi_{t+1}\right\}-r_{t}^{n}\right) \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{t}=\beta E_{t}\left\{\pi_{t+1}\right\}+\kappa x_{t} \tag{41}
\end{equation*}
$$

- Monetary Policy Trade-Offs

- To control inflation the CB does not need to generate a recession.
- By stabilizing output at its natural level the CB is also stabilizing inflation.
- Consider a hybrid version of equation (34) (for $\beta \simeq 1$) featuring a backwardlooking component:

$$
\begin{equation*}
\pi_{t}=\delta E_{t}\left\{\pi_{t+1}\right\}+(1-\delta) \pi_{t-1}+\kappa x_{t} \tag{42}
\end{equation*}
$$

For $\delta=0$:

$$
\begin{equation*}
\pi_{t}=\pi_{t-1}+\kappa x_{t} \tag{43}
\end{equation*}
$$

If π_{t-1} rises above average it is clear that the CB needs to generate a recession to stabilize current inflation. This persistence feature of inflation emerges clearly from the data.

- Uniqueness and Stability of the Equilibrium

Compact form:

$$
\begin{equation*}
\binom{\pi_{t}}{x_{t}}=\mathbf{M} \mathbb{E}_{t}\binom{\pi_{t+1}}{x_{t+1}}+\frac{1}{\sigma+\kappa \phi_{\pi}}\binom{\kappa}{1} r_{t}^{n} \tag{44}
\end{equation*}
$$

where

$$
\mathbf{M} \equiv \frac{1}{\sigma+\kappa \phi_{\pi}}\left(\begin{array}{ll}
\sigma \beta+\kappa & \sigma \kappa \\
1-\beta \phi_{\pi} & \sigma
\end{array}\right)
$$

- Blanchard-Khan 1980

A necessary and sufficient condition for the system (44) to exhibit a unique bounded solution is that the number of non-predetermined endogenous variables (i.e., jumpy variables) equal the number of roots of \mathbf{M} that lie inside the unit circle

- Solving the Model
- Assume that the monetary shock in (21) and the technology shock follow respectively:

$$
\begin{gather*}
\varepsilon_{t}=\rho^{\varepsilon} \varepsilon_{t-1}+u_{t}^{\varepsilon} \tag{45}\\
a_{t}=\rho^{a} a_{t-1}+u_{t}^{a} \tag{46}
\end{gather*}
$$

where u_{t}^{ε} and u_{t}^{a} are iid processes with mean zero and variance σ_{ε}^{2} and σ_{a}^{2} respectively.

- Monetary Shock
- Method of undetermined coefficients.
- Conjecture the solution:

$$
\begin{equation*}
x_{t}=a_{x} \varepsilon_{t} \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{t}=a_{\pi} \varepsilon_{t} \tag{48}
\end{equation*}
$$

Notice that (45), (47) and (48) jointly imply:

$$
\mathbb{E}_{t}\left\{x_{t+1}\right\}=a_{x} \rho^{\varepsilon} \varepsilon_{t}
$$

$$
\mathbb{E}_{t}\left\{\pi_{t+1}\right\}=a_{\pi} \rho^{\varepsilon} \varepsilon_{t}
$$

Substituting (21) and the above conjectured solutions in (37) we obtain

$$
\begin{equation*}
x_{t}=\varepsilon_{t}\left[a_{\pi}\left(\frac{\rho^{\varepsilon}-\phi_{\pi}}{\sigma}\right)+\rho^{\varepsilon} a_{x}-\frac{1}{\sigma}\right] \tag{49}
\end{equation*}
$$

Equating the coefficient on ε_{t} in (49) to the one in (47) we obtain

$$
\begin{equation*}
a_{x}\left(1-\rho^{\varepsilon}\right)=a_{\pi}\left(\frac{\rho^{\varepsilon}-\phi_{\pi}}{\sigma}\right)-\frac{1}{\sigma} \tag{50}
\end{equation*}
$$

Substituting the conjectured solutions in (34) we obtain

$$
\begin{equation*}
\pi_{t}=\varepsilon_{t}\left[\beta a_{\pi} \rho^{\varepsilon}+\kappa a_{x}\right] \tag{51}
\end{equation*}
$$

Equating the coefficient on ε_{t} to the one in (48) yields

$$
\begin{equation*}
a_{\pi}=\left(\frac{\kappa}{1-\beta \rho^{\varepsilon}}\right) a_{x} \tag{52}
\end{equation*}
$$

