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SUMMARY
We discuss the practice of examining patterns of treatment effects across overlapping patient subpop-

ulations. In particular, we focus on the case in which patient subgroups are defined to contain patients

having increasingly larger (or smaller) values of one particular covariate of interest, with the intent

of exploring the possible interaction between treatment effect and that covariate. We formalize these

subgroup approaches (STEPP: subpopulation treatment effect pattern plots) and implement them when

treatment effect is defined as the difference in survival at a fixed time point between two treatment

arms. The joint asymptotic distribution of the treatment effect estimates is derived, and used to construct

simultaneous confidence bands around the estimates and to test the null hypothesis of no interaction. These

methods are illustrated using data from a clinical trial conducted by the International Breast Cancer Study

Group, which demonstrates the critical role of estrogen receptor content of the primary breast cancer for

selecting appropriate adjuvant therapy. The considerations are also relevant for general subset analysis,

since information from the same patients is typically used in the estimation of treatment effects within

two or more subgroups of patients defined with respect to different covariates.
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1. INTRODUCTION

Consider a randomized phase III clinical trial in which patients are randomized to one of two treatment

arms. The main goal of performing such a study is usually the estimation of some overall measure of

treatment effect based on all eligible patients enrolled in the study. Given the resources and effort required

to conduct a clinical trial, it is current practice in most reported clinical trial analyses to also estimate

treatment effects and test hypotheses within different subsets of patients. The use of such subset analyses,

however, is controversial. The statistical concerns include the issue of inflation of alpha levels due to

repeated testing, i.e. the possibility that significant results will emerge by chance alone when one examines

multiple subgroups of patients. The other major concern is the real possibility of lack of power to detect

treatment effects within smaller subgroups of patients. This is likely to produce false negative results, and

it is particularly relevant since most clinical trials are designed to have enough power for a primary test

of treatment effect only for the whole study population. Results from subset analyses therefore should

always be treated and presented with caution.

Consider the ISIS-1 study of atenolol vs. control in patients with suspected acute myocardial

infarction. In that study an overall mortality reduction of 30% was observed (p < 0.004), but a significant

reduction of 71% (p < 0.01) was observed within the subgroup of patients born under the astrological
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sign of Leo. Treatment effect was not significant (p > 0.1) within each of the remaining 11 astrological

birth signs (see ISIS-1 Collaborative Group, 1986). In the ISIS-2 study that followed, a treatment effect

on mortality was observed overall (p < 0.00001), but not for the subgroup of patients with astrological

birth sign Gemini or Libra (p = 0.5) (see ISIS-2 Collaborative Group, 1988). Controversies about the

results of subsets analyses are quite common. A recent example is the presentation of the preliminary

results of an AIDS vaccine clinical trial, which showed no apparent efficacy of the vaccine in reducing the

infection rate of the 5009 high-risk individuals enrolled in the study. The infection rates were 5.7 and 5.8%

respectively for the vaccine and the placebo group. However, the infection rates for the 314 blacks alone

were 2.0 and 8.1% for the vaccine and the placebo groups. When combining all patients who are either

black, asian, or in general non-white and non-hispanic, the mortality reduction was statistically significant

(p = 0.003). The clinical, political, and regulatory ramifications of such findings are easy to imagine, and

the discussion focused precisely on the fact that the positive results arise from a subgroup analysis. For a

discussion we refer to Cohen (2003).

One illustration of the dangers of false-positive results associated with subset analyses is given in

Peto (1982). Let the test statistic for testing the difference between two treatment groups A and B be

Ẑ = (X A − XB)/(2S2/n)1/2, where X A and XB are the sample means in the two treatment groups, that

we assume contain n patients each. S2 here is the estimated variance, assumed equal in the two groups.

Peto showed that if the overall observed result is Ẑ = 2 (two-sided p = 0.05), then there is approximately

a 33% chance that the test for no treatment difference will be very significant (p < 0.001) for a randomly

selected subset of half the patients and not close to significant (p > 0.32) for the other half. Thus, the

results of subset analyses are subject to more statistical variation than is often appreciated.

