Macroeconomics III

Spring 2016

A Cashless Economy with Imperfect Competition and Sticky Prices

Tommaso Monacelli

Università Bocconi and IGIER

• Cashless Economy

• Firms have **market power** in setting power

• Goods prices: flexible vs. sticky (predetermined or staggered)

- Market structure
- (i) Competitive producer of homogenous final good
- (ii) Many monopolistic producers of differentiated intermediate goods

- ullet Producers of homogenous final good Y: perfect competition
- Production function

$$Y_t = \left[\int_0^1 Y_t(i)^{\frac{\varepsilon - 1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon - 1}} \quad \varepsilon > 1 \tag{1}$$

• Problem: choose $Y_t(i)$, Y_t

$$\max P_t Y_t - \int_0^1 P_t(i) Y_t(i) di$$

with P_t and $P_t(i)$ given

Rewrite

$$P_t \left[\int_0^1 Y_t(i)^{\frac{\varepsilon-1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon-1}} - \int_0^1 P_t(i) Y_t(i) di$$

• FOC wrt to $Y_t(i)$:

$$\frac{\varepsilon}{\varepsilon - 1} P_t \frac{Y_t}{Y_t^{\frac{\varepsilon - 1}{\varepsilon}}} \left(\frac{\varepsilon - 1}{\varepsilon}\right) Y_t(i)^{-\frac{1}{\varepsilon}} = P_t(i)$$

ullet Rearranging o Demand function for intermediate good i

$$Y_t(i) = \left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon} Y_t$$

• Derive aggregate **price level**

• Under zero profits:

$$P_t Y_t = \int_0^1 P_t(i) Y_t(i) di$$

$$P_t Y_t = \int_0^1 P_t(i) \left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon} Y_t di$$

$$P_t = P_t^{\varepsilon} \int_0^1 P_t(i)^{1-\varepsilon} di$$

Obtain

$$P_t = \left(\int_0^1 P_t(i)^{1-\varepsilon} di \right)^{\frac{1}{1-\varepsilon}}$$

Households: Intertemporal Problem with Complete Markets

$$E_0 \left\{ \sum_{t=0}^{\infty} \beta^t U\left(C_t, N_t\right) \right\} \tag{2}$$

$$\underbrace{P_t C_t}_{\text{purchase final good}} + \mathbb{E}_t \left\{ Q_{t,t+1} B_{t+1} \right\} \le W_t N_t + T_t + B_t + \underbrace{\int_0^1 \Gamma_t(i)}_{\text{profits of int.firms}} \tag{3}$$

${\to} \mathsf{Usual} \ \mathsf{FOCs}$

$$U_{c,t} = P_t \lambda_t \tag{4}$$

$$\lambda_t W_t = -U_{n,t} \tag{5}$$

$$Q_{t,t+1} = \beta \frac{\lambda_{t+1}}{\lambda_t} \tag{6}$$

• Producer of intermediate good i

• Production function

$$Y_t(i) = A_t \ N_t(i) \tag{7}$$

- Price Setting under **Flexible** Prices
- Representative firm chooses $\{P_t(i), Y_t(i), N_t(i)\}$ to maximize:

$$P_t(i)Y_t(i) - W_t N_t(i) \tag{8}$$

subject to (7) and to demand function for good i

$$Y_t(i) = \left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon} Y_t$$

• Substituting for $Y_t(i)$ and $N_t(i)$

• Firm's problem becomes choosing $P_t(i)$ to max:

$$\left(\frac{P_t(i)}{P_t}\right)^{1-\varepsilon} Y_t P_t - W_t \frac{Y_t}{A_t} \left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon}$$

• FOC:

$$(1 - \varepsilon) \left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon} Y_t + \varepsilon W_t \left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon - 1} \frac{Y_t}{A_t P_t} = 0$$
 (9)

Simplifies to

$$P_t(i) = \left(\frac{1}{1 - \frac{1}{\varepsilon}}\right) \frac{W_t}{A_t} = \mu \ MC_t \tag{10}$$

 MC_t is nominal marginal cost and $\mu \equiv \frac{\varepsilon}{\varepsilon - 1}$ desired (constant) markup value.

