Online Appendix Persuasion and Gender: Experimental Evidence from Two Political Campaigns

May 2018

This Appendix provides additional materials that are also discussed in the paper. In Section A, we present the tables exploring the potential channels of our main results. In Section B, we report the English translation of our informational treatments and additional robustness checks for our survey experiment in Milan. In Section C, we provide information about the sentiment analysis performed for the natural experiment in Milan. In Section D, we report the English translation of our informational treatments and robustness checks for our field experiment in Cava de' Tirreni.

Young Young (≤ 30) (≤ 30) 0.022** 0.022** 0.060* 0.060* 0.060* 0.060* 0.060* 0.060* 0.025** 0.025	College 0.041** 0.041** 0.314 0.023 ** 0.438 0.438 0.438 0.438 0.438 0.502 0.854 0.854 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.202 0.205 0.202 0.205 0.202 0.2	Left 0.128 0.280 0.280 0.039** 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.387 0.283 0.118 0.0668 0.118 0.0668 0.118 0.083* 0.122 0.122 0.122 0.122 0.122 0.128 0.0378 0.128 0.280 0.039** 0.280 0.039** 0.280 0.039** 0.039** 0.039** 0.039** 0.039** 0.128 0.039** 0.039** 0.039** 0.128 0.039** 0.128 0.039** 0.128 0.039** 0.039** 0.128 0.039** 0.128 0.039** 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0468 0.0118 0.0083* 0.0172 0.00	Low Interestin Politics $0.79*$ $0.79*$ $0.79*$ $0.79*$ 0.318 0.318 0.318 $0.23**$ 0.434 0.148 0.434 0.148 0.148 0.912 0.912 0.912 0.912 0.434 0.148 $0.036**$ 0.163 0.103 912 912 Low Interest
$\begin{array}{c} 0.022^{**} \\ 0.060^{*} \\ 0.060^{*} \\ 0.453 \\ 0.453 \\ 0.397 \\ 0.397 \\ 0.397 \\ 0.397 \\ 0.397 \\ 0.307 \\ 0.024^{**} \\ 0.024^{**} \\ 0.024^{**} \\ 0.024^{**} \\ 0.024^{**} \\ 0.024^{**} \\ 0.024^{**} \\ 0.024^{**} \\ 0.008 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.008 \\ 0.106 \\ 0.008 \\ 0.$	$\begin{array}{c} 0.041^{**} \\ 0.314 \\ 0.314 \\ 0.314 \\ 0.438 \\ 0.438 \\ 0.438 \\ 0.502 \\ 0.502 \\ 0.502 \\ 0.854 \\ 0.205 \\ 0.205 \\ 0.205 \\ 0.205 \\ 0.205 \\ 0.205 \\ 0.205 \\ 0.205 \\ 0.107 \\ 0.763 \\ 0.105 \\ 0.105 \\ 0.106 \\ \end{array}$	$\begin{array}{c} 0.128\\ 0.280\\ 0.039^{**}\\ 0.387\\ 0.387\\ 0.387\\ 0.387\\ 0.387\\ 0.387\\ 0.213\\ 0.978\\ 0.978\\ 0.978\\ 0.978\\ 0.978\\ 0.118\\ 0.053^{*}\\ 0.118\\ 0.083^{*}\\ 0.118\\ 0.083^{*}\\ 0.118\\ 0.083^{*}\\ 0.1122\\ 0.122\\ 912\\ te \ share \\ te \ share \\ te \ share \\ te \ share \\ \end{array}$	$\begin{array}{c} 0.079^{*} \\ 0.318 \\ 0.318 \\ 0.023^{**} \\ 0.434 \\ 0.148 \\ 0.148 \\ 0.148 \\ 0.078^{*} \\ 0.078^{*} \\ 0.078^{*} \\ 0.078^{*} \\ 0.078^{*} \\ 0.153 \\ 0.153 \\ 0.153 \\ 0.103 \\ 10.103 \\ 912 \\ 100 \\$
$\begin{array}{c} 0.060 * \\ 0.022 * * \\ 0.453 \\ 0.453 \\ 0.397 \\ 0.397 \\ 0.397 \\ 0.97 \\ 0.97 \\ 0.97 \\ 0.97 \\ 0.026 * * \\ 0.024 * * \\ 0.024 * * \\ 0.024 * * \\ 0.024 * * \\ 0.024 * * \\ 0.024 * * \\ 0.024 * * \\ 0.024 * * \\ 0.026 * \\ 0.008 \\ 0.106 \\ 0.106 \\ 0.106 \end{array}$	$\begin{array}{c} 0.314\\ 0.023 **\\ 0.438\\ 0.438\\ 0.502\\ 0.502\\ 0.854\\ 0.282\\ 0.282\\ 0.282\\ 0.282\\ 0.265\\ 0.282\\ 0.265\\ 0.263\\ 0.107\\ 0.107\\ 0.105\\ \hline \end{array}$	0.280 0.039** 0.387 0.387 0.387 0.387 0.387 0.387 0.978 0.978 0.978 0.978 0.978 0.170 0.170 0.170 0.463 0.170 0.463 0.122 912 te share te share Left	0.318 0.023** 0.434 0.148 0.912 0.912 0.408 0.408 0.078* 0.078* 0.153 0.153 0.153 0.153 0.163 0.1030 0.1030 0.1030 0.1030 0.1030 0.1030 0.1030000000000
$\begin{array}{c} 0.022^{**}\\ 0.453\\ 0.453\\ 0.397\\ 0.166\\ 0.997\\ 0.097\\ 0.058^{**}\\ 0.026^{**}\\ 0.024^{**}\\ 0.058^{**}\\ 0.024^{**}\\ 0.024^{**}\\ 0.024^{**}\\ 0.024^{**}\\ 0.026^{**}\\ 0.024^{**}\\ 0.0106\\ \hline \end{array}$	0.023 ** 0.438 0.502 0.854 0.854 0.205 0.282 0.282 0.282 0.282 0.265 0.265 0.265 0.107 0.107 0.105 912 912 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.282 0.265 0.282 0.282 0.265 0.282 0.265 0.282 0.265 0.2	0.039** 0.387 0.387 0.213 0.978 0.978 0.978 0.118 0.118 0.118 0.118 0.118 0.1170 0.170 0.463 0.122 912 te share te share	0.023** 0.434 0.434 0.912 0.912 0.408 0.078* 0.078* 0.078* 0.153 0.153 0.153 0.153 0.103 912 912 Low Interest
$\begin{array}{c} 0.453\\ 0.397\\ 0.166\\ 0.997\\ 0.026^{**}\\ 0.026^{**}\\ 0.058^{*}\\ 0.058^{*}\\ 0.024^{**}\\ 0.024^{**}\\ 0.024^{**}\\ 0.0106\\ 912\\ \hline \end{array}$	$\begin{array}{c} 0.438\\ 0.502\\ 0.854\\ 0.854\\ 0.205\\ 0.205\\ 0.205\\ 0.205\\ 0.205\\ 0.205\\ 0.036^{**}\\ 0.107\\ 0.107\\ 0.105\\ 0.105\\ \hline \end{array}$	0.387 0.213 0.978 0.668 0.118 0.118 0.118 0.118 0.118 0.1170 0.463 0.170 0.463 0.122 912 te share te share Left	0.434 0.148 0.912 0.408 0.078* 0.078* 0.036** 0.153 0.153 0.153 0.103 912 912 Low Interest
$\begin{array}{c} 0.397\\ 0.166\\ 0.997\\ 0.026^{**}\\ 0.026^{**}\\ 0.024^{**}\\ 0.829\\ 0.024^{**}\\ 0.829\\ 0.106\\ 912\\ \hline \end{array}$	0.502 0.854 0.205 0.282 0.282 0.282 0.282 0.282 0.282 0.283 0.107 0.763 0.105 912 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.282 0.202 0.282 0.282 0.282 0.202 0.282 0.	$\begin{array}{c} 0.213\\ 0.978\\ 0.668\\ 0.118\\ 0.118\\ 0.118\\ 0.170\\ 0.83^{*}\\ 0.170\\ 0.463\\ 0.122\\ 912\\ \hline e \ share\\ te \ share\\ Left \end{array}$	0.148 0.912 0.408 0.078* 0.078* 0.078* 0.078* 0.153 0.153 0.153 0.153 0.103 912 12 Low Interest
$\begin{array}{c} 0.166\\ 0.997\\ 0.026^{**}\\ 0.026^{**}\\ 0.024^{**}\\ 0.829\\ 0.106\\ 0.106\\ 0.106\\ \hline \end{array}$	0.854 0.205 0.282 0.282 0.036** 0.107 0.105 912 912 912 College 0.016**	0.978 0.668 0.118 0.118 0.083* 0.170 0.463 0.122 912 et share Left	0.912 0.408 0.078* 0.036** 0.153 0.153 0.153 0.153 0.103 912 912 Low Interest
$\begin{array}{c} 0.997\\ 0.026^{**}\\ 0.028^{**}\\ 0.024^{**}\\ 0.24^{**}\\ 0.24^{**}\\ 0.106\\ 0.106\\ 912\\ \hline 912\\ \hline \\ 912\\ \hline \\ 800\\ \hline \\ 800\\ \hline \\ 0.010^{**}\\ 0.010^{**}\\ \hline \end{array}$	0.205 0.282 0.036** 0.107 0.107 0.763 0.105 912 B. Incumbent's vol College 0.016**	0.668 0.118 0.083* 0.083* 0.170 0.463 0.122 912 et share Left	0.408 0.078* 0.036** 0.153 0.153 0.153 0.153 0.153 0.103 912 Jun Interest
$\begin{array}{c} 0.026^{**}\\ 0.058^{*}\\ 0.054^{**}\\ 0.024^{**}\\ 0.24^{**}\\ 0.299\\ 0.106\\ 0.106\\ 912\\ \hline \end{array}$	0.282 0.036** 0.107 0.107 0.763 0.105 912 912 College College 0.016**	0.118 0.083* 0.170 0.463 0.463 0.122 912 te share Left	0.078* 0.036** 0.153 0.426 0.426 0.103 912 912 Low Interest
$\begin{array}{c} 0.058*\\ 0.024^{**}\\ 0.024^{**}\\ 0.829\\ 0.106\\ 912\\ \hline 912\\ \hline \\ Panel\\ \hline \\ Young\\ (\leq 30)\\ (\leq 30)\\ \hline \end{array}$	0.036** 0.107 0.763 0.105 912 B. Incumbent's voi College 0.016**	0.083* 0.170 0.463 0.463 0.122 912 te share Left	0.036** 0.153 0.426 0.103 912 Low Interest
$\begin{array}{c c} 0.024^{**} \\ 0.829 \\ 0.829 \\ 0.106 \\ 912 \\ \hline 912 \\ \hline 912 \\ \hline \\ 8100 \\ \hline \\ 630 \\ \hline \\ 0.010^{**} \end{array}$	0.107 0.763 0.105 912 B. Incumbent's voi College 0.016**	0.170 0.463 0.122 912 te share Left	0.153 0.426 0.103 912 Low Interest :- D.1:1:22
$\begin{array}{c} 0.829 \\ 0.106 \\ 912 \\ \hline Panel \\ \hline Young \\ (\leq 30) \\ 0.10** \end{array}$	0.763 0.105 912 B. Incumbent's voi College 0.016**	0.463 0.122 912 te share Left	0.426 0.103 912 Low Interest
0.106 912 Panel (<30) 0.010**	0.105 912 B. Incumbent's voi College 0.016**	0.122 912 te share Left	0.103 912 Low Interest
912 Panel $Young (\leq 30)$	912 B. Incumbent's voi College 0.016**	912 te share Left	912 Low Interest
Panel Young (≤30)	B. Incumbent's voi College 0.016**	te share Left	Low Interest
Young (≤ 30)	College 0.016**	Left	Low Interest
(≤ 30)	0.016^{**}		in Delition
0.010**	0.016^{**}		III FOILUCS
n.uta		0.052^{*}	0.018^{**}
0.029^{*}	0.061^{*}	0.149	0.109
0.007^{***}	0.009^{***}	0.014^{**}	0.009^{***}
0.190	0.192	0.165	0.197
0.365	0.465	0.235	0.139
0.321	0.578	0.886	0.988
0.937	0.474	0.764	0.581
0.062^{*}	0.178	0.198	0.088^{*}
0.092^{*}	0.079^{*}	0.164	0.077*
0.011^{**}	0.0199	0.057^{*}	0.028^{**}
0.997	0.893	0.438	0.375
0.030^{**}	0.035^{**}	0.037^{**}	0.034^{**}
912	912	912	912
$\langle FEMALE_i + \beta_2 NEG_i$, <i>Left-wing</i> , and <i>Low inter</i> , negative vs. no campaier	$< FEMALE_i + \delta FEN$ est in politics. P-valu- for males: $\alpha_2 = 0$. T	$MALE_i + \gamma'_1(x_i \times PO)$ es are reported for the Differential treatment e	$S_i) + \gamma'_2(x_i \times NEG_i) + \theta'x_i + \varepsilon_i$ s following Wald tests: Treatment effect of notitive vs. no campaient
gative vs. no campaign be	tween males and fem	ales: $\beta_2 = 0$. (H1) T	reatment effect of positive vs. no
s. no campaign for female	s: $\alpha_2 + \beta_2 = 0$. (H3)	Treatment effect of p	positive vs. negative campaign for f_{r}
augn for females: $(\alpha_1 + \beta)$ set of any campaign vs. n	$(1 - (\alpha_2 + p_2)) = 0$. (F) campaign for males:	10) DIFFERITIAL TREATING $\alpha_1 + \alpha_2 = 0.$ (H7) 7	lent enect of positive vs. negative Treatment effect of any campaigr
treatment effect of any can % level by ***.	npaign vs. no campaig	n between males and f	females: $\beta_1 + \beta_2 = 0$. Significance
$\begin{array}{c} 0.020\\ 0.007^{\circ}\\ 0.19\\ 0.19\\ 0.36\\ 0.32\\ 0.32\\ 0.32\\ 0.32\\ 0.09^{\circ}\\ 0.99\\ 0.091\\ 0.011\\ 0.99\\ 0.030\\ 0.000\\ 0.00$	$\begin{array}{c} 0\\ 6\\ 6\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0) 0.016** 0.052* 9^* 0.061* 0.149 8^{***} 0.009*** 0.149 6^* 0.009*** 0.014** 0 0.192 0.165 1 0.578 0.235 1 0.578 0.235 1 0.578 0.235 2* 0.178 0.164 2* 0.178 0.164 2* 0.178 0.164 2* 0.079* 0.164 2* 0.079* 0.164 2* 0.037** 0.357* 2* 0.037** 0.037** 1 0.035** 0.037** 1 0.035** 0.037** 1 0.035** 0.0737** 1 0.035** 0.0737** 1 0.035** 0.037** 1 0.035** 0.037** 1 0.035** 0.0737** 1 0.035** 0.0737** 1 0.035** 0.0737** 1 0.035** 0.0737**