In spite of these dangers, however, subgroup analyses can be very useful. They may help better link the

results of a study to current clinical practice by allowing estimation of the magnitude of treatment effects

within relevant patient subpopulations. Increasing the usefulness of clinical trial results for patient care

decision-making is the main reason why subgroup analyses are performed and reported in the clinical

literature. It is an overarching priority for clinicians to try to identify the best possible treatment for

the individual patient, so that benefit can be maximized and the negative side effects from unnecessary

treatment reduced to a minimum. Along those lines, one could argue that providing only overall results

when the estimated size of the treatment effect may differ according to subgroups can actually be harmful

to the patients.

As an example of the tension existing between avoiding and utilizing subset analyses, Coates et al.

(2002) pointed out that the tamoxifen overview data described by the Early Breast Cancer Trialists’

Collaborative Group (1998a) is based on a subset of breast cancer patients with endocrine responsive

tumors who had enrolled in trials evaluating tamoxifen. While this subset included only 17% of the 48 000

patients enrolled into randomized trials comparing tamoxifen with no tamoxifen, that is the patient group

and treatment duration (5 years) most relevant for determining the efficacy of tamoxifen. On the other

hand, similar subset analyses have still not taken place within the chemotherapy overview by the Early

Breast Cancer Trialists’ Collaborative Group (1998b), even though the magnitude of the chemotherapy

effect is substantially affected by estrogen-receptor status of the primary tumor, patient age, and the

concurrent use of tamoxifen.

Subgroup analyses can also help raise questions for further research. For example, a retrospective

analysis in Aebi et al. (2000) suggested that the endocrine effects of chemotherapy alone were insufficient

for very young patients with endocrine-responsive breast cancer. A subsequent analysis, described in

Goldhirsch et al. (2001), was performed on data from clinical trials run by three major US co-operative

groups, and that analysis showed the same interaction between the effect of age and steroid hormone

receptor status of the primary tumor. When feasible, such independent confirmation of results should

always be performed to validate the initial findings.

Once one accepts the idea of performing subgroup analyses, this should therefore be done carefully.
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Table 1. Common inflation factor γ necessary to enlarge K

marginal 95% confidence intervals to ensure 95% simultaneous

coverage

K 1 2 3 4 5 10 15 20 25 30

γ 1 1.14 1.22 1.27 1.31 1.43 1.49 1.54 1.57 1.6

Accepted strategies typically include the requirement that they be pre-specified in the study protocol,

so that they can be considered ‘a priori’ analyses as opposed to ‘post-hoc’ (or data-derived) analyses.

This, however, may not always be possible, as new scientific knowledge may be available at the time

of the analysis that was not available at the time when the study was designed (with amendments to the

protocol being only a partial solution to the problem). By contrast to the assessment of results according

to astrological sign, subset analyses conducted to independently confirm or refute biologically-plausible

hypotheses generated by others should be encouraged. The pre-specification of the subgroup analyses to

be performed is meant to protect from the temptation to over-analyze the data in search for statistical

significance, or more generally to avoid identifying subgroups after having looked at the data. There

is also clear agreement on the fact that subgroups should only be defined according to pre-treatment

characteristics and not, for example, on compliance or outcome variables.

In subgroup analyses treatment effects are usually computed within groups of patients defined with

respect to the value of a covariate of interest to explore the possible interaction of the magnitude of

treatment effect and that covariate. Gail and Simon (1985) studied the case of pre-specified and non-

overlapping subsets of patients defined with respect to one or more categorical covariates. The use of non-

overlapping subsets has the disadvantage of only allowing the relatively imprecise estimation of treatment

effects within each of the subsets, given the usually limited number of patients enrolled in clinical trials

(in the hundreds). Also, small subsets may result in poor approximation of asymptotic distributions of

treatment effects to the true distributions.

To overcome this problem, overlapping subgroups of patients can be constructed so that they contain

patients with increasingly larger (or smaller) values of the covariate of interest. This practice clearly

produces correlated estimates of treatment effect. The need for the application of proper adjustments to the

results from each subset analysis to obtain the correct simultaneous inference can be illustrated as follows.