Notice: flexible price allocation involves a **constant real** marginal cost:

$$MC_t^r \equiv \frac{\frac{W_t}{Pt}}{A_t} = \frac{\varepsilon - 1}{\varepsilon} \tag{11}$$

Staggered Prices: the Calvo Model

Staggered Prices: the Calvo Model

- Assume now that firms adjust their price **infrequently** and that the opportunity to adjust follows an exogenous Poisson process.
- Each period there is a **constant** probability (1α) that the firm will be able to adjust its price, independently of past history.
- The **expected** time between price adjustments is therefore $\frac{1}{1-\alpha}$.
- If the law of large numbers holds this implies that the fraction of firms **not** setting prices at t is α .
- The draw is independent of history, so that we do not need to keep track of firms changing prices over time.

Dynamics of the Aggregate Price Level

 \rightarrow If the law of large number holds a fraction $(1 - \alpha)$ of firms will reset the price at each point in time.

→Evolution of the **aggregate** price index:

$$P_t = \left[\alpha P_{t-1}^{1-\varepsilon} + (1-\alpha)(P_t^{new})^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}$$
(12)

 \rightarrow In log-linear terms:

$$p_t = \alpha p_{t-1} + (1 - \alpha) p_t^{new} \tag{13}$$

 \rightarrow Rate of inflation:

$$\pi_t = (1 - \alpha)(p_t^{new} - p_{t-1})$$

Interpretation: positive inflation arises if and only if firms adjusting prices in any given period choose to charge prices that are **above the average price level** that prevailed in the economy in the previous period.

Optimal Price Setting

- \rightarrow Problem of firm i able to reset its price
- \rightarrow Choose $P_{t}^{new}\left(i\right)$ to maximize

$$\sum_{k=0}^{\infty} \alpha^k Q_{t,t+k} Y_{t+k}(i) \left[P_t^{new}(i) - M C_{t+k} \right]$$

subject to

$$Y_{t+k}(i) = \left(\frac{P_t^{new}(i)}{P_{t+k}}\right)^{-\varepsilon} Y_{t+k} \tag{14}$$

FOC

$$\mathbb{E}_{t} \left\{ \sum_{k=0}^{\infty} \alpha^{k} Q_{t,t+k} \left[Y_{t+k}(i) + \left[P_{t}^{new}(i) - M C_{t+k} \right] \frac{\partial Y_{t+k}(i)}{\partial P_{t}^{new}(i)} \right] \right\} = 0 \quad (15)$$

Notice

$$\frac{\partial Y_{t+k}(i)}{\partial P_t^{new}(i)} P_t^{new}(i) = -\varepsilon Y_{t+k} \left(\frac{P_t^{new}(i)}{P_{t+k}}\right)^{-\varepsilon} = -\varepsilon Y_{t+k}(i)$$

Rewrite:

$$\mathbb{E}_{t} \left\{ \sum_{k=0}^{\infty} \alpha^{k} Q_{t,t+k} \left(Y_{t+k}(i) - \varepsilon Y_{t+k}(i) \right) \right\}$$

$$= \mathbb{E}_{t} \left\{ \sum_{k=0}^{\infty} \alpha^{k} Q_{t,t+k} M C_{t+k} \left(-\varepsilon \left(\frac{P_{t}^{new}(i)}{P_{t+k}} \right)^{-\varepsilon - 1} \frac{1}{P_{t+k}} Y_{t+k} \right) \right\}$$

→Equivalently:

$$\mathbb{E}_{t} \left\{ \sum_{k=0}^{\infty} \alpha^{k} Q_{t,t+k} Y_{t+k}(i) \left(1-\varepsilon\right) \right\}$$

$$= -\mathbb{E}_{t} \left\{ \sum_{k=0}^{\infty} \alpha^{k} Q_{t,t+k} M C_{t+k} \varepsilon Y_{t+k}(i) \frac{P_{t+k}}{P_{t}^{new}(i)} \frac{1}{P_{t+k}} \right\}$$

 \rightarrow Rearranging:

$$P_t^{new}(i) = \frac{\varepsilon}{\varepsilon - 1} \frac{\mathbb{E}_t \left\{ \sum_{k=0}^{\infty} \alpha^k \ Q_{t,t+k} \ MC_{t+k} \ Y_{t+k} (i) \right\}}{\mathbb{E}_t \left\{ \sum_{k=0}^{\infty} \alpha^k \ Q_{t,t+k} \ Y_{t+k} (i) \right\}}$$
(16)

Interpretation: dynamic markup equation.