Table A.1: Potential Channels in Milan, First Round

		Pan	el A Onnonent's vo	te share	
	Decolino	Vanna			I am Intanct
	Dasenne	roung (720)	College	Leit	LOW INTEREST
• - 1	100	())		0	
<i>P-value:</i> $\alpha_1 = 0$	0.148^{*}	0.070^{**}	0.057^{*}	0.180	0.145
<i>P-value:</i> $\alpha_2 = 0$	0.420	0.100^{*}	0.358	0.386	0.397
<i>P-value:</i> $\beta_1 = 0$	0.052^{*}	0.049^{**}	0.055^{*}	0.130	0.051^{*}
<i>P-value:</i> $\beta_2 = 0$	0.155	0.142	0.154	0.143	0.161
<i>P-value H1:</i> $\alpha_1 + \beta_1 = 0$	0.135	0.436	0.473	0.495	0.125
P-value H2: $\alpha_2 + \beta_2 = 0$	0.111	0.720	0.233	0.165	0.147
P-value H3: $\alpha_1 - \alpha_2 = 0$	0.467	0.920	0.304	0.574	0.509
<i>P-value H4:</i> $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.912	0.587	0.726	0.497	0.785
P-value H5: $\beta_1 - \beta_2 = 0$	0.473	0.561	0.501	0.904	0.412
<i>P-value H6</i> : $\alpha_1 + \alpha_2 = 0$	0.228	0.059^{*}	0.116	0.236	0.218
<i>P-value H7</i> : $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.081^{*}	0.519	0.292	0.251	0.085^{*}
<i>P-value H8:</i> $\beta_1 + \beta_2 = 0$	0.078*	0.070^{*}	0.079^{*}	0.121	0.077*
Obs.	1,034	1,034	1,034	1,034	1,034
		Pane	el B. Incumbent's v	ote share	
	Baseline	Young	College	Left	Low Interest
		(≤ 30)			in Politics
<i>P-value:</i> $\alpha_1 = 0$	0.003^{**}	0.000^{**}	0.001^{***}	0.004^{***}	0.002^{***}
<i>P-value:</i> $\alpha_2 = 0$	0.045^{**}	0.008^{***}	0.025^{**}	0.047^{**}	0.046^{**}
<i>P-value:</i> $\beta_1 = 0$	0.002^{***}	0.001^{***}	0.002^{***}	0.005^{***}	0.002^{***}
<i>P-value:</i> $\beta_2 = 0$	0.089^{*}	0.088^{*}	0.087^{*}	0.080^{*}	0.089^{*}
<i>P-value H1:</i> $\alpha_1 + \beta_1 = 0$	0.085^{*}	0.352	0.416	0.209	0.116
P-value H2: $\alpha_2 + \beta_2 = 0$	0.816	0.479	0.847	0.795	0.798
<i>P-value</i> $H3$: $\alpha_1 - \alpha_2 = 0$	0.300	0.439	0.173	0.406	0.280
<i>P-value H4:</i> $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.061^{**}	0.067^{*}	0.253	0.209	0.078^{*}
P-value H5: $\beta_1 - \beta_2 = 0$	0.028^{**}	0.031^{**}	0.028^{**}	0.065^{*}	0.029^{**}
<i>P-value H6:</i> $\alpha_1 + \alpha_2 = 0$	0.006^{***}	0.000^{***}	0.002^{***}	0.007^{***}	0.005^{***}
P-value H7: $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.247	0.930	0.684	0.382	0.283
<i>P-value H8:</i> $\beta_1 + \beta_2 = 0$	0.01^{***}	0.008^{***}	0.009^{***}	0.015^{**}	0.011^{**}
Obs.	1,034	1,034	1,034	1,034	1,034
Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i$ where x_i is a respectively one of the following co	+ $\alpha_2 NEG_i + \beta_1 POS_i \times$ variates: Young. College.	$< FEMALE_i + \beta_2 NEC$. Left-wing. and Low in	$F_i \times FEMALE_i + \delta FE$ terest in politics. P-val	$MALE_i + \gamma'_1(x_i \times PO)$ ues are reported for the	$S_i) + \gamma'_2(x_i \times NEG_i) + \theta' x_i + \varepsilon_i,$ i following Wald tests: Treatment
effect of positive vs. no campaign for males: α_1	= 0. Treatment effect of	negative vs. no campa	ign for males: $\alpha_2 = 0$.	Differential treatment	effect of positive vs. no campaign
between males and females: $\beta_1 = 0$. Differentis campaign for females: $\alpha_1 + \beta_1 = 0$. (H2) Treati	al treatment effect of neg ment effect of negative v	gative vs. no campaign s. no campaign for fem	between males and felales: $\alpha_2 + \beta_2 = 0$. (H:	males: $\beta_2 = 0$. (H1) T 3) Treatment effect of p	reatment effect of positive vs. no ositive vs. negative campaign for
males: $\alpha_1 - \alpha_2 = 0$. (H4) Treatment effect of pc	ositive vs. negative camp	aign for females: $(\alpha_1 + \alpha_2)$	$\beta_1) - (\alpha_2 + \beta_2) = 0.$	(H5) Differential treatm	tent effect of positive vs. negative
campaign between males and females: $\beta_1 - \beta_2 =$	= 0. (H6) Treatment effe	ect of any campaign vs.	no campaign for male	s: $\alpha_1 + \alpha_2 = 0$. (H7) T	Freatment effect of any campaign
vs. no campaign for remains: $(\alpha_1 + p_1) + (\alpha_2 + p_2)$ at the 10% level is represented by *, at the 5% k	$(t) = 0$. (H δ) Differential (evel by **, and at the 1%)	treatment enect of any of level by ***.	campaign vs. no campa	ign between males and	temates: $p_1 + p_2 = 0$. Significance

Table A.2: Potential Channels in Milan, Run-off

			Danal A O	nonent's vota sh	are.	
	Decoline	Vouna			Commotition	Commetion
	DaseIIIIe	(≤ 30)	Conege	THEIR	Сошренноп	Соореганоп
<i>P-value:</i> $\alpha_1 = 0$	0.316	0.564	0.349	0.342	0.939	0.019^{**}
<i>P-value:</i> $\alpha_2 = 0$	0.061^{*}	0.040^{**}	0.073^{*}	0.134	0.068^{*}	0.409
<i>P-value:</i> $\beta_1 = 0$	0.034^{**}	0.038^{**}	0.018^{**}	0.024^{**}	0.064^{*}	0.039^{**}
<i>P-value:</i> $\beta_2 = 0$	0.327	0.307	0.389	0.396	0.328	0.279
<i>P-value H1:</i> $\alpha_1 + \beta_1 = 0$	0.060^{*}	0.054^{*}	0.036^{**}	0.063^{*}	0.055^{*}	0.773
P-value H2: $\alpha_2 + \beta_2 = 0$	0.345	0.281	0.385	0.561	0.412	0.768
<i>P-value H3:</i> $\alpha_1 - \alpha_2 = 0$	0.015^{**}	0.020^{**}	0.013^{**}	0.034^{**}	0.041^{**}	0.036^{**}
P-value H4: $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.372	0.406	0.392	0.288	0.391	0.612
P-value H5: $\beta_1 - \beta_2 = 0$	0.021^{**}	0.021^{**}	0.014^{**}	0.022^{**}	0.032^{**}	0.017^{**}
<i>P-value H6:</i> $\alpha_1 + \alpha_2 = 0$	0.211	0.143	0.380	0.394	0.163	0.676
<i>P-value H7:</i> $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.060*	0.046^{**}	0.051^{*}	0.103	0.071^{*}	0.940
<i>P-value H8:</i> $\beta_1 + \beta_2 = 0$	0.659	0.717	0.455	0.584	0.799	0.753
Obs.	282	282	271	282	282	282
			Panel B. In	cumbent's vote sh	are	
	Baseline	Young	College	Left	Competition	Cooperation
		(≤ 30)				
<i>P-value:</i> $\alpha_1 = 0$	0.221	0.167	0.366	0.140	0.455	0.886
<i>P-value:</i> $\alpha_2 = 0$	0.007^{***}	0.004^{***}	0.004^{***}	0.004^{***}	0.014^{**}	0.111
<i>P-value:</i> $\beta_1 = 0$	0.796	0.772	0.741	0.971	0.694	0.857
<i>P-value:</i> $\beta_2 = 0$	0.293	0.300	0.287	0.201	0.268	0.272
<i>P-value H1:</i> $\alpha_1 + \beta_1 = 0$	0.014^{**}	0.008^{***}	0.032^{**}	0.01^{***}	0.015^{**}	0.735
P-value H2: $\alpha_2 + \beta_2 = 0$	0.73^{*}	0.034^{**}	0.050^{**}	0.084^{*}	0.128	0.494
<i>P-value H3:</i> $\alpha_1 - \alpha_2 = 0$	0.189	0.177	0.090*	0.223	0.291	0.241
P-value H4: $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.618	0.661	0.980	0.603	0.523	0.773
P-value H5: $\beta_1 - \beta_2 = 0$	0.188	0.183	0.163	0.190	0.201	0.186
<i>P-value H6:</i> $\alpha_1 + \alpha_2 = 0$	0.035^{**}	0.020^{**}	0.048^{**}	0.019^{**}	0.094^{*}	0.333
<i>P-value H7:</i> $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.011^{**}	0.004^{***}	0.014^{**}	0.01^{***}	0.020^{**}	0.537
<i>P-value H8:</i> $\beta_1 + \beta_2 = 0$	0.677	0.693	0.716	0.502	0.755	0.624
Obs.	282	282	271	282	282	282
Notes. Estimated OLS regression: $Y_i = \alpha_1 POS$ where x_i is a respectively one of the following c	$i_i + \alpha_2 NEG_i + \beta_1 PO$ covariates: Young, C	$S_i \times FEMALE_i +$ ollege, Left-wing, Fo	$\beta_2 NEG_i \times FEMA$ umily with kids, Ma	$LE_i + \delta FEMALE_i +$ rried, Competition a	- $\gamma_1'(x_i \times POS_i) + \gamma_2'(x_i)$ id <i>Cooperation</i> . P-values	$\times NEG_i) + \theta' x_i + \varepsilon_i,$ s are reported for the
following Wald tests: Treatment effect of positi	ve vs. no campaign fo	or males: $\alpha_1 = 0$. T	reatment effect of r	legative vs. no camp	ign for males: $\alpha_2 = 0.1$	Differential treatment
Treatment effect of positive vs. no campaign fo	The formation $\alpha_1 + \beta_1 = 0$ or ferminates: $\alpha_1 + \beta_1 = 0$	= 0. (H2) Treatmen	t effect of negative	vs. no campaign for	females: $\alpha_2 + \beta_2 = 0.$ ((H3) Treatment effect
of positive vs. negative campaign for males: α_1	$-\alpha_2 = 0.$ (H4) Tre	atment effect of pos d females: $\beta_1 = \beta_2$	itive vs. negative ca — 0 (H6) Treatmen	ampaign for females:	$(\alpha_1 + \beta_1) - (\alpha_2 + \beta_2) =$	= 0. (H5) Differential
(H7) Treatment effect of any campaign vs. no c	an perveen mates and campaign for females:	$(\alpha_1 + \beta_1) + (\alpha_2 + \alpha_2)$	$\beta_2 = 0.$ (III) I reauties $\beta_2 = 0.$ (H8) Diffe	rential treatment eff	argu vs. no campaign tor set of any campaign vs.]	no campaign between
males and females: $\beta_1 + \beta_2 = 0$. Significance at	the 10% level is repr	esented by *, at the	5% level by **, and	l at the 1% level by $^{\circ}$) *)