Suppose that K confidence intervalsC I j = [θ̂ j−z1−α/2σ j , θ̂ j+z1−α/2σ j ], j = 1, . . . , K are constructed

from the treatment effect estimators θ̂ j ∼ N (µ j , σ
2
j ), with z1−α/2 being the (1−α/2)th percentile from the

standard normal distribution. For simplicity we assume that the null hypothesis of interest is that µ j = 0

for all j = 1, . . . , K . One can increase the width of each confidence interval C I j by multiplication of

the half-width by a factor γ so that overall, P(∪k
j=1{{0} /∈ [θ̂ j − γ z1−α/2σ j , θ̂ j + γ z1−α/2σ j ]}) = α. If

we assume the estimators θ̂ j to be independent (such as when they are computed separately on a set of

disjoint subsets of patients), then γ z1−α/2 = z1−α∗/2 with α∗ = 1 − (1 − α)1/k . This corresponds to the

values of γ shown in Table 1 for various numbers of subgroups K , using α = 0.05. It should be noted

that the adjustment under this independence case is similar to that obtained by application of a Bonferroni

correction to each confidence interval (i.e. based on α∗ = α/K ): calling A j the event {{0} ∈ C I j }, Boole’s
inequality P

(
∪K
j=1A j

)
! ∑K

j=1 P(A j ) is quite tight under independence and when the probabilities,

P(A j ), are small.

On the other extreme, if one assumes perfect (positive or negative) correlation among the estimators

θ̂ j , one has P
(
∪K
j=1A j

)
= 1−P

(
∩K
j=1A j

)
= 1−P(Ai )P(A2|A1)P(A3|A1∩ A2) · · · P(AK |A1∩ · · ·∩

AK−1). Since all the conditional probabilities are equal to one, this is equal to 1 − P(A1) = α, so that

no adjustment by γ is necessary (or equivalently, γ = 1). The general case will fall somewhere between



468 M. BONETTI AND R. D. GELBER

these two extreme situations, with the treatment effect estimates being correlated due to the fact that an

overall model is fitted to the data, or because individual estimates are produced on overlapping subgroups

of patients (possibly defined with respect to different variables as is commonly done in the clinical

literature). For example, if X1, X2, . . . , Xn are independent, identically distributed random variables with

zero mean, and we let X p = (1/p)
∑p

i=1 Xi and Xn = (1/n)
∑n

i=1 Xi be the means computed on the
first p observations and on all n observations, respectively, then the correlation coefficient between the two

means is equal to (p/n)1/2. Thus the correct reduction in the individual α levels needs to be determined.

Subset analysis approaches share a similar motivation with the method of the maximally selected chi-

square, that consists of testing for outcome differences between groups of patients defined by a changing

cutoff value of a covariate, to find the cutoff that produces the maximum difference between the two

groups (see Miller& Siegmund (1982) and Betensky and Rabinowitz (1999)). Smoothing techniques have

also been applied to the study of treatment–covariate interactions. For example, Kim and Truong (1998)

used linear smoothers, and Gray (1992) used splines in additive models for the analysis of survival data

under the assumption of proportional hazards. A procedure of double smoothing to construct an estimator

of a percentile of the survival distribution as a function of one or two covariates is described in Bowman

and Wright (2000).

Methods based on the construction of subsets of patients are used extensively because they present

three appealing advantages over more traditional smoothing techniques: (i) they are easily described to

and understood by clinical audiences; (ii) they estimate treatment effect within each subset by traditional

statistics (e.g. by Kaplan–Meier estimates of survival); and (iii) they allow for the clear definition of the

group of patients used to estimate the treatment effect for each subset. The drawback of these analyses

can be the use of inappropriate inferential procedures, if no adjustment is made for the fact that patient

subgroups may be overlapping. In this report we formalize these approaches, focusing on the case of

subsets of patients defined with respect to one covariate.