 \rightarrow Notice

1. For $\alpha = 0$ equation (16) reduces to:

$$P_t(i) = \frac{\varepsilon}{\varepsilon - 1} M C_t$$

as in the flexible price model, i.e., firms set price as a simple (static) markup over the marginal cost.

2. Optimal price depends on a **forecast** of future values of aggregate demand conditions as well as on the future evolution of the marginal cost.

• Equilibrium with Price Dispersion

$$Y_t = C_t \tag{17}$$

We should now write:

$$N_{t} = \int_{0}^{1} \frac{Y_{t}(i)}{A_{t}} di$$

$$= \frac{Y_{t}}{A_{t}} \int_{0}^{1} \left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} di$$

$$= \frac{Y_{t}}{A_{t}} D_{t}$$

$$(18)$$

where $D_t \equiv \int_0^1 \left(\frac{P_t(i)}{P_t}\right)^{-\varepsilon} di$ is a term that captures the **dispersion of relative** prices across producers.

- Possibility that D_t is time-varying hinges crucially on the assumed price setting structure.
- Under **Calvo pricing**, whereby firms adjust prices in a non-synchronized fashion, the dispersion of relative prices is potentially an important feature of the equilibrium.

• We **prove** that dispersion D_t is **bounded below** by 1

$$D_t \geq 1$$

$$ightarrow$$
Define $v_{i,t} \equiv \left(rac{P_t(i)}{P_t}
ight)^{1-arepsilon}$

• We first have:

$$\left[\int_{0}^{1} v_{i,t} di \right]^{\frac{\varepsilon}{\varepsilon - 1}} = \left[\int_{0}^{1} \left(\frac{P_{t}(i)}{P_{t}} \right)^{1 - \varepsilon} di \right]^{\frac{\varepsilon}{\varepsilon - 1}} \\
= P_{t}^{\varepsilon} \left[\int_{0}^{1} P_{t}(i)^{1 - \varepsilon} di \right]^{\frac{\varepsilon}{\varepsilon - 1}} \\
= 1$$
(19)

• Also:

$$\left[\int_{0}^{1} v_{i,t}^{\frac{\varepsilon}{\varepsilon - 1}} di \right] = \int_{0}^{1} \left[\left(\frac{P_{t}(i)}{P_{t}} \right)^{1 - \varepsilon} \right]^{\frac{\varepsilon}{\varepsilon - 1}} di$$

$$= \int_{0}^{1} \left(\frac{P_{t}(i)}{P_{t}} \right)^{-\varepsilon} di$$

$$= D_{t}$$
(20)

• Combining (19) with (20) we have

$$\underbrace{\left[\int_{0}^{1} v_{i,t}^{\frac{\varepsilon}{\varepsilon-1}} di\right]}_{D_{t}} \ge \left[\int_{0}^{1} v_{i,t} di\right]^{\frac{\varepsilon}{\varepsilon-1}} = 1$$

where the inequality follows from Jensen's inequality•

Monetary Policy Rule

$$i_t = \gamma + \phi_\pi \pi_t + \varepsilon_t \tag{21}$$

Dispersion of Relative Prices and Inflation

$$D_{t} = \int_{0}^{1} \left(\frac{P_{t}(i)}{P_{t}}\right)^{-\varepsilon} di$$

$$= \int_{1-\alpha}^{1} \left(\frac{P_{t}^{new}}{P_{t}}\right)^{-\varepsilon} di + \left(\frac{P_{t-1}}{P_{t}}\right)^{-\varepsilon} \int_{\alpha} \left(\frac{P_{t-1}(i)}{P_{t-1}}\right)^{-\varepsilon} di$$