Table A.3: Potential Channels in Cava, Canvassed Sample

Appendix B: Survey Experiment in Milan

In the following sections, we report the English translation of our informational treatments, and the figures and tables also discussed in the paper.

B.1 Treatment

We exposed individuals in the treatment groups to an entire electoral campaign by the opponent composed of four electoral tools either with a positive (group A) or a negative (group B) tone. All individuals in the two treatment groups were also exposed to the same electoral campaign by the incumbent, again characterized by the same four electoral tools. We now describe our informational treatments.

The first tool of the opponent's randomized campaign was a 100-second video interview to the candidate sitting at his office desk. The second tool was the opponent's main campaign slogan. The third tool was a letter to the voters, which described the opponent's main projects for the future of Milan or charged the incumbent for her mistakes while in office. The final tool was a 60-second video ad endorsed by the opponent on relevant issues for the city (transportation, pollution, Expo). Each of these campaign tools addressed the same issues, with the same format and in the same setting, and was proposed in either a positive or a negative tone. The videos and all graphical information were realized by professionals.

For our experiment, we also simulated the "entire" political campaign of the incumbent, Letizia Moratti, using the same tools of the opponent's campaign, and we then administered this (non-randomized) campaign to all groups during the second and third survey.

B.1.1 Second Survey: Video Interview with the Opponent

The 100-second videos featured a (single question) interview with the opponent, Giuliano Pisapia, sitting at his desk in his lawyer office. In both the positive and negative version of the video, the opponent addressed four issues: (i) public transportation, (ii) use of bikes, (iii) restrictions to use of the car, and (iv) green areas and parks. After an initial question asked by the same female voice, the candidate response lasted the entire length of the videos. Both videos showed the opponent wearing a white shirt and a tie at his desk, with a large bookshelf behind him for fifty percent of the time, as they were recorded on the same occasion. For the remaining time, his background voice was accompanied by imagines of traffic, bikes, public transportation, and parks in Milan.

The video with the positive tone—focused on the candidate's proposals on the above topics—ran under the header "my ideas for Milan." The video with the negative tone focused on the incumbent's main missteps on the same topics during her tenure in office—ran instead under the header "Moratti's mistakes." After each video, a question measured the impact reaction of the respondents to the message ("Do you agree with what the candidate says in the video?").

Positive Toned Video

The video interview with the opponent characterized by a positive tone is available online at the following link: http://www.youtube.com/embed/kW-cxPistYM. The English translation of the text reads as follows.

Interviewer: "How does Giuliano Pisapia plan to solve these problems and increase the quality of life of Milan's citizens?"

Opponent: "I have various ideas. We need to make public transportation an actual alternative to private transport, in particular to cars. We should give everyone the possibility to get around using bicycles. This can be done by extending the bike sharing service, which cannot be limited only to the city center, but should be available also in suburbs. We need to give people the possibility to use bikes as means of transport across the whole city, in the center and in the suburbs. We need new proposals to reduce traffic throughout the city and eliminate it from the city center. I believe that a congestion charge that makes everyone pay a small amount would enhance citizens' well-being. Plus, it would reduce the use of private cars alleviating traffic and pollution. In addition, the revenues from this charge – which needs to be paid by everyone but that will not greatly affect people's budgets – should be invested in public transport. This is the only way to solve problems such as traffic and pollution. Milan should have once again many green spaces and parks; this would greatly benefit not only children, but also adults and elderly. These green spaces can make a positive difference in the lives of our citizens."

Negative Toned Video

The video interview with the opponent characterized by a negative tone is available online at the following link: http://www.youtube.com/embed/243QcAeA4C8. The English translation of the text reads as follows.

Interviewer: "What are the main mistakes made by the Moratti administration in the past five years?"

Opponent: "The mayor proposed to raise the fare for public transportation even though, as citizens know very well, this has been totally inefficient. In these years public transport has been increasingly more off schedule and citizens have had to wait more for buses and trolley cars than in the past. Plus, the speed of transportation has declined continuously. In fact, Milan now ranks 20th in Europe for speed of public transportation with an average speed of 13.5 Km/hr, well below the European average of 20 Km/hr. The Ecopass system is a complete failure; in fact, the councillor who proposed it has been fired. It failed in every respect since it did not reduce traffic (except marginally in the center) and it did not improve the quality of the air we breathe. In Milan, the European critical level of Particulate Matters in the air has been crossed in 35 out of the first 38 days of the year, reaching the European annual limit. This proves that nothing has been done to alleviate traffic and to improve the quality of the air we breathe. Letizia Moratti not only didn't do anything effective to solve problems such as traffic and pollution, she also did not do anything to create more green spaces in Milan. The worst part is that she wasted a huge present that Maestro Abbado made to our city: 90,000 trees that certainly would have helped make Milan a greener city."

B.1.2 Second Survey: Video Interview with the Incumbent

The video (available online at the link: http://www.youtube.com/embed/AHnjRoawu_Q) runs under the header "we want to complete our good work" and broadcasts a public speech by Letizia Moratti, as mayor of Milan, launching her electoral campaign in Piazza San Babila (city center). Surrounded by supporters holding flags and balloons, she promises to complete the projects that were started during her first mandate, with new subway lines being a top priority. The text of the video interview with the incumbent is the following.

"In all these years the center-right administration has always governed well. I have found balanced budgets thanks to mayors Albertini, Formentini, and all those who preceded me. Thanks to this, I have had the possibility to continue to invest. We have invested 3.9 billion Euros in public infrastructures. This allowed us to extend the subway lines: the number 2 line up to Assago has already been inaugurated and the number 3 up to Comasina has also already been inaugurated. We have also already put aside—they are already registered in our budgets—all the funds necessary to complete the new subway lines 4 and 5 before the Expo."

B.1.3 Second Survey: Electoral Campaign Slogan by the Opponent

The main electoral campaign slogan was shown in a separate page of the survey in a large font and orange (the opponent's electoral campaign color) and black colors. In the positive tone campaign (group A), the slogan (see the original slogan at figure B.1) was "Pisapia for Mayor = Less Traffic & More Green. A Change for Milan is Possible." In the negative tone campaign (group B), the slogan (see the original slogan at figure B.2) instead was "5 Years of Moratti = More Traffic & Less Green. A Change for Milan is Possible." Each slogan was followed by a question aimed at measuring the respondent's impact reaction ("in general, how much do you feel you can trust Giuliano Pisapia?").

B.1.4 Second Survey: Electoral Campaign Slogan by the Incumbent

The electoral campaign slogan for Letizia Moratti was: "We are working to make Milan an even better place to live in. Letizia Moratti for Mayor."

B.1.5 Third Survey: Open Letter to the Voters by the Opponent

The third tool of the electoral campaign was a one-page (almost two-hundred words long) letter to the voters, signed by the opponent, Giuliano Pisapia. In the initial part of the letter, which was common to both treatments, the opponent expressed his view that the primary duty of a mayor is to increase the wellbeing of the citizens. Then, both in the letter with the positive and the negative tone, he touched upon four issues: (i) clean air; (ii) work ethics; (iii) public transportation; and (iv) involvement of the citizens.

The letter with the positive tone ran (to group A) under the header "this is my commitment with the city," and ended with a positive plea: "Milan deserves to become once again one of the capitals of Europe." The letter with the negative tone ran (to group B) under the header "Milan does not deserve to be led by Ms. Moratti," and ended with a negative plea: "Milan does not deserve other five years of Moratti administration." After each letter, respondents were asked to evaluate the main message ("abstracting from your political viewpoint, how much do you agree with the general sense of this letter?").

Positive Toned Letter

The text of the open letter sent to the eligible voters with a positive tone is the following:

"Can a mayor contribute to the happiness of his citizens? I believe he can. Moreover, I am convinced that the primary duty of those who govern in name of the general interest is to increase the wellbeing of their fellow citizens. Together with over a thousand volunteers of the Workshops for the City, I have defined four main goals:

- 1. I want to breathe with you new air, finally clean.
- 2. I want to live in a city in which work is considered a source of dignity, freedom, and a fundamental value.
- 3. I want less cars in the city center, more public transportation, a stop a few meters from everyone's house also in the suburbs, less traffic, and the possibility to move quickly throughout the city also by using bicycles.
- 4. I want to support those who dedicate their lives to culture; help it thrive sustaining creativity and free initiatives.

I commit to work for these goals. Milan deserves to become once again one of the capitals of Europe."

Negative Toned Letter

The text of the open letter sent to the eligible voters with a negative tone is the following.

"Can a mayor contribute to the happiness of his citizens? I believe he can. Moreover, I am convinced that the primary duty of those who govern in name of the general interest is to increase the wellbeing of their fellow citizens. In Mrs. Moratti's Milan this did not happen. She was indifferent to the city's problems and rarely present in the city council; therefore, she has proved to be unfit to serve our city.

- 1. City council. She only attended 5% of ballots, a record high level of absenteeism.
- 2. City's neighborhoods. Her indifference to the city's needs is obvious: the suburbs are completely abandoned.
- 3. Little attention was given to transportation and environment, particulate matters in the air are at the highest level since 2007, and 20% of the city's shops pay protection money to the Mafia.

4. Only now—during the electoral campaign—Letizia Moratti is creating a few bikeways and is spending millions of Euros to disseminate throughout the city huge pictures that portray her surrounded by the citizens of Milan.

Milan does not deserve other five years of Moratti administration. Change in Milan is possible."

B.1.6 Third Survey: Open Letter to the Voters by the Incumbent

The header of the incumbent's open letter is "Milan is the city I love." It describes the philosophy that Mrs. Moratti wished to continue to adopt in her second term: to aim high (as with the Expo), but also to take care of the citizens' everyday needs. The text of the letter is the following.

"Milan is the city I love: it is the city in which I was born and raised. It thought me kindness, discretion, and diligence. In my life, I have had to deal with situations in which I had great responsibilities. However, nothing is comparable to the emotions I felt when working for my city as Mayor of Milan. In these five years we have aimed at great accomplishments but at the same time we took care of the small necessities of our citizens' everyday lives.

- 1. We aimed high when competing and winning the contest for Expo 2015, which will make Milan capital of the world.
- 2. We took care of small necessities rising security controls in the city's outskirts, investing in street lighting, creating new kindergarten facilities, reaching out to a larger number of elderly, and planting new trees.