We identify below two specific families of subpopulations that can be used, and we call the plot of the

resulting treatment effects a STEPP, or subpopulation treatment effect pattern plot. A first implementation

of STEPP was introduced in Bonetti and Gelber (2000) in the context of studying deviations from the

hypothesis of no treatment–covariate interaction in the Cox proportional hazards model. In Section 2 we

introduce our approach, and describe a general result for the joint asymptotic distribution of treatment

effects estimated over possibly overlapping subsets of patients. The results are specialized to inference for

the difference in survival at a fixed time point between two arms (described in Section 3).

From October 1988 to August 1999, 1715 postmenopausal patients with lymph node-negative,

operable breast cancer were entered in a clinical trial (Trial IX) run by the International Breast Cancer

Study Group (IBCSG). Patients were randomly assigned to receive either tamoxifen for 5 years or 3

cycles of chemotherapy (CMF) at months 1, 2 and 3 after randomization followed by tamoxifen for 57

months. Disease-free survival (DFS) was defined as the length of the time from randomization to any

relapse, the appearance of a second primary cancer, or death, whichever occurred first. In Section 4 we

apply our methods to the examination of a possible interaction between the estrogen receptor (ER) level

of the patient’s tumor and the treatment effect measured in terms of the difference of DFS at 5 years

between the two arms of the Trial. Clearly, only plausible interactions should in general be investigated.

The motivation for the study of such an interaction in this clinical trial arises from the fact that substantial

data exist suggesting that tamoxifen is more effective in patients with estrogen receptor-positive tumors

(see Early Breast Cancer Trialists’ Collaborative Group, 1998a and Ludwig Breast Cancer Study Group,

1984). In Trial IX the randomization was stratified according to ER status (negative and positive), and the

intention to perform separate analyses according to ER status was specified in the original protocol. Our

analysis below will be an extension of these analyses to consideration of the numerical value of ER level

(as opposed to only the status being positive or negative).

Finally, we close with some discussion in Section 5.
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Fig. 1. The shaded region in the figure is the setW = {l ∈ [Zmin, Zmax − η], u ∈ [l + η, Zmax]}.

2. DEFINITION OF SUBPOPULATIONS AND STEPP

Consider the population of n patients in a clinical trial, where a covariate Z ∈ [Zmin, Zmax] ⊂)
is collected on all individuals together with each patient’s treatment assignment, and with some measure

X of outcome. Here we will focus on the outcome measure defined as the Kaplan–Meier estimate Ŝ(t∗)
of survival at the fixed time point t∗ within each subgroup of patients. For the IBCSG Trial IX, Z is the
ER expression level of the tumor, and outcome is disease-free survival at 5 years. The treatment effect of

interest within each subgroup of patients is the difference ŜA(t
∗) − ŜB(t∗) between the two independent

treatment groups A and B, so that without loss of generality we discuss one arm. In this setting one has

X = (T ∧ U, δ = 1(X = T )), where T and U are independent failure time and censoring time random

variables, respectively. Assume for now that the marginal distribution FZ of Z is absolutely continuous

over its support [Zmin, Zmax].
We thus observe the i.i.d. sample {Yi = (Xi , Zi ), i = 1, . . . , n}. Subsets of observations defined with

respect to the covariate Z can be constructed, with the subset containing observations having Z ∈ [l, u]
being identified by the pair of values (l, u), with Zmin ! l < u ! Zmax.

The subset approaches described in Section 1 consist of selecting a finite collection of points

{(l j , u j ), j = 1, . . . , K } from the shaded setW in Figure 1 (i.e. a finite collection of subsets of patients)

and of estimating the treatment effect within each subset. Note that for technical reasons we do not include

in W pairs (l, u) with u < l + η, where η is some positive constant (see Appendix, Section A1), and

that collections of non-overlapping subsets of patients can also be extracted fromW . In Section A1 we

show (Theorem 1) that the collection of treatment effects ŜA(t
∗|l < Z < u) − ŜB(t∗|l < Z < u)

over all subpopulations in the shaded region converges to a Gaussian process indexed by the family of
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Fig. 2. Illustration of the two subpopulation patterns.

subpopulations. Note in the proof of Theorem 1 how Z needs not be one-dimensional. In fact, the result

is valid (with minor modifications such as the actual value of the VC-index) if one considers rectangular

intervals [l, u] in higher dimensions. From that result it follows in particular that the joint asymptotic

distribution of treatment effects defined over a finite colleciton of subpopulations is multivariate normal.