$$= (1-\alpha)\tilde{P}_{t}^{-\varepsilon} + \alpha \Pi_{t}^{\varepsilon} D_{t-1}$$

$$(22)$$

where
$$\widetilde{P}_t \equiv rac{P_t^{new}}{P_t}$$

• Rewrite price adjustment equation (12) (dividing through by $P_t^{1-\varepsilon}$):

$$1 = \alpha \Pi_t^{\varepsilon - 1} + (1 - \alpha) \left(\widetilde{P}_t \right)^{1 - \varepsilon} \tag{24}$$

By combining (22) and (24) we can link relative price dispersion and inflation as follows:

$$D_{t} = (1 - \alpha) \left(\frac{1 - \alpha \Pi_{t}^{\varepsilon - 1}}{1 - \alpha} \right)^{\frac{-\varepsilon}{1 - \varepsilon}} + \alpha \Pi_{t}^{\varepsilon} D_{t - 1}$$
 (25)

ullet Log-linearize around a steady state with positive inflation $\pi>0$

$$e^{\log(D_t)} = (1 - \alpha) \left(\frac{1 - \alpha \left(e_t^{\log(\Pi_t)} \right)^{\varepsilon - 1}}{1 - \alpha} \right)^{\frac{-\varepsilon}{1 - \varepsilon}} + \alpha \left(e^{\log(\Pi_t)} \right)^{\varepsilon} e^{\log(D_{t-1})}$$

 \rightarrow Obtain

$$d_{t} = \left\{ \alpha \varepsilon \Pi^{\varepsilon} \left[1 - \frac{1}{\Pi D} \left(\frac{1 - \alpha \Pi^{\varepsilon - 1}}{1 - \alpha} \right) \right]^{\frac{1}{\varepsilon - 1}} \right\} \pi_{t} + \alpha \Pi^{\varepsilon} d_{t - 1}$$
 (26)

where $d_t \equiv \log\left(\frac{D_t}{D}\right)$.

In the particular case of **zero net steady state inflation** (i.e., $\Pi = 1$), we have (from 26) that D = 1. In this case we have:

$$A \equiv \left\{ \alpha \varepsilon \Pi^{\varepsilon} \left[1 - \frac{1}{\Pi D} \left(\frac{1 - \alpha \Pi^{\varepsilon - 1}}{1 - \alpha} \right) \right]^{\frac{1}{\varepsilon - 1}} \right\} = 0$$

and (26) reduces to:

$$d_t = \alpha d_{t-1}$$

• Even in the first-order approximation of the model the term d_t cannot be ignored if the point of approximation is a steady-state with $\Pi > 1$.

• If log linearize around zero inflation steady state

$$y_t = a_t + n_t \tag{27}$$

Log-Linearization and the New Keynesian Phillips Curve

$$p_t^{new} = (1 - \alpha\beta)\mathbb{E}_t \left\{ \sum_{k=0}^{\infty} (\alpha\beta)^k m c_{t+k} \right\}$$

$$= (1 - \alpha\beta)\mathbb{E}_t \left\{ \sum_{k=0}^{\infty} (\alpha\beta)^k \left(m c_{t+k}^r + p_{t+k} \right) \right\}$$
(28)

where we used $mc_t = mc_t^r + p_t$.

- Hence firms that are allowed to reset the price choose to do so as a weighted average over the expected future nominal marginal cost. Equation (28) above points clearly to the two factors that drive the decision of a firm to deviate from the average price level prevailing in the previous period:
- The presence of the aggregate price level denotes the willingness to maintain (in expectations) the *relative* price unchanged.
- The term involving mc_t^r denotes the desire to *change* the expected relative price in order to avoid any gap that may emerge between expected and desired markup.

ullet Rewrite equation (28) as a first order difference equation in p_t^{new}

$$p_t^{new} = (1 - \beta \alpha)(mc_t^r + p_t) + \beta \alpha p_{t+1}^{new}$$
(29)

• By combining equation (29) with (13) we can obtain a forward looking equation for inflation :

$$\pi_t = \beta E_t \left\{ \pi_{t+1} \right\} + \left[\frac{(1-\alpha)(1-\beta\alpha)}{\alpha} \right] m c_t^r \tag{30}$$

• The longer prices are fixed (i.e., for higher α , since prices are kept fixed for an average length of $1/(1-\alpha)$ periods), the less firms are sensitive to changes in the real marginal cost, as current demand conditions matter less.