I would like to complete the projects we have started in the past five years and make Milan a better place to live in. I will do this with anyone who wants to give the home of all Milanese people more strength, openness and beauty."

B.1.7 Third Survey: Video Ad Endorsed by the Opponent

The last tool of the electoral campaign consisted of a 60-second video of political advertisement realized by professionals and endorsed by the opponent. Both (positive and negative) videos showed images of Milan (such as traffic situations, public transportation, people walking on the streets, the city center, and parks) recorded on the same occasion. The same (professional) speaker read statements on four issues, while relevant synthetic information appeared on the screen. The issues addressed in both videos were: (i) private versus public interest at the city hall; (ii) links between the Expo organization and the mafia; (iii) the management of public appointments; (iv) the city's urban plan. The video ad with the positive tone ran under the header "my ideas for Milan." The video ad with the negative tone ran under the header "is Ms. Moratti's Milan also your Milan?" Both videos ended with a common last slogan of endorsement: "Giuliano Pisapia for Mayor." Also in this case, after each video, respondents were asked to evaluate the message ("overall, how truthful does this electoral message seem to you?").

Positive Toned Video

The video ad endorsed by the opponent and characterized by a positive tone is available online at the following link: http://www.youtube.com/embed/909RgdaC6Mg. The English translation of the text reads as follows. "The 15th and 16th of May the citizens of Milan will vote to elect their Mayor. Giuliano Pisapia will challenge the incumbent Mayor. What does he plan to do for Milan? To make Milan closer to the needs of citizens, Giuliano Pisapia believes that public service rather than business interests should be a priority [video highlight appearing on the screen: "Close to Citizens' Needs"]. To truly fight organized crime, Giuliano Pisapia proposes an anti-Mafia commission that should oversee the works for Expo [video highlight: "Anti-Mafia Commission"]. To increase the city's efficiency, Giuliano Pisapia proposes to reward merit and to boost the skills of public employees and managers [video highlight: "Merit and Competence"]. To enhance transparency, Giuliano Pisapia believes that the town planning bill should be discussed with civil society and in the city council [video highlight: "More Transparency"]."

Negative Toned Video

The video ad endorsed by the opponent and characterized by a negative tone is available online at the following link: http://www.youtube.com/embed/JcGOd6uZ-kk. The English translation of the text reads as follows. "[Video highlight appearing on the screen: "15/16 of May"], Letizia Moratti runs again for Mayor of Milan. Before choosing who to vote, ask yourself whether the Milan she has in mind is also your Milan. [Video highlight: "6th of October 2006"], Letizia Moratti undersells optic fibers. Private investors make a profit of 600%, the city looses 50 million Euros [video highlight: "+ 600% to private investors;" "-50 million Euros to the citizens of Milan"]. [Video highlight: "12th of March 2009"], Letizia Moratti eliminates the anti-Mafia commission that was supposed to oversee the works for Expo [video highlight: "infiltrations of the Mafia"]. [Video highlight: "24th of May 2009"], investigation on public appointments, the Court of Auditors condemns Letizia Moratti and asks her to refund the city of Milan [video highlight: "illegal public appointments"]. [Video highlight: "4th of February 2011"], the town planning bill passed by Letizia Moratti tries to amend the one million Euro infringement of building regulations of her son Gabriele [video highlight: "Bat-House"]. Is this your Milan?"

B.1.8 Third Survey: Video Ad Endorsed by the Incumbent

The video ad endorsed by the incumbent is available at: http://youtu.be/F917BIexZc8. The video plays under the header "Letizia Moratti: This is my Milan." The English translation of the text reads as follows: "Our Milan says 'YES' to more homes for Italians, 'NO' to gypsy camps. 'YES' to a modern Milan, once again leader in the world, 'NO' to those who live in the past. 'YES' to more assistance and support for the elderly, 'NO' to an administration that raises taxes. 'YES' to more safety and legality, 'NO' to illegal immigration. 'YES' to more aids for mothers." The last scene pictures Letizia Moratti saying "this is my Milan." Figure B.1: Positive Slogan

Figure B.2: Negative Slogan

	Missing	Female	Young	Married	Family	College	$\operatorname{Left-wing}$	Low	Did not
			(≤ 30)		with kids			interest	know
								in politics	mayor
Positive campaign	1 0.28	0.58	0.23	0.47	0.13	0.44	0.20	0.03	0.03
	(569)	(410)	(410)	(410)	(410)	(410)	(410)	(410)	(410)
Negative campaig	n = 0.24	0.57	0.24	0.47	0.14	0.41	0.17	0.03	0.03
1	(568)	(432)	(432)	(432)	(432)	(432)	(432)	(432)	(432)
No campaign	0.25	0.62	0.22	0.51	0.15	0.48	0.17	0.04	0.01
)	(399)	(298)	(298)	(298)	(298)	(298)	(298)	(298)	(298)
Total	0.26	0.59	0.23	0.48	0.14	0.44	0.18	0.04	0.03
	(1,536)	(1, 140)	(1, 140)	(1, 140)	(1, 140)	(1, 140)	(1, 140)	(1, 140)	(1, 140)

Table B.1 Descriptive Statistics

the voter. Low interest in politics captures whether the voter replied to be "hardly" or "not at all" interested in politics. Did not know mayor means that the voter was not able to correctly identify the last name of the incumbent mayor.

Tests
Balance
Covariate
able B.2
Table B.2

	Missing	Female	Young	Married	Family	College	Left-wing	Low	Did not
			(≤ 30)		with kids			interest	know
								in politics	mayor
Positive campaign	0.026	-0.040	0.011	-0.041	-0.014	-0.037	0.021	-0.00	0.021^{*}
)	[0.027]	[0.032]	[0.026]	[0.039]	[0.024]	[0.036]	[0.023]	[0.017]	[0.011]
Negative campaign	-0.013	-0.049	0.020	-0.032	-0.011	-0.062	-0.006	-0.014	0.017
)	[0.023]	[0.031]	[0.027]	[0.035]	[0.026]	[0.044]	[0.024]	[0.013]	[0.011]
Obs.	1,536	1,140	1,140	1,140	1,140	1,140	1,140	1,140	1,140

voter. Low interest in politics captures whether the voter replied to be "hardly" or "not at all" interested in politics. Did not know mayor means that the voter was not able to correctly identify the last name of the incumbent mayor. Robust standard errors clustered by ZIP code are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.

	Turnout	Opponent's	Incumbent's	Others'
	rate	vote share	vote share	vote share
Positive campaign (α_1)	-0.018	-0.002	0.004	-0.002
	[0.023]	[0.042]	[0.039]	[0.036]
Negative campaign (α_2)	0.014	-0.038	0.037	0.001
	[0.022]	[0.041]	[0.036]	[0.030]
<i>P-value H1:</i> $\alpha_1 - \alpha_2 = 0$	0.162	0.321	0.402	0.922
<i>P-value H2:</i> $\alpha_1 + \alpha_2 = 0$	0.916	0.597	0.526	0.985
Obs.	1,140	912	912	912

Table B.3 Average Treatment Effects, First Round

Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i + \alpha_2 NEG_i + \varepsilon_i$. (H1) Treatment effect of positive vs. negative campaign: $\alpha_1 - \alpha_2 = 0$. (H2) Treatment effect of any campaign vs. no campaign: $\alpha_1 + \alpha_2 = 0$. Robust standard errors are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.

	Table B.4	Average	Treatment	Effects,	Runoff
--	-----------	---------	-----------	----------	--------

	Expected	Vote for	Vote for	Undecided
	turnout	opponent	incumbent	
Positive campaign (α_1)	0.010	0.012	0.020	-0.032
	[0.026]	[0.036]	[0.035]	[0.032]
Negative campaign (α_2)	0.013	0.021	0.044	-0.065**
	[0.025]	[0.032]	[0.034]	[0.027]
<i>P-value H1:</i> $\alpha_1 - \alpha_2 = 0$	0.860	0.811	0.505	0.150
<i>P-value H2:</i> $\alpha_1 + \alpha_2 = 0$	0.630	0.558	0.283	0.080^{*}
Obs.	1,119	1,034	1,034	1,034

Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i + \alpha_2 NEG_i + \varepsilon_i$. (H1) Treatment effect of positive vs. negative campaign: $\alpha_1 - \alpha_2 = 0$. (H2) Treatment effect of any campaign vs. no campaign: $\alpha_1 + \alpha_2 = 0$. Robust standard errors are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.

	Missing	Young	Married	Family	College	Left-wing	Low	Did not
		(≤ 30)		with kids			interest	know
							in politics	mayor
Positive campaign	0.029	-0.028	-0.026	-0.040	-0.037	0.050	-0.012	0.031^{*}
	[0.036]	[0.033]	[0.045]	[0.031]	[0.052]	[0.032]	[0.027]	[0.016]
Negative campaign	-0.009	-0.015	-0.032	-0.004	-0.074	-0.015	-0.014	0.022
	[0.035]	[0.038]	[0.037]	[0.032]	[0.054]	[0.033]	[0.021]	[0.015]
Obs.	206	670	670	670	670	029	670	670
Notes. Estimated OLS regre	ssion in the subse	umple of female vc	ters: $Y_i = \alpha_1 POS$	$_i + \alpha_2 NEG_i + \varepsilon_i \cdot \mathbf{A}$	ll variables are dur	nmies. The variable	Left-wing refers to th	e (self-declared)
ideological position of the vc	ter. Low interest	in politics captum	es whether the vot	er replied to be "ha	rdly" or "not at al	l" interested in polit	ics. Did not know me	<i>iyor</i> means that
the voter was not able to co	rrectly identify th	ne last name of th	e incumbent mayo	r. Robust standard	errors are in brach	kets. Significance at	the 10% level is repr	ssented by $*$, at
the 5% level by ** , and at t.	he 1% level by **							

Voters
Male
Tests,
Balance
Covariate
B.6
Table

	Missing	Young	Married	Family	College	Leftist	Low	Did not
		(≤ 30)		with kids			interest	know
							in politics	mayor
Positive campaign	0.023	0.067	-0.056	0.027	-0.036	-0.017	-0.003	0.006
	[0.049]	[0.043]	[0.067]	[0.038]	[0.049]	[0.041]	[0.018]	[0.018]
Negative campaign	-0.019	0.069	-0.026	-0.016	-0.044	0.012	-0.010	0.009
1	[0.047]	[0.050]	[0.061]	[0.039]	[0.065]	[0.044]	[0.015]	[0.019]
Obs.	629	470	470	470	470	470	470	470
Notes. Estimated OLS regr	ession in the subs	ample of male vo	ters: $Y_i = \alpha_1 POS$	$i_i + \alpha_2 N E G_i + \varepsilon_i$. A	Il variables are du	ummies. The vari	able Left-wing refers	to the (self-declared)
ideological position of the v	roter. Low interes	t in <i>politics</i> captu	ires whether the v	oter replied to be "h	ardly" or "not at	all" interested in	politics. Did not kno	w mayor means that
the voter was not able to c	orrectly identify t	he last name of t	he incumbent may	vor. Robust standar	d errors are in bra	ckets. Significan	ce at the 10% level is	represented by $*$, at
the 5% level by $**$, and at	the 1% level by $*$	· **						

Voters
Female
Tests,
Balance
Covariate
ole B.5
Tal

	Missing	Young	Married	Family	College	Left-wing	Low	Did not
		(≤ 30)		with kids			interest	know
							in politics	mayor
Positive campaign	0.023	0.067	-0.056	0.027	-0.036	-0.017	-0.03	0.006
	[0.049]	[0.043]	[0.067]	[0.038]	[0.049]	[0.041]	[0.018]	[0.018]
Negative campaign	-0.019	0.069	-0.026	-0.016	-0.044	0.012	-0.010	0.009
	[0.047]	[0.050]	[0.061]	[0.039]	[0.065]	[0.044]	[0.015]	[0.019]
Positive \times Female	0.06	-0.095*	0.031	-0.068	-0.001	0.067	-0.009	0.026
	[0.066]	[0.053]	[0.076]	[0.049]	[0.074]	[0.058]	[0.033]	[0.026]
Negative \times Female	0.10	-0.084	-0.006	0.012	-0.030	-0.027	-0.003	0.012
	[0.067]	[0.068]	[0.066]	[0.050]	[0.082]	[0.060]	[0.028]	[0.026]
Female	0.002	0.009	0.061	0.038	0.026	0.039	0.028	-0.007
	[0.052]	[0.048]	[0.053]	[0.034]	[0.062]	[0.039]	[0.027]	[0.017]
Obs.	1,536	1,140	1,140	1,140	1,140	1,140	1,140	1,140

Table B.7 Covariate Balance Tests by Gender

Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i + \alpha_2 NEG_i + \beta_1 POS_i \times FEMALE_i + \beta_2 NEG_i \times FEMALE_i + \delta FEMALE_i + \varepsilon_i$. Robust standard errors are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.