The system of equations (50), (52) can be solved for the two unknows a_{π} and a_{x}, yielding the solutions:

$$
\begin{equation*}
x_{t}=-\Gamma_{x} \varepsilon_{t} \tag{53}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{t}=-\Gamma_{\pi} \varepsilon_{t} \tag{54}
\end{equation*}
$$

where

$$
\Gamma_{x} \equiv \frac{\left(1-\beta \rho^{\varepsilon}\right)}{\sigma\left(1-\rho^{e}\right)\left(1-\beta \rho^{\varepsilon}\right)+\kappa\left(\phi_{\pi}-\rho^{\varepsilon}\right)}>0
$$

and

$$
\Gamma_{\pi} \equiv \frac{\kappa}{\sigma\left(1-\rho^{e}\right)\left(1-\beta \rho^{\varepsilon}\right)+\kappa\left(\phi_{\pi}-\rho^{\varepsilon}\right)}>0
$$

- Notice

1. Both coefficients Γ_{x} and Γ_{π} are positive. Hence a contractionary (expansionary) monetary policy shock lowers (raises) both inflation and the output gap. Since the natural level of output is unaffected by monetary shocks, the same effect translates into actual output also.
2. The role of the degree of price stickiness, via its effect on κ, the slope of the NKPC.

$$
\frac{\partial \Gamma_{x}}{\partial \kappa}<0
$$

- As $\alpha \rightarrow 0$ (flexible prices), $\kappa \rightarrow \infty$, which implies $\Gamma_{x} \rightarrow 0$. In this case the effect of a monetary policy shock on the output gap is nil (monetary policy neutrality).
- Conversely, the effect of a monetary shock on the output gap (or output) is maximized as $\alpha \rightarrow 1$ (full price rigidity) and $\kappa \rightarrow 0$.
- Effects of a monetary shock on inflation.

$$
\frac{\partial \Gamma_{\pi}}{\partial \kappa}>0
$$

\rightarrow A monetary policy shock produces a smaller effect on inflation the larger the degree of price stickiness.

- The higher the degree of price stickiness (ie, low κ), the weaker each firm's tendency to match any given variation in demand (induced by the monetary policy action) with a variation in prices (as opposed to output)
- Technology Shock
-Using (46) we can write the natural real interest rate as:

$$
r_{t}^{n}=\gamma-\left[\frac{\sigma(1+\varphi)\left(1-\rho^{a}\right)}{(\sigma+\varphi)}\right] a_{t}
$$

- We conjecture the solution:

$$
\begin{equation*}
x_{t}=b_{x} a_{t} \tag{55}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{t}=b_{\pi} a_{t} \tag{56}
\end{equation*}
$$

Substituting (21) and the above conjectured solutions in (37) we obtain

$$
\begin{equation*}
x_{t}=a_{t}\left[b_{x} \rho^{a}+b_{\pi}\left(\frac{\rho^{a}-\phi_{\pi}}{\sigma}\right)-\frac{(1+\varphi)\left(1-\rho^{a}\right)}{(\sigma+\varphi)}\right] \tag{57}
\end{equation*}
$$

Equating the coefficient on a_{t} in (57) and (55) yields

$$
\begin{equation*}
b_{x}\left(1-\rho^{a}\right)=b_{\pi}\left(\frac{\rho^{a}-\phi_{\pi}}{\sigma}\right)-\frac{(1+\varphi)\left(1-\rho^{a}\right)}{(\sigma+\varphi)} \tag{58}
\end{equation*}
$$

Similarly, by substituting the conjectured solutions in (34) we obtain

$$
\begin{equation*}
b_{\pi}=\left(\frac{\kappa}{1-\beta \rho^{a}}\right) b_{x} \tag{59}
\end{equation*}
$$

Substituting (59) in (58), and solving for b_{x} we can write

$$
\begin{equation*}
x_{t}=-\Theta_{x} a_{t} \tag{60}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{t}=-\Theta_{\pi} a_{t} \tag{61}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Theta_{x} \equiv \frac{\frac{(1+\varphi)}{(\sigma+\varphi)} \sigma\left(1-\beta \rho^{a}\right)\left(1-\rho^{a}\right)}{\sigma\left(1-\beta \rho^{a}\right)\left(1-\rho^{a}\right)+\kappa\left(\phi_{\pi}-\rho^{a}\right)}>0 \\
& \Theta_{\pi} \equiv \frac{\frac{(1+\varphi)}{(\sigma+\varphi)}\left(1-\rho^{a}\right) \sigma \kappa}{\sigma\left(1-\beta \rho^{a}\right)\left(1-\rho^{a}\right)+\kappa\left(\phi_{\pi}-\rho^{a}\right)}>0
\end{aligned}
$$

Notice

1. A positive technology shock produces a contraction in both the output gap and inflation.
2. For $\kappa \rightarrow \infty$ (flexible prices) we have $\Theta_{x} \rightarrow 0$. In other words, under flexible prices, the output gap is always zero, since output will constantly replicate its flexible-price counterpart.
3. Effects of a technology shock on output:

$$
\begin{aligned}
y_{t} & =x_{t}+y_{t}^{n} \\
& =\left(\frac{1+\varphi}{\sigma+\varphi}-\Theta_{x}\right) a_{t} \\
& =\Theta_{y} a_{t}
\end{aligned}
$$

where

$$
\begin{equation*}
\Theta_{y} \equiv \frac{(1+\varphi)}{(\sigma+\varphi)}\left(\frac{1}{1+\frac{\sigma\left(1-\beta \rho^{a}\right)\left(1-\rho^{a}\right)}{\kappa\left(\phi_{\pi}-\rho^{a}\right)}}\right)>0 \tag{62}
\end{equation*}
$$

\rightarrow Hence output rises in response to a positive technology shock, similarly to what happens in a RBC model.