• Canonical Representation

$$U(C_t, N_t) = \frac{1}{1 - \sigma} C_t^{1 - \sigma} - \frac{1}{1 + \varphi} N_t^{1 + \varphi}$$

• Log-linear approximation of the **real marginal cost**:

$$mc_t^r = (w_t - p_t) - a_t$$

$$= \varphi n_t + \sigma c_t - a_t$$

$$= (\varphi + \sigma)y_t - (1 + \varphi)a_t$$
(31)

where the last expression follows from (27).

ullet Fully flexible prices ullet $mc_t^r=\mathbf{0}$ ullet natural level of output

$$y_t^n = \left(\frac{1+\varphi}{\sigma+\varphi}\right) a_t \tag{32}$$

Real Marginal Cost and Output Gap

$$x_t \equiv y_t - y_t^n \tag{33}$$

From equation (31) we can write:

$$mc_t^r = (\varphi + \sigma) \left(y_t - \left(\frac{1 + \varphi}{\varphi + \sigma} \right) a_t \right)$$

= $(\varphi + \sigma) x_t$

• The New Keynesian Phillips Curve

$$\pi_t = \beta E_t \left\{ \pi_{t+1} \right\} + \kappa x_t \tag{34}$$

where

$$\kappa \equiv \frac{(\varphi + \sigma)(1 - \alpha)(1 - \beta\alpha)}{\alpha}$$

 \rightarrow Notice:

$$\frac{\partial \kappa}{\partial \alpha} < 0$$

for any given value of φ , σ , β . Hence a **higher degree of price stickiness** translates into a **flatter** aggregate supply curve.

\rightarrow Notice:

- 1. Inflation rises as output deviates from its **natural** level. Hence it is not a rise in output per se that produces inflation.
- 2. By iterating (34) forward we obtain:

$$\pi_t = \mathbb{E}_t \left\{ \sum_{j=0}^{\infty} \beta^j \kappa \ x_{t+j} \right\} \tag{35}$$

→Inflation is a forward-looking variable, i.e., it depends on current and expected future deviations of output from its natural level.

• Dynamic IS Equation

 \rightarrow From Euler

$$c_t = \mathbb{E}_t \{c_{t+1}\} - \sigma^{-1} (r_t - \gamma)$$
 (36)

where $r_t \simeq \log(1+r_t)$.

• Substituting $c_t = y_t$ yields:

$$x_{t} = \mathbb{E}_{t}\{x_{t+1}\} - \frac{1}{\sigma}(i_{t} - \mathbb{E}_{t}\{\pi_{t+1}\} - r_{t}^{n})$$
(37)

where

$$r_t^n \equiv \gamma + \sigma E_t \{ y_{t+1}^n - y_t^n \} = \gamma + \frac{\sigma(1+\varphi)}{\sigma + \varphi} \mathbb{E}_t \{ \Delta a_{t+1} \}$$
 (38)

→Natural real rate of interest.

- Notice the the natural real rate of interest is determined by **real** factors outside the control of monetary policy.
- Integrating *dynamic IS equation* forward:

$$x_t = -\frac{1}{\sigma} \mathbb{E}_t \left\{ \sum_{j=0}^{\infty} \left(r_{t+j} - r_{t+j}^n \right) \right\}$$
 (39)