	Gender
	Ŋ.
	Differences
, , , , , , , , , , , , , , , , , , ,	Mean
	ы К
E	Table

Did not	know	mayor	0.023	0.030	-0.006	0.51	1,140
Low	interest	in politics	0.021	0.045	-0.023^{**}	0.034	1,140
Left-wing			0.150	0.201	-0.052^{**}	0.023	1,140
College			0.430	0.446	-0.16	0.581	1,140
Family	with kids		0.128	0.146	-0.019	0.371	1,140
Married			0.438	0.509	-0.071^{**}	0.019	1,140
Young	(≤ 30)		0.264	0.206	0.058^{**}	0.022	1,140
Missing			0.252	0.261	-0.009	0.708	1,536
			Male	Female	Difference	P-value	Obs.

Notes. Average values reported. All variables are dummies. *P-value* captures the statistical significance of the mean difference by gender.

	Perceive	Perceive	Perceive	Confident	Voted based on
	$\operatorname{campaign}$	opponent	incumbent	about vote	candidates'
	as harsh	as negative	as negative	choice	attributes
Positive campaign (α_1)	-0.085*	-0.089*	-0.067	-0.038	0.021
	[0.045]	[0.050]	[0.047]	[0.053]	[0.049]
Positive campaign \times Female (β_1)	0.007	0.032	0.130**	0.091	0.000
	[0.065]	[0.072]	[0.048]	[0.061]	[0.084]
Female	-0.050	-0.081	-0.035	-0.041	0.039
	[0.048]	[0.049]	[0.044]	[0.052]	[0.044]
<i>P-value H1:</i> $\alpha_1 + \beta_1 = 0$	0.087^{*}	0.217	0.172	0.319	0.727
Obs.	762	635	635	567	567

Table B.9 Effects on Voters' Perceptions in Milan $(4^{th}$ Survey)

Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i + \beta_1 POS_i \times FEMALE_i + \delta FEMALE_i + \varepsilon_i$. (H1) Treatment effect of positive vs. negative campaign for females: $\alpha_1 + \beta_1 = 0$. Robust standard errors are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.

		Pa	anel A. First	Round	
	Baseline	Young	College	Left	Low Interest
		(≤ 30)	_		in Politics
$\overline{P\text{-value: } \alpha_1 = 0}$	0.476	0.475	0.184	0.468	0.473
<i>P-value:</i> $\alpha_2 = 0$	0.031^{**}	0.078^{*}	0.015^{**}	0.032^{**}	0.031^{**}
<i>P-value:</i> $\beta_1 = 0$	0.121	0.118	0.123	0.125	0.117
<i>P-value:</i> $\beta_2 = 0$	0.026^{**}	0.030^{**}	0.023^{**}	0.027^{**}	0.024^{**}
<i>P-value H1:</i> $\alpha_1 + \beta_1 = 0$	0.068^{*}	0.091^{*}	0.743	0.149	0.077^{*}
<i>P-value H2:</i> $\alpha_2 + \beta_2 = 0$	0.289	0.235	0.797	0.340	0.310
<i>P-value H3:</i> $\alpha_1 - \alpha_2 = 0$	0.091^{*}	0.288	0.257	0.113	0.087^{*}
<i>P-value H4:</i> $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.556	0.818	0.924	0.662	0.511
<i>P-value H5:</i> $\beta_1 - \beta_2 = 0$	0.365	0.425	0.360	0.349	0.389
<i>P-value H6:</i> $\alpha_1 + \alpha_2 = 0$	0.137	0.187	0.050^{**}	0.144	0.138
<i>P-value H7:</i> $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.102	0.103	0.744	0.165	0.114
<i>P-value H8:</i> $\beta_1 + \beta_2 = 0$	0.042^{**}	0.045^{**}	0.040^{**}	0.043^{**}	0.039^{**}
Obs.	1,140	1,140	1,140	1,140	1,140
			Panel B. Ru	noff	
	Baseline	Young	College	Left	Low Interest
		(≤ 30)			in Politics
$P-value: \ \alpha_1 = 0$	0.634	0.628	0.111	0.539	0.598
<i>P-value:</i> $\alpha_2 = 0$	0.067^{*}	0.098^{*}	0.035^{**}	0.094^{*}	0.062^{*}
<i>P-value:</i> $\beta_1 = 0$	0.712	0.717	0.744	0.754	0.725
<i>P-value:</i> $\beta_2 = 0$	0.039^{**}	0.042^{**}	0.035^{**}	0.042^{**}	0.034^{**}
<i>P-value H1:</i> $\alpha_1 + \beta_1 = 0$	0.835	0.802	0.021	0.562	0.773
<i>P-value H2:</i> $\alpha_2 + \beta_2 = 0$	0.459	0.496	0.963	0.521	0.489
<i>P-value H3:</i> $\alpha_1 - \alpha_2 = 0$	0.141	0.195	0.701	0.247	0.129
<i>P-value H4:</i> $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.256	0.294	0.038^{**}	0.158	0.271
<i>P-value H5:</i> $\beta_1 - \beta_2 = 0$	0.058^{*}	0.057^{*}	0.054^{*}	0.058^{*}	0.060*
<i>P-value H6:</i> $\alpha_1 + \alpha_2 = 0$	0.251	0.277	0.055^{*}	0.254	0.231
<i>P-value H7:</i> $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.716	0.750	0.227	0.786	0.283
<i>P-value H8:</i> $\beta_1 + \beta_2 = 0$	0.190	0.196	0.188	0.200	0.192
Obs.	1,119	1,119	1,119	1,119	1,119

Table B.10 Potential Channels on Turnout

Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i + \alpha_2 NEG_i + \beta_1 POS_i \times FEMALE_i + \beta_2 NEG_i \times FEMALE_i + \delta FEMALE_i + \gamma'_1(x_i \times POS_i) + \gamma'_2(x_i \times NEG_i) + \theta'x_i + \varepsilon_i$, where x_i is a respectively one of the following covariates: Young, College, Left-wing, and Low interest in politics. P-values are reported for the following Wald tests: Treatment effect of positive vs. no campaign for males: $\alpha_1 = 0$. Treatment effect of negative vs. no campaign for males: $\alpha_2 = 0$. Differential treatment effect of positive vs. no campaign between males and females: $\beta_1 = 0$. Differential treatment effect of negative vs. no campaign for females: $\alpha_1 + \beta_1 = 0$. (H2) Treatment effect of negative vs. no campaign for females: $\alpha_1 + \beta_2 = 0$. (H1) Treatment effect of positive vs. negative campaign for females: $(\alpha_1 + \beta_1) - (\alpha_2 + \beta_2) = 0$. (H5) Differential treatment effect of positive vs. no campaign for males: $\alpha_1 + \alpha_2 = 0$. (H7) Treatment effect of any campaign vs. no campaign for females: $(\alpha_1 + \beta_1) + (\alpha_2 + \beta_2) = 0$. (H8) Differential treatment effect of any campaign vs. no campaign for females: $(\alpha_1 + \beta_1) + (\alpha_2 + \beta_2) = 0$. (H8) Differential treatment effect of any campaign vs. no campaign for females: $(\alpha_1 + \beta_1) + (\alpha_2 + \beta_2) = 0$. (H8) Differential treatment effect of any campaign vs. no campaign for females: $(\alpha_1 + \beta_1) + (\alpha_2 + \beta_2) = 0$. (H8) Differential treatment effect of any campaign vs. no campaign for females: $(\alpha_1 + \beta_1) + (\alpha_2 + \beta_2) = 0$. (H8)

	Turnout	Opponent's	Incumbent's	Others'
	rate	vote share	vote share	vote share
Positive campaign (α_1)	0.027	-0.037	0.130	-0.093
	[0.051]	[0.067]	[0.078]	[0.075]
Negative campaign (α_2)	0.061	-0.066	0.140^{*}	-0.074
	[0.038]	[0.063]	[0.076]	[0.072]
Positive campaign \times Female (β_1)	-0.076	0.141*	-0.172^{**}	0.031
	[0.050]	[0.075]	[0.068]	[0.068]
Negative campaign \times Female (β_2)	-0.107**	0.056	-0.098	0.042
	[0.048]	[0.083]	[0.074]	[0.063]
Female	0.058	0.008	0.058	-0.066
	[0.040]	[0.070]	[0.055]	[0.050]
$P-value H1: \alpha_1 + \beta_1 = 0$	0.141	0.161	0.568	0.210
<i>P-value H2:</i> $\alpha_2 + \beta_2 = 0$	0.173	0.869	0.510	0.570
<i>P-value H3:</i> $\alpha_1 - \alpha_2 = 0$	0.356	0.634	0.890	0.668
<i>P-value H4:</i> $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.927	0.087^{*}	0.194	0.472
<i>P-value H5:</i> $\beta_1 - \beta_2 = 0$	0.435	0.136	0.202	0.869
<i>P-value H6:</i> $\alpha_1 + \alpha_2 = 0$	0.290	0.373	0.056^{*}	0.238
<i>P-value H7:</i> $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.093^{*}	0.423	0.997	0.333
$P-value H8: \ \beta_1 + \beta_2 = 0$	0.051*	0.187	0.044**	0.532
Obs.	1,140	912	912	912

Table B.11 Full Set of Interactions, First Round

Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i + \alpha_2 NEG_i + \beta_1 POS_i \times FEMALE_i + \beta_2 NEG_i \times FEMALE_i + \delta FEMALE_i + \gamma'_1(x_i \times POS_i) + \gamma'_2(x_i \times NEG_i) + \theta'x_i + \varepsilon_i$, where x_i is a vector of covariates that are statistically different by gender (namely, Young, Married, Left-wing, and Low interest in politics; see Table A.7 for more details). Robust standard errors are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.

	Expected	Vote for	Vote for	Undecided
	turnout	opponent	incumbent	ondecided
Positive campaign (α_1)	0.041	-0.107	0.221***	-0.114*
1 0 (-)	[0.048]	[0.083]	[0.067]	[0.056]
Negative campaign (α_2)	0.070^{*}	-0.122	0.178**	-0.056
	[0.039]	[0.086]	[0.069]	[0.058]
Positive campaign \times Female (β_1)	-0.014	0.120	-0.240***	0.120*
	[0.046]	[0.079]	[0.081]	[0.064]
Negative campaign \times Female (β_2)	-0.086**	0.126	-0.139*	0.013
	[0.038]	[0.088]	[0.078]	[0.055]
Female	0.050	-0.041	0.093	-0.052
	[0.033]	[0.072]	[0.067]	[0.053]
$P-value H1: \alpha_1 + \beta_1 = 0$	0.381	0.855	0.796	0.926
<i>P-value H2:</i> $\alpha_2 + \beta_2 = 0$	0.676	0.945	0.554	0.355
<i>P-value H3:</i> $\alpha_1 - \alpha_2 = 0$	0.370	0.789	0.566	0.209
<i>P-value H4:</i> $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.226	0.885	0.351	0.273
<i>P-value H5:</i> $\beta_1 - \beta_2 = 0$	0.058^{*}	0.901	0.072^{*}	0.070^{*}
<i>P-value H6:</i> $\alpha_1 + \alpha_2 = 0$	0.181	0.156	0.001^{**}	0.115
<i>P-value H7:</i> $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.851	0.883	0.873	0.699
<i>P-value H8:</i> $\beta_1 + \beta_2 = 0$	0.198	0.132	0.016^{**}	0.212
Obs.	1,119	1,034	1,034	1,034

Table B.12 Full Set of Interactions, Runoff

Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i + \alpha_2 NEG_i + \beta_1 POS_i \times FEMALE_i + \beta_2 NEG_i \times FEMALE_i + \delta FEMALE_i + \gamma'_1(x_i \times POS_i) + \gamma'_2(x_i \times NEG_i) + \theta'x_i + \varepsilon_i$, where x_i is a vector of covariates that are statistically different by gender (namely, Young, Married, Left-wing, and Low interest in politics; see Table A.7 for more details). Robust standard errors are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.

