Macroeconomics III - Ph.D.

Spring 2016

Introduction: Nominal Rigidities, the Role of Technology Shocks, and Monetary Policy

Tommaso Monacelli

Università Bocconi and IGIER

- The paradigm so far: **Real Business Cycle Model** (neoclassical growth model)
- Bulk of fluctuations explained by technology shocks (Kydland-Prescott, 1982)

- Main **ingredients** of RBC
- 1. Microfoundations
- 2. Dynamic (Stochastic) General Equilibrium
- 3. All markets frictionless
- 4. Prices adjust instantaneously

 \rightarrow Note: (1) and (2) alive and kicking, (3) and (4) questionable

- In this course:
- 1. We will go **beyond RBC** paradigm \rightarrow Build so-called **New Keynesian** Framework
- 2. Role of money and **monetary policy**
- 3. Imperfections in goods markets (monopolistic competition)
- 4. Role of nominal rigidities (price and/or wage stickiness)
- 5. Reconsideration of role of technology shocks

- Why beyond RBC? \rightarrow (at least) 4 arguments
- 1. No role for monetary policy / monetary policy shocks
- 2. Perfect flexibility of prices (and wages)
- 3. Weak propagation mechanism (Cogley-Nason, 1995)
- 4. Effects of technology shocks on labor market (Gali, 1999 and Gali and Rabanal, 2004)

- **Reading**: Nakamura and Steinsson (2013), "Price Rigidity: Microeconomic Evidence and Macroeconomic Implications", *Annual Review of Economics*
- http://www.columbia.edu/~en2198/papers.html

• **Criticism 1**: RBC model cannot replicate evidence of **non-neutrality** of money (Christiano et al., 2005)

Effects of an increase in the money supply (source CEE, 2005)

Effects of an increase in the money supply (CEE, 2005)

 \rightarrow An increase in **money supply**

- 1. Prolonged, but not immediate, positive effect on **output** and **consumption** \rightarrow Clear **non-neutrality**
- 2. Delayed positive effect on **inflation** (persistence)
- 3. Negative effect on **nominal interest rate** (liquidity effect)

Criticism 2: Prices change only **infrequently**: (*monthly*) evidence for Euro Area (source Altissimo, Ehrmann and Smets, 2006)

Euro Area

Share of prices changed each month 15% 15-23%

Table 4.1 Frequency of consumer price changes by product type, in %									
Country	Unprocessed food	Processed food	Energy (oil products)	Non-energy industrial goods	Services	Total, country weights	Total, Euro area weights		
Belgium	31.5	19.1	81.6	5.9	3.0	17.6	15.6		
Germany	25.2	8.9	91.4	5.4	4.3	13.5	15.0		
Spain	50.9	17.7	n.a.	6.1	4.6	13.3	11.5		
France	24.7	20.3	76.9	18.0	7.4	20.9	20.4		
Italy	19.3	9.4	61.6	5.8	4.6	10.0	12.0		
Luxembourg	54.6	10.5	73.9	14.5	4.8	23.0	19.2		
The Netherlands	30.8	17.3	72.6	14.2	7.9	16.2	19.0		
Austria	37.5	15.5	72.3	8.4	7.1	15.4	17.1		
Portugal	55.3	24.5	15.9	14.3	13.6	21.1	18.7		
Finland	52.7	12.8	89.3	18.1	11.6	20.3			
Euro Area	28.3	13.7	78.0	9.2	5.6	15.1	15.8		

 \rightarrow Substantial degree of **heterogeneity** in the frequence of (monthly) price changes across products (source Altissimo, Ehrmann and Smets, 2006)

Figure 4.1 Distribution of product-specific and country-specific frequencies of price changes

Median duration of price spell in Euro Area: between 4 to 5 quarters

• What about the **US**?

 \rightarrow Recent micro-based evidence points to smaller degree of price stickiness (Bils and Klenow, 2004)

- Median duration of price spell in the US is 4.3 months (Bils and Klenow, 2004)
- Nakamura-Steinsson (2006): accounting for **sales** bring it back to median duration of **8-11 months**.

- Non-neutrality of money is big challenge for RBC model
- Yet, is it monetary **shocks** or is it monetary **policy**? **Systematic** (rule-based) vs. **Non-Systematic** (shocks) component of policy

	4 Quarters	8 Quarters	20 Quarters
	Ahead	Ahead	Ahead
Output	15	38	27
•	(4,26)	(15, 48)	(9,35)
Inflation	1	4	7
	(0,8)	(1,11)	(3, 18)
Consumption	14	21	14
-	(4,26)	(5,37)	(4, 26)
Investment	10	26	23
	(2,21)	(7,39)	(6, 32)
Real wage	2	2	4
	(0,8)	(0,14)	(0, 15)
Productivity	15	14	10
	(3,25)	(3,26)	(3,20)
Federal funds rate	32	19	18
	(18, 44)	(8,27)	(5,27)
M2 growth	19	19	19
	(8,29)	(8,26)	(8, 24)
Real profits	13	18	7
	(5,25)	(6,31)	(2,20)

TABLE 1 Percentage Variance Due to Monetary Policy Shocks

NOTE.-Numbers in parentheses are the boundaries of the associated 95 percent confidence interval.

Contribution of monetary policy **shocks** to variance of output is **small** (source: CEE, 2005)

Criticism 3: RBC model has **weak propagation mechanism** (Cogley and Nason, 1995)

- Criticism 4: Are Technolgy Shocks Really the Source of Business Cycle Fluctuations?
- **Reading.** Gali J., "Technology, Employment and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations ?", *American Economic Review* (1999)

```
\rightarrowNote: productivity \simeq real wage
```


Figure 1: **Unconditional** Correlation between Productivity and Hours in the Data is close to zero (Gali 1999)

• Effect of a Technology Shock on labor demand

Suppose production function

$$Y_t = A_t N_t^{\alpha}$$

First order condition for choice of labor input

$$\frac{W_t}{P_t} = \alpha \frac{A_t}{N_t^{1-\alpha}}$$

For any given real wage, a rise in productivity entails a rise in labor input \rightarrow Labor demand shifts outward

Effect of a positive technology shock in the labor market

- RBC model predicts strong positive correlation between real wage (productivity) and hours
- To obtain low correlation between W/P and N need also a shift in labor supply
- Candidate: government spending shock (Christiano and Eichenbaum, 1992)
- A rise in G financed with lump-sum taxes makes household poorer (marginal utility of wealth rises) →household is willing to work more→labor supply shifts outward

Simultaneous Effect on the Labor Market of Technology and Government Spending Shocks

- Are Government spending shocks enough?
- Gali (AER, 1999)

Positive Output-Employment **comovement** is key business cycle fact (unconditional correlation)

The Estimated Effects of Technology Shocks (source Gali and Rabanal, 2004)

Estimated correlation between hours and productvity **conditional** on technology shocks (Gali 1999)

- Data seem to suggest that labor hours **decrease** in response to technology shocks (large literature on this)
- Hence it is the transmission mechanism of technology shocks in RBC models which seems questionable
- However, lively debate on this (Altig et al., 2006)

Figure 2: Effects of technology shocks in the Euro Area: GDP (source Gali 2004)

Figure 3: Effects of technology shocks in the Euro Area: Employment (source Gali 2004)

Decomposing **technology** vs. **non-technology** component in the comovement between **Output and Hours**