Among the possible choices of patterns of subpopulations we consider two specific choices, defined

for j = 1, . . . , K by non-decreasing sets {l j } and {u j } such that
(1) {l j ∈ [Zmin, Zmax], u j = Zmax} or {l j = Zmin, u j ∈ [Zmin, Zmax]} (‘tail-oriented’ pattern).
(2) {l j ∈ [Zmin, Zmax], u j = inf{u " l j | P(l j < Z ! u) " p}} for some p ∈ (0, 1) (‘sliding-

window’ pattern).

Within each of the two regions (1) and (2) a total of K subpopulations are therefore defined through

the corresponding collection of cutoff values (l j , u j ), so that patient with index i having covariate Z =
zi belongs to subpopulation P j if l j < zi ! u j . (And each subpopulation is therefore in a one–one

correspondence with the set of indices of such patients). Inference is conditional on the cutoffs, which

may be chosen according to the empirical distribution of Z .

The tail-oriented pattern thus consists of setting l j = Zmin for all j and defining the set of cutoff points

u1 < u2 < · · · < uK = Zmax. Subpopulation P j then contains patients with Zi ! u j . In this fashion

the subpopulations are nested as an increasing sequence of sets, with the last subpopulation containing

all patients. Similarly, one could also start with all patients and define u j = Zmax for all j , and then

define the cutoff points l1 = Zmin < l2 < · · · < lK , to consider subpopulations containing patients with

Zi " l j . The choice of the values l j and u j is usually based on different criteria. For example, (a) a

roughly constant number of patients may be added (or subtracted) from one subpopulation to the next;

(b) ‘usual practice’ cutoff values may be used that are commonly used in clinical reports for the specific

disease; or (c) cutoffs can be set equal to each of the observed values of the covariate if it is discrete.

The sliding window approach can be implemented by fixing two parameters r1 and r2, r1 < r2 < n,

and then defining the first subpopulation P1 as containing patients having Z ranging between the smallest
observed value of Z (l1 = Zmin) and the (r2/n×100)th percentile of the observed distribution of Z , taken
as u1. Should such exact percentile not exist, u1 is defined so that at least r2 patients fall in P1. To define
the next subpopulation P2 the value l2 is found so that at most r1 patients fall between l2 and u1. Then, u2
is defined so that P2 contains at least r2 patients. This process is repeated until the last possible population
is defined. Note that after setting r1 = np1 and r2 = np2 for some 0 < p1 < p2 < 1, as n → ∞
the proportion of patients in each subpopulation (except for the last one) converges to p2 (assuming Z

continuous). Also, the resulting number of subpopulations converges to the smallest integer greater or

equal to the number [1+ (1− p2)/(p2 − p1)].
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Figure 2 summarizes the two constructions (sliding window and tail-oriented) described above. The

y-axis represents the values of the covariate Z , and each rectangle describes the set of values of Z

defining each subopulation. Note how Figure 2(b) shows the tail-oriented pattern both for increasing

and for decreasing values of Z . The label ‘ALL’ indicates the subpopulation containing all patients. In

what follows we will show an example of the sliding window pattern, but all of the discussion also applies

to the tail-oriented approach (as well as to other choices of regions within W that the investigator may

choose).

The plot of the estimates θ̂ j with the confidence band around them is a STEPP plot, in which the

treatment effect estimate for each subpopulation P j is plotted versus the x-axis coordinate equal to the

median Z covariate value within that subpopulation. Figure 3 shows an example of a sliding window

STEPP plot for the IBCSG Trial IX for the DFS difference between the two arms, constructed with

respect to the ER expression of the tumor.