Appendix C: Natural Experiment in Milan

Performing a sentiment analysis requires to identify a list of stems (root of a word, or of many words), which are relevant to infer the sentiment towards a candidate. A positive stem is related to an emotion, such as joy or love, or to an expression of political support, such as "vote for." Conversely, a negative stem is related to a pessimistic emotion, or to an expression of political dislike. We also included some emoticons as they are widely used on twitter to express feelings. The complete list, reported in table C.1, contains 108 stems, of which 54 are coded as positive and 54 as negative.

Positive stem	Meaning	Negative stem	Meaning
:)	smile	:(sadness
;)	wink	anti	against
accordo	agreement	accus-	blame
ador-	worship	arrog-	arrogant
amat-	loved	bugi-	lie
amo-	love	cattiv-	nasty
avanti	forward	coglion-	asshole
batte-	beat	colp-	guilt
bell-	good	comunist-	communist
ben-	well	contrari-	disagreement
brav-	clever	contro	against
buon-	good	criminal-	criminal
cambia-	change	debol-	weak
capac-	capable	delus-	disappointment
competent-	competent	disastr-	disaster
concerto	concert	error-	mistake
consens-	consensus	estrem-	$\operatorname{extremism}$
content-	glad	fals-	false
corrett-	right	fascist-	fascist
dalla parte	support	furt-	${ m theft}$
divers-	different	insicur-	insecure

Table C.1 Sentiment Analysis: Positive and Negative Stems

Positive stem	Meaning	Negative stem	Meaning
eccitat-	excited	insult-	insult
favor-	favorite	ladr-	thief
felic-	happy	idiot-	idiot
fort-	strong	imbecill-	fool
forza	incitement	inadeguat-	inadequate
futuro	future	indegn-	unworthy
gentile	kind	mal-	bad
gioia	joy	merd-	shit
giust-	right	mort-	death
grand-	strong	non vot-	not vote for
grazi-	thank	odio	hate
innova-	innovate	opoli	scandal
intelligent-	intelligent-	passat	past
meglio	best	paur-	fear
miglior-	better	pazz-	mad
moderat-	moderate	peggio	worse
nuov-	new	pena	distress
onest-	honest	pericol-	danger
orgoglio	pride	pessim-	very bad
preferit-	favorite	pover-	poor
pro	pro	problem-	problem
salv-	safety	rabbia	angry
sicur-	security	ridicol-	ridiculous
sogn-	dream	ruba-	steal
sostegno	support	sbagli-	wrong
sosten-	support	scandal-	scandal
speranz-	hope	scem-	fool
stim-	esteem	schif-	disgust
tif-	support	scorrett-	unfair
vinc-	win	stronz-	asshole
vittor-	victory	terror-	terror
vot-	vote for	vecchi-	old
xd	smile	violen-	violence

Table C.1 Sentiment Analysis: Positive and Negative Stems (continued)

Appendix D: Field Experiment in Cava de' Tirreni

In the following sections, we report the English translation of our informational treatments, and the figures and tables also discussed in the paper.

D.1 Treatment

Our treatments consisted of positive and negative canvassing. During the three weeks prior to the election, a campaign team of volunteers (see figure D.1), supporters of Armando Lamberti, knocked on doors of private residences, and buzzed private residences' intercoms (see figure D.2), to engage in personal interaction with eligible voters. These personal interactions featured the campaign volunteers soliciting the voters to communicate their ideas about what the new mayor should do for Cava de' Tirreni. These ideas would then be reported to the candidate, Armando Lamberti. Volunteers then took the opportunity to present to these voters Armando Lamberti's ideas, and to distribute electoral material. Electoral material was also left in the mailboxes of other eligible voters, who were not engaged in personal interactions. These electoral materials are at figures D3 to D6. The following sections present respectively the general instructions provided to the volunteers for the canvassing, the script for the initial approach (two options) and the positive and negative messages.

D.1.1 Canvassing Instructions to the Volunteers

General norms to be followed:

- In order to get in touch with the voters and establish a dialogue, it is important to look cheerful, trustful (do not keep your hands in the pocket, do not lean on the wall, no chewing-gums, etc.) and nice. You have to let the voters know that you are not attempting to sell anything, nor you are asking for money, and that you are there to listen to their ideas.
- Avoid assuming aggressive behaviors, even if the person opening the door is clearly

aggressive and rude, or if she/he states not to approve Lamberti as a candidate. Just say goodbye and leave.

What to do if the front door of the apartment building is closed:

- If there is a doorman, first convince him/her to let you in the building for the canvassing. It might help starting the canvassing from him/her first. If you succeed, it is likely that he/she will let you in and warn the residents of your arrival. This will likely increase your chances of interviewing a greater number of voters.
- If there is no doorman, you will have to call on the intercom. In order to convince the person to let you in the building you will have to introduce yourselves with one of the introductions you find below.

Once inside the apartment building, how to get personal access to the voters:

- After having entered the building, you have to convince the person to open the door of his/her apartment! Ring the doorbell and when someone answers start introducing yourselves with one of the introductions you find below. The main advantage at this point is that they will see you through the peephole, and they will see your t-shirts.
- If a person, most likely an elderly, decides not to open the door but continues to talk to you from the other side of the door, you can still try to do the canvassing, as described below. You can slid the material under the door.

To enter or not to enter into an apartment:

- You do not need to enter into an apartment for the canvassing. You can give your introductions, listen to their ideas or complaints by remaining on the corridor outside the apartment's door.
- Do not ask to enter into the apartment, people may get frightened. Instead, if you notice that the person is frightened or suspicious, state clearly that you can talk standing at the door.

• If the person invites you to enter, you have two options: (i) If you know the person or he/she looks trustful to you, and you are at least two people, you can enter the apartment and do the canvassing inside; (ii) If you do not feel safe, state that the rules impose you not to enter. If he/she insists, greet him/her and leave.

D.1.2 Canvassing Script I

Good morning/afternoon, As you can see from our t-shirts, we are young supporters of the candidate mayor Professor Armando Lamberti.

As you might have learned from the newspapers, or as you might have heard from friends of from the streets, Professor Lamberti has promoted an electoral campaign called 'Around the City Listening to Citizens', in order to listen to the ideas and needs of the citizens of the municipality of Cava. We are the volunteers, who 'Listen to Citizens', and we are interviewing people door-to-door.

IF NECESSARY: We know that your time is important and we are not attempting to sell anything, nor we are asking for money. We would like to know what you think the new mayor should do in order to improve the situation in the neighborhood or in your household. Your opinion is fundamental, and Professor Lamberti wants to know which are the priorities to be addressed for the citizens of Cava.

If there is someone else here at home we would also like to talk to him/her in order to collect as many opinions as possible. Once every two or three days, we young supporters meet Professor Lamberti to tell him the citizens' opinions and let him know what really people need. QUESTION: What is in your opinion the most important issue the new mayor should address? Or ALTERNATIVELY: If you were the mayor, what is the first thing you would do?

D.1.3 Canvassing Script II

Good morning/afternoon, We are the volunteers, who 'Listen to Citizens'. Have you ever heard of the campaign promoted by the candidate mayor Armando Lamberti to hear the opinions of the citizens of Cava?

As you can see from our t-shirts, we are young supporters of the candidate mayor Professor Armando Lamberti and we would like to know from you what you think of the situation in your neighborhood or in your household, and what the new mayor should do in order to improve the situation.

IF NECESSARY: We know that your time is important and we are not attempting to sell anything, nor we are asking for money. We would like to know what you think the new mayor should do in order to improve the situation in the neighborhood or in your household. Your opinion is fundamental, and professor Lamberti wants to know which are the priorities to be addressed for the citizens of Cava.

If there is someone else here at home we would also like to talk to him/her in order to collect as many opinions as possible. Once every two or three days, we young supporters meet Professor Lamberti to tell him the citizens opinions and let him know what really people need.

QUESTION: What is in your opinion the most important issue the new mayor should address? Or ALTERNATIVELY: If you were the mayor, what is the first thing you would do?

D.1.4 Possible Reactions

There are different tones of possible welcoming, after the opening of the door:

• VERY NEGATIVE WELCOMING (They do not let you speak, they interrupt you, they refuse to open the door or answer that they not have time, or are not interested): Just say thank you, goodbye and leave.

- NEGATIVE WELCOMING (They let you talk, but only in part; they do not open the door and talk from the other side of the door; they say that politicians are all crooks, and that they do not know Lamberti, and vote for XY). You can try one of the following three options: (i) Thank you. We understand that you might not trust politicians, but for us it is still important to know your opinion. What is in your opinion the most important issue the new mayor should address? (ii) Thank you. Even if you do not know Lamberti, for us it is still important to know your opinion. What is in your opinion the most important issue the new mayor should address? (iii) Thank you. Even if you will vote for XY, for us it is still important to know your opinion. What is in your opinion the most important issue the new mayor should address? (iii) Thank you.
- POSITIVE WELCOMING (they let you talk, you arrived successfully to the question in script I or II): After having listened to the answer to your question and having noted it down, you can deliver the following positive or negative message.

D.1.5 Positive Canvassing

How to start:

- Give the person a flyer with the positive message.
- Start from the topic most closely related to the one proposed by the person. Start by stating that that topic is also very important to Professor Lamberti.
- After having talked about the initial topic (the one that is most closely related to the topic proposed by the person), continue BRIEFLY with the two other messages.

Script for the three messages (Only suggestive: you do not need to state everything)

• Dialogue with the citizens: The initiative 'Around the City Listening to Citizens', that brought us here, is just one of the many initiatives Mr Lamberti is planning in order to collect the opinions of the citizens and to dialogue with them, with the goal of taking aware decisions. His dream is that of an inclusive municipality, where every citizen is seen as an important resource. FOR SUB-MUNICIPALITIES (FRAZIONI): This is especially true for the hamlets, which must feel part of the project of creating a unique municipality: Cava. This can be accomplished also through the promotion of public transportation.

- Competency and transparency: in his professional life as a professor of public law and as a member of several regional cabinets, Professor Lamberti has gained a great experience as an administrator, but he has always been very sensitive towards transparency. It is fundamental for him that citizens are aware of his actions and of the decision taken by his cabinet. The main objective is to reduce the burden of bureaucracy and costs, while increasing transparency in the procedures.
- More public services: Professor Lamberti has always been an active promoter of the improvement of the quality and quantity of health care services. He has always promoted Cava's hospital, and he has also proposed to improve the assistance to citizens by using regional funds that are already available. The project aims at including specialized doctors, a front desk, a nursey, pediatricians, and the launch of the 'Health Center (Casa della salute)', which will be conducting important functions (counseling in support of families, home assistance). The hospital should return to assist acute patients that need hospitalization and those who need emergency interventions, with an emergency service that will remain active 24 hours a day and with wards for cardiology, orthopedics, radiology, intensive care, surgery, pediatrics and the analytical laboratory. FOR SUB-MUNICIPALITIES: this means especially increasing the number of services here in hamlets with health centers and other specialized services of assistance to citizens.

How to finish:

• After having briefly talked about the three themes, ask the person if she/he has any comments. If yes, let the person talk and kindly end the discussion; leave the campaign

material, greet him/her and leave.

• If the person interrupts you while you are giving your short presentation, let them him/her talk, try with kindness and BREVITY to talk about all three points. Kindly end the conversation, leave the campaign material, greet him/her and leave.

How to end the conversation if the person wants to continue with the discussion: You can invite him/her to visit Lamberti's committees, which are located in via Verdi. State that the person can meet professor Lamberti and the candidate counselors there.

IMPORTANT: Avoid talking too much if the person is not interested. Better to be brief and avoid getting people bored

D.1.6 Negative Canvassing

How to start:

- Give the person a flyer with the negative message.
- Start from the topic most closely related to the one proposed by the person. Start by stating that over the past five years that issue has not been addressed by Galdi's cabinet.
- After having talked about the initial topic (the one that is most closely related to the topic proposed by the person), continue BRIEFLY with the two other messages. Script for the three messages (Only suggestive: you do not need to state everything)
- Too much old politics: Galdi's administration has been absent from people's life. Instead of listening to citizens and try to assist their needs, it kept politics distant from people. With Galdi's administration, Cava established a record of cabinets' turnovers: nine turnovers. The main interest of the administration was to keep its 'seats' instead of addressing the citizens' needs. FOR SUB-MUNICIPALITIES: This is especially true for sub-municipalities that joined Cava recently. Lamberti proposes a different

style, starting from this initiative of the 'Around the City Listening to Citizens', which brought us here today.