- Role played by price stickiness.

For $\kappa \rightarrow \infty$ (flexible prices) we have:

$$
\Theta_{y} \equiv \Theta_{y}^{R B C}=\frac{(1+\varphi)}{(\sigma+\varphi)}
$$

- From (62) we see that a higher degree of price rigidity (smaller κ) dampens the effect of technology shocks on output:

$$
\begin{aligned}
\Theta_{y} & <\Theta_{y}^{R B C} \text { for } \kappa<\infty \\
& =\Theta_{y}^{R B C} \text { for } \kappa \rightarrow \infty
\end{aligned}
$$

- Impact effect of technology shocks on employment.

$$
\begin{aligned}
n_{t} & =y_{t}-a_{t} \\
& =\left(\Theta_{y}-1\right) a_{t}
\end{aligned}
$$

For employment to fall in response to a technology shock it is required that:

$$
\begin{equation*}
\left(\frac{1-\sigma}{\sigma+\varphi}\right) \kappa\left(\phi_{\pi}-\rho^{a}\right)<\sigma\left(1-\beta \rho^{a}\right)\left(1-\rho^{a}\right) \tag{63}
\end{equation*}
$$

- Condition (63) is easily satisfied, e.g., in the case of log-consumption utility ($\sigma=1$) for any $\kappa<\infty$, i.e., to the extent that price stickiness is present.
- In the case of fully rigid prices $(\kappa=0)$, the same condition is always satisfied for any value of σ.

The role of the monetary policy rule in shaping the response to shocks

Responses to a Technology Shock

Existence and uniqueness of a RE equilibrium

- Existence and Uniqueness of a RE Equilibrium
- The characteristic polynomial of \mathbf{M} can be written

$$
P(\xi)=\xi^{2}-\operatorname{tr}(\mathbf{M})+\operatorname{det}(\mathbf{M})
$$

where

$$
\operatorname{tr}(\mathbf{M})=\frac{\sigma+(\sigma \beta+\kappa)}{\sigma+\kappa \phi_{\pi}}
$$

and

$$
\operatorname{det}(\mathbf{M})=\frac{1}{\left(\sigma+\kappa \phi_{\pi}\right)^{2}}\left(\sigma^{2} \beta+\sigma \kappa \beta \phi_{\pi}\right)
$$

- Conditions for existence and uniqueness of an equilibrium are that both roots lie inside the unit circle.
- We know that the roots μ_{1} and μ_{2} must obey:

$$
\begin{aligned}
\mu_{1}+\mu_{2} & =\operatorname{tr}(M) \\
\mu_{1} \mu_{2} & =\operatorname{det}(M)
\end{aligned}
$$

- Alternatively, the same conditions for uniqueness can be stated as follows:*

$$
\begin{equation*}
|\operatorname{det}(\mathrm{M})|<1 \tag{64}
\end{equation*}
$$

$$
\begin{equation*}
|-\operatorname{tr}(\mathbf{M})|<1+\operatorname{det}(\mathbf{M}) \tag{65}
\end{equation*}
$$

As for condition (64) we can verify that
*See for instance, Bullard and Mitra (2000) and references therein.

$$
\begin{aligned}
|\operatorname{det}(\mathbf{M})| & =\left|\frac{1}{\left(\sigma+\kappa \phi_{\pi}\right)^{2}} \sigma^{2} \beta\left(1+\frac{\kappa \phi_{\pi}}{\sigma}\right)\right| \\
& =\left|\frac{\sigma \beta}{\left(\sigma+\kappa \phi_{\pi}\right)}\right|
\end{aligned}
$$

which requires that

$$
\beta<1+\frac{\kappa \phi_{\pi}}{\sigma}
$$

It is clear that this is verified for any value of $\phi_{\pi} \geq 0$.

On the other hand condition (65) requires

$$
\begin{aligned}
\frac{\sigma \beta+\kappa+\sigma}{\sigma+\kappa \phi_{\pi}} & <1+\frac{\sigma \beta}{\sigma+\kappa \phi_{\pi}} \\
& =\frac{\sigma \beta+\kappa \phi_{\pi}+\sigma}{\sigma+\kappa \phi_{\pi}}
\end{aligned}
$$

which is satisfied if and only if $\phi_{\pi}>1$.

Equilibrium uniqueness under the simple interest rate rule