3. INFERENCE

From Theorem 1 the estimates θ̂1, . . . , θ̂K of the treatment effects θ1, . . . , θK corresponding to the K

subpopulations P1, . . . ,PK are such that

√
n




θ̂1 − θ1

...

θ̂K − θK




d→ NK








0
...

0



 , '





for some covariance matrix ' that can be estimated consistently. One can then construct simultaneous

confidence bands around the collection of estimators. A 95% rectangular confidence band can be defined

as {θ j ∈ θ̂ j ±γ 1.96 σ̂ j , j = 1, . . . , K }, where σ̂ j = [v̂ar(θ̂ j )]1/2 is a consistent estimator of [var(θ̂ j )]1/2,
and where the value of γ can be obtained by solving numerically

P

[
K⋂

j=1
{θ j ∈ θ̂ j ± γ 1.96 σ̂ j }

]

= 0.95

for a sample of random variables generated from the asymptotic distribution of the estimators. The

parameter γ thus measures the effect of performing joint inference as opposed to marginal inference.

An omnibus test for the equality of the treatment effects can be constructed as a quadratic form based on

the asymptotic normality of the estimators. However, such a test may be quite sensitive to the particular

choice of the subpopulations (see for example Bonetti and Gelber, 2000), and we thus do not recommend

its use. An alternative test statistic for the null hypothesis H0 : θ1 = θ2 = · · · = θK can be defined as

T = sup

{
|θ̂ j − θ̂ALL |

σ̂ ∗
j

, j = 1, . . . , K

}

,

where θ̂ALL is the overall treatment effect estimate computed on the subpopulation PALL containing all

patients, and σ̂ ∗
j is a consistent estimator of σ

∗
j = [var(θ̂ j − θ̂ALL)]1/2. Observe that PALL corresponds to

the choice (l, u) = (Zmin, Zmax) in Figure 1. The asymptotic null distribution of T can be estimated by

generating samples from the asymptotic distribution of the (scaled) vector {θ̂1− θ1, . . . , θ̂K − θK , θ̂ALL −
θALL} under the null hypothesis H0 : θ1 = · · · = θK = θALL = θ0, and a p-value for H0 can then be

easily produced.
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We now focus on the case of treatment effect defined as the difference in survival at a fixed time point

t∗. Let {(Ti ,Ui ), i = 1, . . . , n} be an i.i.d. sample from independent failure time and censoring time

random variables, and the observed data consist of (Xi = Ti ∧ Ui , δi = 1(Xi = Ti )). Let F(t) be the

cdf of T , and define the survival function S(t) = P(Ti > t) = 1 − F(t). Let Ŝ(t) be the Kaplan–Meier

estimator of the survival function (Kaplan and Meier, 1958).

Consider the two conditional survival distributions S j (t) = S(t |P j ), j = 1, 2, where P1 and P2 are
two subpopulations of patients. Let n j = ∑n

i=1 1(i ∈P j ). In Section A2 we show that as n
n→∞−→ ∞, if

n j/n
n→∞−→ p j for j = 1, 2,

[ √
n1(Ŝ1(t) − S1(t))√
n2(Ŝ2(t) − S2(t))

]
d→ N2(0, A'A), with A =

[
S1(t)/

√
p1 0

0 S2(t)/
√
p2

]

and ' = E((η1 η2)
′(η1 η2)). The matrix A can be estimated consistently by replacing Ŝ j (t) and n j/n in

its expression. The matrix ' can also be estimated consistently by the quantity

'̂ = 1

n

n∑

i=1

[
(̂η1i )

2 (̂η1i η̂2i )

(̂η1i η̂2i ) (̂η2i )
2

]

where

η̂ j i = 1(i ∈P j )

(
n jδi1(Xi ! t)∑n

h=1 1(Xh " Xi )1(h ∈P j )
−

n∑

w=1

(
1(w ∈P j )1(Xi " Xw)δw1(Xw ! t)
[∑n

h=1 1(Xh " Xw)1(h ∈P j )
]2

))

.