• Canonical Model

For any given process for $\{r_t^n\}$ a for a given policy process $\{i_t\}$:

$$x_{t} = \mathbb{E}_{t}\{x_{t+1}\} - \frac{1}{\sigma} (i_{t} - \mathbb{E}_{t}\{\pi_{t+1}\} - r_{t}^{n})$$
 (40)

$$\pi_t = \beta E_t \left\{ \pi_{t+1} \right\} + \kappa x_t \tag{41}$$

Monetary Policy Trade-Offs

- To control inflation the CB does not need to generate a recession.
- By stabilizing output at its natural level the CB is also stabilizing inflation.
- Consider a hybrid version of equation (34) (for $\beta \simeq 1$) featuring a backward-looking component:

$$\pi_t = \delta E_t \{ \pi_{t+1} \} + (1 - \delta) \pi_{t-1} + \kappa x_t \tag{42}$$

For $\delta = 0$:

$$\pi_t = \pi_{t-1} + \kappa x_t \tag{43}$$

If π_{t-1} rises above average it is clear that the CB needs to generate a recession to stabilize *current* inflation. This persistence feature of inflation emerges clearly from the data.

Uniqueness and Stability of the Equilibrium

Compact form:

$$\begin{pmatrix} \pi_t \\ x_t \end{pmatrix} = \mathbf{M} \ \mathbb{E}_t \begin{pmatrix} \pi_{t+1} \\ x_{t+1} \end{pmatrix} + \frac{1}{\sigma + \kappa \phi_{\pi}} \begin{pmatrix} \kappa \\ 1 \end{pmatrix} r_t^n \tag{44}$$

where

$$\mathbf{M} \equiv \!\!\!\! rac{1}{\sigma + \kappa \phi_\pi} \left(egin{array}{ccc} \sigma eta + \kappa & \sigma \kappa \ 1 - eta \phi_\pi & \sigma \end{array}
ight)$$

• Blanchard-Khan 1980

A necessary and sufficient condition for the system (44) to exhibit a **unique** bounded solution is that the number of **non-predetermined** endogenous variables (i.e., jumpy variables) equal the **number of roots** of M that lie **inside** the unit circle

Solving the Model

• Assume that the monetary shock in (21) and the technology shock follow respectively:

$$\varepsilon_t = \rho^{\varepsilon} \varepsilon_{t-1} + u_t^{\varepsilon} \tag{45}$$

$$a_t = \rho^a a_{t-1} + u_t^a (46)$$

where u_t^ε and u_t^a are iid processes with mean zero and variance σ_ε^2 and σ_a^2 respectively.

Monetary Shock

- Method of undetermined coefficients.
- Conjecture the solution:

$$x_t = a_x \varepsilon_t \tag{47}$$

$$\pi_t = a_\pi \varepsilon_t \tag{48}$$

Notice that (45), (47) and (48) jointly imply:

$$\mathbb{E}_t \left\{ x_{t+1} \right\} = a_x \rho^{\varepsilon} \varepsilon_t$$

$$\mathbb{E}_t \left\{ \pi_{t+1} \right\} = a_{\pi} \rho^{\varepsilon} \varepsilon_t$$

Substituting (21) and the above conjectured solutions in (37) we obtain

$$x_t = \varepsilon_t \left[a_\pi \left(\frac{\rho^\varepsilon - \phi_\pi}{\sigma} \right) + \rho^\varepsilon a_x - \frac{1}{\sigma} \right] \tag{49}$$

Equating the coefficient on ε_t in (49) to the one in (47) we obtain

$$a_x (1 - \rho^{\varepsilon}) = a_\pi \left(\frac{\rho^{\varepsilon} - \phi_\pi}{\sigma}\right) - \frac{1}{\sigma}$$
 (50)

Substituting the conjectured solutions in (34) we obtain

$$\pi_t = \varepsilon_t \left[\beta a_\pi \rho^\varepsilon + \kappa a_x \right] \tag{51}$$

Equating the coefficient on ε_t to the one in (48) yields

$$a_{\pi} = \left(\frac{\kappa}{1 - \beta \rho^{\varepsilon}}\right) a_{x} \tag{52}$$