- Too much waste of public money and too many municipal taxes: Galdi's administration pursued a series of wrong public expenditure choices that did not benefit the citizens of Cava. The renovation of the Abbro square with the famous chess-board created many troubles to citizens and waste of public resources. Municipal taxes also increased. For an average household, total municipal taxes increased by 250 Euro per year over the five years of Galdi's administration.
- Too much debt burdening citizens: the purchase of the 'ex-COFIMA' plant by the municipality has raised the level of the municipal debt. The interests on the debt for the purchase of the plant are equal to 1,000 Euro per day. This represents a considerable waste of money, especially because the plant is not yet being used.

How to finish:

- After having briefly talked about the three themes, ask the person if she/he has any comments. If yes, let the person talk and kindly end the discussion; leave the campaign material, greet him/her and leave.
- If the person interrupts you while you are giving your short presentation, let them him/her talk, try with kindness and BREVITY to talk about all three points. Kindly end the conversation, leave the campaign material, greet him/her and leave.
- What to do if the person criticizes your statements about the Galdi's administration? (i) Let him/her talk and interrupt him/her with courtesy; (ii) You can say that the situations you are talking about are complex political and economic issues, and that there can be many different opinions. State that according to you Galdi's administration could have handled certain situations in a better way; (iii) Do not be aggressive and do not attempt to impose your opinion; (iv) Avoid continuing the conversation

on Galdi's administration. Kindly greet the person, leave the campaign material and leave.

How to end the conversation if the person wants to continue with the discussion: You can invite him/her to visit Lamberti's committees, which are located in via Verdi. State that the person can meet Professor Lamberti and the candidate counselors there.

IMPORTANT: Avoid talking too much if the person is not interested. Better to be brief and avoid getting people bored.

Figure D.1: Mr Lamberti's Volunteers, Field Experiment in Cava

Figure D.2: Mr Lamberti's Volunteers in Action, Field Experiment in Cava

Figure D.3: Flyer with Positive Message, Field Experiment in Cava

Figure D.4: Flyer with Negative Message, Field Experiment in Cava

Figure D.5: Hanger with Positive Message, Field Experiment in Cava

Figure D.6: Hanger with Negative Message, Field Experiment in Cava

	Negative	Positive	Difference
	Message	Message	(P-Values)
Eligible Voters 2010	25.354	27.576	0.963
0	[43.216]	[45.529]	
Eligible Male Voters 2010	14.517	18.073	0.885
0	[21.926]	[23.976]	
Eligible Female Voters 2010	10.836	່ 9.503 ່	0.956
0	[22.448]	[22.349]	
Turnout 2010	-0.018	-0.011	0.746
	[0.021]	[0.013]	
Center-Right Candidate 2010	0.017	0.029	0.764
-	[0.029]	[0.031]	
Center-Left Candidate 2010	-0.013	-0.025	0.657
	[0.030]	[0.031]	
Other Candidates 2010	-0.004	0.000	0.382
	[0.004]	[0.005]	
Center-Right List 2010	0.016	0.024	0.769
	[0.028]	[0.028]	
Center-Left List 2010	-0.011	-0.027	0.516
	[0.029]	[0.029]	
Other Lists 2010	-0.006	0.003	0.109
	[0.005]	[0.006]	
Eligible Voters 2006	33.725	20.781	0.774
Ű	[40.195]	[39.889]	
Eligible Male Voters 2006	16.634	12.690	0.866
	[20.452]	[21.305]	
Eligible Female Voters 2006	17.091	8.091	0.689
	[20.899]	[19.628]	
Turnout 2006	-0.009	-0.011	0.956
	[0.019]	[0.012]	
Center-Right Candidate 2006	-0.028	-0.030	0.258
	[0.022]	[0.016]	
Center-Left Candidate 2006	-0.026	-0.006	0.473
	[0.030]	[0.028]	
Other Candidates 2006	0.054	0.008	0.210
	[0.041]	[0.031]	
Center-Right List 2006	-0.012	-0.000	0.580
	[0.022]	[0.019]	
Center-Left List 2006	-0.028	-0.023	0.812
	[0.024]	[0.026]	
Other Lists 2006	0.041	0.023	0.509
	[0.027]	[0.026]	

Table D.1 Ex-Ante Balancing Tests at the Precinct Level

Notes. Observations: 55 precincts. OLS coefficients reported; dependent variables in row headings and treatment groups in column headings. *Eligible voters* is the number of voters in the precinct. The other variables are the electoral outcomes in the 2010 and 2006 elections and are expressed in vote shares. Robust standard errors clustered by ZIP code are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.

	Non	Female	Young	Married	Family	College	Left-wing	Competition	Cooperation
	Canvassed		(≤ 30)		with kids				
Positive campaign	0.55	0.73	0.06	0.77	0.85	0.18	0.13	0.19	0.68
1	279	279	279	261	255	256	279	279	279
Negative campaign	0.51	0.71	0.06	0.75	0.81	0.26	0.13	0.18	0.72
	281	281	281	260	258	262	281	281	281
No campaign	0	0.77	0.07	0.77	0.82	0.23	0.12	0.19	0.69
	297	297	297	272	268	274	297	297	297
Total	0.35	0.74	0.07	0.76	0.83	0.22	0.13	0.19	0.70
	857	857	857	793	781	792	857	857	857
Notes. Average values r	eported; number o	of observations	in parenthese	s. All variable	s are dummies.	The variable <i>l</i>	Von Canvassed n	neasures the share of	f individuals in the

Table D.2 Descriptive Statistics

ll e initial survey who were not reached by the volunteers, and hence only refers to the treatment groups. Left-wing refers to the (self-declared) ideological position of the voter. *Competition* captures whether the voter participated to a professional sport competition or to a contest in his/her life. *Cooperation* means that the voter responded that to cooperate with others is key to have success in life, as opposed to be more competent than the others.

Campaigns
•
Candidates
about
∞
ef
II:
e e
щ
on
Information
Campaign
ц.
Ö
3 Effects
~
Ц
Table

	Incumbent's	Opponent's	Other's	Incumbent	Opponent	Other
	ideology	ideology	ideology	as negative	as negative	as negative
Positive campaign (α_1)	0.273	-0.093	0.344	-0.043	-0.052	-0.098
	[0.230]	[0.303]	[0.350]	[0.110]	[0.118]	[0.091]
Negative campaign (α_2)	0.141	0.120	0.362	0.011	0.267^{**}	-0.137
	[0.220]	[0.286]	[0.344]	[0.109]	[0.117]	[0.085]
Positive campaign \times Female (β_1)	-0.064	0.295	-0.279	0.157	0.116	-0.031
	[0.271]	[0.348]	[0.413]	[0.131]	[0.142]	[0.109]
Negative campaign \times Female (β_2)	-0.113	0.109	-0.112	0.062	0.030	0.192^{*}
	[0.266]	[0.330]	[0.408]	[0.127]	[0.144]	[0.112]
Female	0.796^{***}	0.579^{**}	1.138^{***}	-0.166*	-0.147	-0.034
	[0.185]	[0.237]	[0.286]	[0.090]	[0.101]	[0.085]
P-value H1: $\alpha_1 + \beta_1 = 0$	0.146	0.245	0.767	0.105	0.415	0.035^{**}
<i>P-value H2</i> : $\alpha_2 + \beta_2 = 0$	0.847	0.164	0.257	0.278	0.001^{***}	0.455
<i>P-value</i> $H3$: $\alpha_1 - \alpha_2 = 0$	0.568	0.475	0.959	0.622	0.005^{***}	0.606
<i>P-value H4</i> : $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.227	0.868	0.414	0.564	0.009^{***}	0.050^{*}
<i>P-value H5:</i> $\beta_1 - \beta_2 = 0$	0.860	0.589	0.690	0.464	0.548	0.026
<i>P-value H6:</i> $\alpha_1 + \alpha_2 = 0$	0.283	0.958	0.239	0.868	0.301	0.139
<i>P-value</i> $H7$: $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.346	0.142	0.405	0.107	0.008^{***}	0.529
<i>P-value H8:</i> $\beta_1 + \beta_2 = 0$	0.701	0.491	0.580	0.327	0.558	0.416
Obs.	838	816	829	368	275	303
Notes. Estimated OLS regression: $Y_i = \alpha_1 POS$ campaign for females: $\alpha_1 + \beta_1 = 0$. (H2) Treati	$i_i + \alpha_2 NEG_i + \beta_1 POS$ ment effect of negative	$i \times FEMALE_i + \beta_2 N$ vs. no campaign for f	$TEG_i \times FEMALE$ smales: $\alpha_2 + \beta_2 =$	$\frac{i + \delta FEMALE_i + \varepsilon_i}{0. $ (H3) Treatment eff	(H1) Treatment effectect of positive vs. neg	t of positive vs. no ative campaign for
) -				

vs. no campaign for females: $(\alpha_1 + \beta_1) + (\alpha_2 + \beta_2) = 0$. (H8) Differential treatment effect of any campaign vs. no campaign between males and females: $\beta_1 + \beta_2 = 0$. Variables description: "Y's ideology" stands for the ideology of Y, measured on a scale from 1 (left) to 5 (right); "Y as negative" is a dummy equal to one if Y's campaign is perceived as negative/aggressive, and zero otherwise. Robust standard errors are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***. males: $\alpha_1 - \alpha_2 = 0$. (H4) Treatment effect of positive vs. negative campaign for females: $(\alpha_1 + \beta_1) - (\alpha_2 + \beta_2) = 0$. (H5) Differential treatment effect of positive vs. negative campaign for females: $\beta_1 - \beta_2 = 0$. (H6) Treatment effect of any campaign vs. no campaign for males: $\alpha_1 + \alpha_2 = 0$. (H7) Treatment effect of any campaign

	Turnout	Opponent's	Incumbent's	Others'
	rate	vote share	vote share	vote share
Positive campaign (α_1)	-0.002	0.055	-0.145***	0.067
	[0.029]	[0.034]	[0.051]	[0.058]
Negative campaign (α_2)	-0.024	0.035	-0.107**	0.076
	[0.028]	[0.033]	[0.053]	[0.058]
<i>P-value H1:</i> $\alpha_1 - \alpha_2 = 0$	0.368	0.511	0.423	0.871
<i>P-value H2:</i> $\alpha_1 + \alpha_2 = 0$	0.666	0.111	0.007^{**}	0.155
Obs.	857	448	448	448

Table D.4 Average Treatment Effects, Full Sample

Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i + \alpha_2 NEG_i + \varepsilon_i$. (H1) Treatment effect of positive vs. negative campaign: $\alpha_1 - \alpha_2 = 0$. (H2) Treatment effect of any campaign vs. no campaign: $\alpha_1 + \alpha_2 = 0$. Robust standard errors are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.

Table D.5	Average	Treatment	Effects,	Canvassed	Sample
			/		

	Turnout	Opponent's	Incumbent's	Others'
	rate	vote share	vote share	vote share
Positive campaign (α_1)	-0.007	0.062	-0.166***	0.101
	[0.038]	[0.047]	[0.061]	[0.072]
Negative campaign (α_2)	-0.000	0.085^{*}	-0.187***	0.145**
	[0.036]	[0.048]	[0.059]	[0.070]
<i>P-value H1:</i> $\alpha_1 - \alpha_2 = 0$	0.872	0.706	0.734	0.590
<i>P-value H2:</i> $\alpha_1 + \alpha_2 = 0$	0.902	0.046^{**}	0.001^{***}	0.036^{**}
Obs.	560	282	282	282

Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i + \alpha_2 NEG_i + \varepsilon_i$. (H1) Treatment effect of positive vs. negative campaign: $\alpha_1 - \alpha_2 = 0$. (H2) Treatment effect of any campaign vs. no campaign: $\alpha_1 + \alpha_2 = 0$. Robust standard errors are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.