The generalization to k subpopulations P j , j = 1, . . . , K is straightforward. Finally, let '̂A and '̂B by

the estimates of the asymptotic variance–covariance matrices of the scaled survival estimates
√
n ŜA, j (t

∗)
and

√
n ŜB, j (t

∗) (for j = 1, . . . , K ) in two treatment groups A and B. Then the scaled vector of the

estimated treatment effects {√n θ̂ j = √
n [ŜA, j (t

∗) − ŜB, j (t
∗) − (SA, j (t

∗) − SB, j (t
∗))], j = 1, . . . , K }

is asymptotically normal with the variance–covariance matrix that can be estimated consistently by '̂ =
'̂A + '̂B .

In Section A2 we describe a resampling method that can also be used to estimate the same variance–

covariance matrix with some savings in terms of computing time.

4. APPLICATION

A controversy exists concerning the proper role of chemotherapy for postmenopausal women with

breast cancer. Some argue that chemotherapy provides an insufficient benefit to justify its unpleasant side

effects and cost and because overall results of the Early Breast Cancer Trialists’ Collaborative Group

(1998b) estimate only a 2–3% gain in survival associated with chemotherapy use. Others look to positive

results from clinical trials that include women with high risk disease (see Colleoni et al., 1998) and

women over 49 years old (regardless of menopausal status, see Fisher et al., 1997) to justify the use of

chemotherapy for all postmenopausal women. The controversy is to some extent related to reliance on

overall results, without proper consideration of biologically plausible patient subpopulations for which

the magnitude of chemotherapy effects may differ.

To illustrate how the STEPP methodology might help to resolve this controversy, we apply the sliding

window pattern of subpopulation to data from the IBCSG randomized clinical trial IX that we introduced

in Section 1. For a complete description of the trial and its results refer to International Breast Cancer

Study Group (2002).
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For 1176 of the 1715 patients randomized the quantitative ER measurement on the primary tumor

(obtained using the ligand binding method with results expressed in units of femtomols [fmol] per

milligram of cytosol protein) was available. The median follow-up for this subset of patients was 72

months, and the DFS proportions at 5 years were 79% and 83% for the tamoxifen alone arm and for the

CMF followed by tamoxifen arm, respectively. The p-value for the two-sided log-rank test comparing the

two disease-free survival functions was 0.045, and the test for interaction between treatment and the two

prospectively defined levels of ER (< 10 fmol/mg or ER-negative; " 10 fmol/mg or ER-positive) from

fitting a Cox proportional hazards model was equal to 0.01 (see International Breast Cancer Study Group,

2002). We use a STEPP plot to confirm the presence and visualize the shape of such interaction.

Figure 3(a) shows the DFS estimates at 5 years for CMF followed by tamoxifen and for tamoxifen

alone within subpopulations defined by ER value (plotted on the log scale on the x-axis). Figure 3(b)

shows the corresponding STEPP plot of the difference in 5-year DFS between the two treatment

groups, with marginal 95% confidence intervals and a 95% confidence band. The subpopulations were

constructed using the parameter values r1 = 190 and r2 = 200. As described in Section 2, this produces

subpopulations with approximately 200 patients (r2) in each and slides by dropping and adding about 10

patients (r2 − r1) for each new subpopulation.

The difference in DFS comparing CMF followed by tamoxifen vs. tamoxifen alone is much larger for

smaller values of ER than for larger values of ER. The p-value for the T test statisic is equal to 0.01. In

particular, Figure 3(b) illustrates that the DFS at 5 years for the two treatment groups is similar for all

subpopulations having median values of ER larger than approximately 15, suggesting that CMF may not

be adding much to the effectiveness of tamoxifen for such patients. The STEPP analysis thus confirms

the existence of the interaction between treatment and ER status, and it illustrates the magnitude of the

impact of this interaction in a way that is clinically useful.

The resampling method described at the end of the Appendix was also applied to these data, and it

produced very similar results to the ones obtained by using the asymptotic distribution directly, with the

advantage of a slightly faster execution time for the resampling approach.