The system of equations (50), (52) can be solved for the two unknows a_{π} and a_x , yielding the solutions:

$$x_t = -\Gamma_x \varepsilon_t \tag{53}$$

$$\pi_t = -\Gamma_{\pi}\varepsilon_t \tag{54}$$

where

$$\Gamma_{x} \equiv rac{(1-eta
ho^{arepsilon})}{\sigma(1-
ho^{e})\left(1-eta
ho^{arepsilon}
ight)+\kappa(\phi_{\pi}-
ho^{arepsilon})} > 0$$

and

$$\mathsf{\Gamma}_{\pi} \equiv rac{\kappa}{\sigma(1-
ho^e)\left(1-eta
ho^arepsilon
ight) + \kappa(\phi_{\pi}-
ho^arepsilon)} > 0$$

- Notice
- 1. Both coefficients Γ_x and Γ_π are positive. Hence a contractionary (expansionary) monetary policy shock lowers (raises) both inflation and the output gap. Since the natural level of output is unaffected by monetary shocks, the same effect translates into **actual output** also.
- 2. The role of the degree of **price stickiness**, via its effect on κ , the slope of the NKPC.

$$\frac{\partial \Gamma_x}{\partial \kappa} < 0$$

• As $\alpha \to 0$ (flexible prices), $\kappa \to \infty$, which implies $\Gamma_x \to 0$. In this case the effect of a monetary policy shock on the output gap is nil (monetary policy neutrality).

• Conversely, the effect of a monetary shock on the output gap (or output) is maximized as $\alpha \to 1$ (full price rigidity) and $\kappa \to 0$.

• Effects of a monetary shock on **inflation**.

$$\frac{\partial \Gamma_{\pi}}{\partial \kappa} > 0$$

.

 \rightarrow A monetary policy shock produces a **smaller** effect on inflation the **larger** the degree of price stickiness.

• The higher the degree of price stickiness (ie, low κ), the weaker each firm's tendency to match any given variation in demand (induced by the monetary policy action) with a variation in prices (as opposed to output)

• Technology Shock

-Using (46) we can write the natural real interest rate as:

$$r_t^n = \gamma - \left[\frac{\sigma(1+\varphi)(1-\rho^a)}{(\sigma+\varphi)} \right] a_t$$

• We conjecture the solution:

$$x_t = b_x a_t \tag{55}$$

$$\pi_t = b_\pi a_t \tag{56}$$

Substituting (21) and the above conjectured solutions in (37) we obtain

$$x_t = a_t \left[b_x \rho^a + b_\pi \left(\frac{\rho^a - \phi_\pi}{\sigma} \right) - \frac{(1 + \varphi)(1 - \rho^a)}{(\sigma + \varphi)} \right]$$
 (57)

Equating the coefficient on a_t in (57) and (55) yields

$$b_x (1 - \rho^a) = b_\pi \left(\frac{\rho^a - \phi_\pi}{\sigma}\right) - \frac{(1 + \varphi)(1 - \rho^a)}{(\sigma + \varphi)}$$
 (58)

Similarly, by substituting the conjectured solutions in (34) we obtain

$$b_{\pi} = \left(\frac{\kappa}{1 - \beta \rho^a}\right) b_x \tag{59}$$

Substituting (59) in (58), and solving for b_x we can write

$$x_t = -\Theta_x a_t \tag{60}$$

$$\pi_t = -\Theta_{\pi} a_t \tag{61}$$

where

$$\Theta_x \equiv rac{rac{(1+arphi)}{(\sigma+arphi)}\sigma(1-eta
ho^a)(1-
ho^a)}{\sigma(1-eta
ho^a)(1-
ho^a)+\kappa(\phi_\pi-
ho^a)} > 0$$

$$\Theta_{\pi} \equiv rac{rac{(1+arphi)}{(\sigma+arphi)}(1-
ho^a)\sigma\kappa}{\sigma(1-eta
ho^a)(1-
ho^a)+\kappa(\phi_{\pi}-
ho^a)} > 0$$

Notice

- 1. A positive technology shock produces a contraction in both the *output gap* and *inflation*.
- 2. For $\kappa \to \infty$ (flexible prices) we have $\Theta_x \to 0$. In other words, under flexible prices, the output gap is always zero, since output will constantly replicate its flexible-price counterpart.
- 3. Effects of a technology shock on *output*:

$$y_t = x_t + y_t^n$$

$$= \left(\frac{1+\varphi}{\sigma+\varphi} - \Theta_x\right) a_t$$

$$= \Theta_y a_t$$

where

$$\Theta_y \equiv \frac{(1+\varphi)}{(\sigma+\varphi)} \left(\frac{1}{1 + \frac{\sigma(1-\beta\rho^a)(1-\rho^a)}{\kappa(\phi_\pi - \rho^a)}} \right) > 0$$
 (62)

→Hence output **rises** in response to a positive technology shock, similarly to what happens in a RBC model.