	Non	Young	Married	Family	College	Left-wing	Competition	Cooperation
	Canvassed	(≤ 30)		with kids				
Positive campaign	0.036	-0.016	0.002	0.044	-0.063*	0.036	-0.029	-0.030
	[0.049]	[0.023]	[0.042]	[0.035]	[0.038]	[0.031]	[0.034]	[0.044]
Negative campaign		-0.030	0.018	0.030	0.016	0.040	-0.036	0.052
		[0.022]	[0.042]	[0.036]	[0.042]	[0.031]	[0.034]	[0.043]
Observations	403	632	587	576	582	632	632	632
Notes. Estimated OLS re	gression in the subs	ample of female	γ voters: $Y_i = \alpha_1 I$	$POS_i + \alpha_2 NEG_i +$	$-\varepsilon_i$. All variable	es are dummies. Tl	ne variable Non Canv	<i>issed</i> measures the share
of individuals in the initi	ial survey who were	not reached by	y the volunteers,	and hence only re	fers to the trea	tment groups. Le	ft-wing refers to the (self-declared) ideological
position of the voter. Co_{i}	mpetition captures v	whether the vot	er participated to	o a professional spo	ort competition	or to a contest in]	his/her life. Cooperati	on means that the voter
responded that to cooper	ate with others is k	ey to have succ	tess in life, as opp	osed to be more c	ompetent than	the others. Robust	standard errors clust	ered by ZIP code are in
brackets. Significance at	the 10% level is rep	resented by $*$, s	at the 5% level by	$'^{**}$, and at the 19	6 level by ***.			

Table D.6 Covariate Balance Tests, Female Voters

Voter
Male
Tests,
Balance
Jovariate
С Г.
Cable D

	Non	Young	Married	Family	College	Left-wing	Competition	Cooperation
	Canvassed	(≤ 30)		with kids				
Positive campaign	0.052	0.005	-0.030	-0.012	-0.029	-0.071	0.053	0.077
	[0.080]	[0.048]	[0.075]	[0.075]	[0.079]	[0.061]	[0.078]	[0.081]
Negative campaign	1	0.022	-0.121	-0.091	0.064	-0.069	0.023	0.019
		[0.049]	[0.076]	[0.076]	[0.079]	[0.060]	[0.070]	[0.080]
Observations	157	225	206	205	210	225	225	225
Notes. Estimated OLS reg	gression in the subs	ample of male v	voters: $Y_i = \alpha_1 P Q_i$	$DS_i + \alpha_2 N EG_i +$	ε_i . All variable	s are dummies. Th	e variable Non Canva	sed measures the share

position of the voter. Competition captures whether the voter participated to a professional sport competition or to a contest in his/her life. Cooperation means that the voter responded that to cooperate with others is key to have success in life, as opposed to be more competent than the others. Robust standard errors clustered by ZIP code are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***. of individuals in the initial survey who were not reached by the volunteers, and hence only refers to the treatment groups. Left-wing refers to the (self-declared) ideological

	Non	Young	Married	Family	College	Left-wing	Competition	Cooperation
	Canvassed	(≤ 30)		with kids				
Positive campaign	0.052	0.005	-0.030	-0.012	-0.029	-0.071	0.053	0.077
)	[0.070]	[0.048]	[0.075]	[0.074]	[0.079]	[0.061]	[0.078]	[0.080]
Negative campaign	a 2	0.022	-0.121	-0.091	0.064	-0.069	0.023	0.019
)		[0.049]	[0.076]	[0.076]	[0.079]	[0.060]	[0.076]	[0.080]
Positive \times Female	-0.016	-0.021	0.032	0.056	-0.034	0.107	-0.082	-0.107
	[0.094]	[0.054]	[0.086]	[0.082]	[0.087]	[0.068]	[0.085]	[0.092]
Negative \times Female		-0.051	0.139	0.121	-0.048	0.109	-0.059	0.033
1		[0.054]	[0.087]	[0.084]	[0.089]	[0.068]	[0.083]	[0.091]
Female	0.133	-0.018	-0.014	0.058	-0.083	-0.095^{*}	-0.133^{**}	0.109
	[0.065]	[0.038]	[0.061]	[0.060]	[0.064]	[0.052]	[0.061]	[0.067]
Observations	560	857	793	781	792	857	857	857
Votes. Estimated OLS re-	gression: $Y_i = \alpha_1 P_i$	$OS_i + \alpha_2 NEG_i$	$+ \beta_1 POS_i \times FE$	$MALE_i + \beta_2 NE$	$G_i \times FEMALE_i$	$+ \delta F EMALE_i + \delta$	ε_i . All variables are	dummies. The variable

Table D.8 Covariate Balance Tests by Gender

Left-wing refers to the (self-declared) ideological position of the voter. Competition captures whether the voter participated to a professional sport competition or to a contest in his/her life. *Cooperation* means that the voter responded that to cooperate with others is key to have success in life, as opposed to be more competent than the others. Robust standard errors are in brackets. Significance at the 10% level by *, at the 5% level by **, and at the 1% level by ***.

peration).636).718	0827^{**}	0.020	857	umies. Th
Cool)	U	-0.	U		les are dun
petition		.32	.141	48**	000	357	All variab
Com		0	0	0.1'	0	×	by gender.
ft-wing).142	0.120	.0219).394	857	ı difference
Lei)	U	0	U		f the mear
College		0.305	0.192	0.112^{***}	0.001	792	gnificance o
	S			*			atistical sig
Family	with kic	0.741	0.861	-0.120^{**}	0.000	781	tures the st
ried		728	75	047	73)3	D-value cap
Mar		0.7	0.7	-0.(0.1	52	ummies. 1
Young	(≤ 30)	0.098	0.055	$.042^{**}$	0.028	857	tbles are du
r				0			All varia
Non	anvassed	0.307	0.361	-0.054	0.143	857	s reported.
	J						rage value
		Iale	emale	Difference	-value)bs.	otes. Ave

Table D.9 Mean Differences by Gender

of the voter. Competition captures whether the voter participated to a professional sport competition or to a contest in his/her life. Cooperation means that the voter responded that to cooperate with others is key to have success in life, as opposed to be more competent than the others. variable Non Cannassed measures the share of individuals in the initial survey who were not reached by the volunteers. Left-wing refers to the (self-declared) ideological position

			Panel	A. Turnout Rate		
	Baseline	Young (≤ 30)	College	Left	Competition	Cooperation
<i>P-value:</i> $\alpha_1 = 0$	0.580	0.447	0.994	0.487	0.920	0.789
<i>P-value:</i> $\alpha_2 = 0$	0.518	0.565	0.800	0.485	0.596	0.465
<i>P-value:</i> $\beta_1 = 0$	0.468	0.423	0.947	0.395	0.735	0.569
<i>P-value:</i> $\beta_2 = 0$	0.477	0.489	0.750	0.350	0.438	0.320
<i>P-value H1:</i> $\alpha_1 + \beta_1 = 0$	0.628	0.783	0.896	0.670	0.653	0.399
<i>P-value H2</i> : $\alpha_2 + \beta_2 = 0$	0.757	0.722	0.898	0.589	0.629	0.111
<i>P-value H3:</i> $\alpha_1 - \alpha_2 = 0$	0.957	0.837	0.813	0.972	0.724	0.692
<i>P-value H4</i> : $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.875	0.952	0.933	0.922	0.981	0.503
<i>P-value H5:</i> $\beta_1 - \beta_2 = 0$	0.963	0.892	0.822	0.974	0.730	0.731
<i>P-value H6</i> : $\alpha_1 + \alpha_2 = 0$	0.481	0.429	0.878	0.413	0.716	0.541
<i>P-value H7</i> : $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.615	0.692	0.874	0.541	0.559	0.114
<i>P-value H8:</i> $\beta_1 + \beta_2 = 0$	0.389	0.370	0.819	0.286	0.510	0.351
Obs.	560	560	560	560	560	560
Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i$	$+ \alpha_2 NEG_i + \beta_1 POS$	$S_i \times FEMALE_i + \beta$	$3_2 NEG_i \times FEMAI$	$CE_i + \delta FEMALE_i$	$+ \gamma_1'(x_i \times POS_i) + \gamma_2'(x_i)$	$\times NEG_i) + \theta' x_i + \varepsilon_i,$
where x_i is a respectively one of the following cove	ariates: Young, Colle	ge, Left-wing, Comp	etition and Coopera	tion. P-values are re	ported for the following	Wald tests: Treatment
effect of positive vs. no campaign for males: α_1 = between males and females: $\beta_1 = 0$. Differential	= 0. Treatment effect d treatment effect of	t ot negative vs. no negative vs. no can	campaign tor males npaign between ma	$\alpha_2 = 0$. Differenti les and females: β_2	al treatment effect of po = 0. (H1) Treatment e	situve vs. no campaign ffect of positive vs. no
campaign for females: $\alpha_1 + \beta_1 = 0$. (H2) Treatn	ment effect of negativ	e vs. no campaign f	or females: $\alpha_2 + \beta_2$	s = 0. (H3) Treatm	ent effect of positive vs.	negative campaign for
males: $\alpha_1 - \alpha_2 = 0$. (H4) Treatment effect of po	sitive vs. negative ca	mpaign for females:	$(\alpha_1 + \beta_1) - (\alpha_2 + \beta_2) = (\alpha_2 + \beta_2)$	$\beta_2) = 0.$ (H5) Diffe	rential treatment effect	of positive vs. negative
campaign between mates and termates. $p_1 - p_2 = v_2$ vs. no campaign for females: $(\alpha_1 + \beta_1) + (\alpha_2 + \beta_2)$	-0. (III) ILEGUILEIU () = 0. (H8) Differenti	ial treatment effect o	agu vs. no campaig. of any campaign vs.	n tot mates. $\alpha_1 \pm \alpha_2$ no campaign betwee	$2 - 0$. (111) 11 each man β_1 end females: β_1	$+\beta_2 = 0$. Significance
at the 10% level is represented by $*$, at the 5% le	evel by **, and at the	• 1% level by ***.				

Table D.10 Potential Channels on Turnout, Canvassed Sample

	Turnout	Opponent's	Incumbent's	Others'
	rate	vote share	vote share	vote share
Positive campaign (α_1)	-0.084	0.154	-0.216	0.060
	[0.168]	[0.220]	[0.296]	[0.361]
Negative campaign (α_2)	-0.078	0.216	-0.038	-0.073
	[0.153]	[0.186]	[0.263]	[0.272]
Positive campaign \times Female (β_1)	0.035	0.123	0.015	-0.080
	[0.090]	[0.085]	[0.185]	[0.201]
Negative campaign \times Female (β_2)	0.006	-0.111	0.173	-0.032
	[0.081]	[0.106]	[0.127]	[0.152]
Female	0.039	0.043	-0.027	-0.046
	[0.052]	[0.053]	[0.104]	[0.111]
<i>P-value H1:</i> $\alpha_1 + \beta_1 = 0$	0.743	0.152	0.327	0.945
<i>P-value H2:</i> $\alpha_2 + \beta_2 = 0$	0.619	0.529	0.583	0.700
<i>P-value H3:</i> $\alpha_1 - \alpha_2 = 0$	0.972	0.822	0.569	0.716
<i>P-value H4:</i> $\alpha_1 + \beta_1 - (\alpha_2 + \beta_2) = 0$	0.892	0.491	0.156	0.790
<i>P-value H5:</i> $\beta_1 - \beta_2 = 0$	0.760	0.039^{**}	0.350	0.806
<i>P-value H6:</i> $\alpha_1 + \alpha_2 = 0$	0.543	0.217	0.585	0.980
<i>P-value H7:</i> $\alpha_1 + \beta_1 + \alpha_2 + \beta_2 = 0$	0.615	0.144	0.866	0.786
<i>P-value H8:</i> $\beta_1 + \beta_2 = 0$	0.773	0.940	0.482	0.708
Observations	501	268	268	268

Table D.11 Full Set of Interactions, Canvassed Sample

Notes. Estimated OLS regression: $Y_i = \alpha_1 POS_i + \alpha_2 NEG_i + \beta_1 POS_i \times FEMALE_i + \beta_2 NEG_i \times FEMALE_i + \delta FEMALE_i + \gamma'_1(x_i \times POS_i) + \gamma'_2(x_i \times NEG_i) + \theta'x_i + \varepsilon_i$, where x_i is a vector of covariates that are statistically different by gender (namely, Young, Family with kids, College, Competition, and Cooperation; see Table C.8 for more details). Robust standard errors are in brackets. Significance at the 10% level is represented by *, at the 5% level by **, and at the 1% level by ***.