Role played by price stickiness.

For $\kappa \to \infty$ (flexible prices) we have:

$$\Theta_y \equiv \Theta_y^{RBC} = rac{(1+arphi)}{(\sigma+arphi)}$$

• From (62) we see that a higher degree of price rigidity (smaller κ) dampens the effect of technology shocks on output:

$$\Theta_y < \Theta_y^{RBC} \text{ for } \kappa < \infty$$

$$= \Theta_y^{RBC} \text{ for } \kappa \to \infty$$

• Impact effect of technology shocks on **employment**.

$$n_t = y_t - a_t$$
$$= (\Theta_y - 1) a_t$$

For employment to fall in response to a technology shock it is required that:

$$\left(\frac{1-\sigma}{\sigma+\varphi}\right)\kappa(\phi_{\pi}-\rho^{a})<\sigma(1-\beta\rho^{a})(1-\rho^{a})$$
(63)

• Condition (63) is easily satisfied, e.g., in the case of log-consumption utility $(\sigma = 1)$ for any $\kappa < \infty$, i.e., to the extent that price stickiness is present.

• In the case of fully rigid prices ($\kappa=0$), the same condition is always satisfied for any value of σ .

The role of the monetary policy rule in shaping the response to shocks

Existence and uniqueness of a RE equilibrium

• Existence and Uniqueness of a RE Equilibrium

ullet The characteristic polynomial of ${f M}$ can be written

$$P(\xi) = \xi^2 - tr(\mathbf{M}) + \det(\mathbf{M})$$

where

$$tr(\mathbf{M}) = \frac{\sigma + (\sigma\beta + \kappa)}{\sigma + \kappa\phi_{\pi}}$$

and

$$\det(\mathbf{M}) = rac{1}{(\sigma + \kappa \phi_\pi)^2} (\sigma^2 eta + \sigma \kappa eta \phi_\pi)$$

• Conditions for existence and uniqueness of an equilibrium are that both roots lie inside the **unit circle**.

ullet We know that the roots μ_1 and μ_2 must obey:

$$\mu_1 + \mu_2 = \operatorname{tr}(M)$$
$$\mu_1 \mu_2 = \det(M)$$

Alternatively, the same conditions for uniqueness can be stated as follows:*

$$|\det(\mathbf{M})| < 1 \tag{64}$$

$$|-tr(\mathbf{M})| < 1 + det(\mathbf{M}) \tag{65}$$

As for condition (64) we can verify that

*See for instance, Bullard and Mitra (2000) and references therein.

$$|det(\mathbf{M})| = \left| \frac{1}{(\sigma + \kappa \phi_{\pi})^{2}} \sigma^{2} \beta (1 + \frac{\kappa \phi_{\pi}}{\sigma}) \right|$$
$$= \left| \frac{\sigma \beta}{(\sigma + \kappa \phi_{\pi})} \right|$$

which requires that

$$eta < 1 + rac{\kappa \phi_{\pi}}{\sigma}$$

It is clear that this is verified for any value of $\phi_{\pi} \geq$ 0.

On the other hand condition (65) requires

$$\frac{\sigma\beta + \kappa + \sigma}{\sigma + \kappa\phi_{\pi}} < 1 + \frac{\sigma\beta}{\sigma + \kappa\phi_{\pi}}$$

$$= \frac{\sigma\beta + \kappa\phi_{\pi} + \sigma}{\sigma + \kappa\phi_{\pi}}$$

which is satisfied if and only if $\phi_{\pi} > 1$.

Equilibrium uniqueness under the simple interest rate rule