The study of treatment–covariate interactions via subset analyses requires that a subjective choice be

made: namely, the choice of the subset of the region W to be used. It thus follows that all inferences

should be interpreted with such choice in mind. In particular, the test T for no interaction is dependent on

the selection of points (l j , u j ) as defined in Section 2. For the sliding window STEPP the test depends on

the values chosen for the two parameters r1 and r2, and it seems desirable to perform a simple sensitivity

analysis to assess the stability of the conclusions of the analysis. As an example, Table 2 shows the

number of subpopulations and the p-value obtained from various choices of these two parameters for

the difference in DFS estimate at 5 years in the Trial IX example. The p-values are consistently highly

significant whenever at least 15% of the patients are included in each subpopulation (i.e. when r2 " 180).

For smaller numbers of patients in each subpopulation the results become less stable, but they still indicate

at least marginal significance (with only two cases resulting in p-values greater than 0.1).

We compared our results with those obtained by fitting the survival models described in Gray (1992),

which use a penalized smoothing spline to model the hazard as a function of continuous covariates in

the Cox proportional hazards model (we used software kindly provided by Dr Gray). Figure 4 shows

the fitted splines as a function of ER within the two treatment arms with bands, showing pointwise ±2
standard deviations. The curves represent the estimated log-hazard ratio of log(ER+1) with respect to the

mean covariate value for the two arms. Examination of the two curves suggests a higher hazard ratio for

lower values for ER within the tamoxifen alone treatment arm, while the hazard ratio appears to be quite

constant as a function of ER in the chemotherapy followed by tamoxifen arm. The statistical test for the

corresponding treatment–covariate interaction (i.e. for the equality of the parameters of the two splines)

returned a p-value of 0.23, and it thus did not reject the null hypothesis. The two splines were based on 10

knots, with the p-value being quite stable as the number of knots was changed from 5 to 20 (knots:p-value
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Fig. 3. STEPP plot for IBCSG Trial IX data—ER subgroups: (a) 5-year disease-free survival (DFS) percentages for

CMF followed by tamoxifen and for tamoxifen alone; (b) 5-year DFS difference (CMF followed by tamoxifen minus

tamoxifen alone).

= 5 : 0.24, 10 : 0.23, 15 : 0.25, 20 : 0.22). Despite lack of statistical significance, the results from this
spline analysis suggest an increased treatment effect for lower values of ER, which agrees with the more

clinically accessible STEPP analysis.

The results from subset analyses could be affected by bias caused by differences in the distribution of

important covariates between the two arms across subpopulations. In randomized clinical trials such as the

one discussed here one typically relies on randomization (possibly stratified) to achieve overall balancing

in covariates across treatment arms. Nevertheless, an assessment of actual balancing is warranted. For the

IBCSG Trial IX we examined summaries of the distribution of important covariates (tumor size, age, and

type of surgery) across the subpopulations of patients constructed for the STEPP analysis, separately for
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Table 2. Sensitivity analysis of the test T of no treatment–covariate interaction for

various choices of r1 and r2 (n = 1176) in the IBCSG application. For each (r1, r2)

combination we report the number of subpopulations (first number in parentheses)

and the p-value for the test T (second number in parentheses)

r2
r1 120 140 160 180 200 220

100 (34,0.0582) (21,0.0418) (15,0.1354) (12,0.0074) (10,0.0054) ( 9,0.0048)

110 (53,0.0664) (25,0.0508) (17,0.1420) (13,0.0076) (10,0.0044) ( 9,0.0046)

120 (33,0.0530) (20,0.0370) (14,0.0060) (12,0.0050) (10,0.0032)

130 (51,0.0648) (25,0.0368) (16,0.0094) (13,0.0056) (10,0.0046)

140 (33,0.0620) (19,0.0068) (14,0.0054) (11,0.0058)

150 (51,0.0708) (24,0.0088) (16,0.0070) (13,0.0072)

160 (31,0.0094) (19,0.0070) (14,0.0058)

170 (48,0.0112) (24,0.0086) (16,0.0066)

180 (31,0.0106) (19,0.0098)

190 (48,0.0100) (23,0.0110)

200 (31,0.0142)

210 (46,0.0126)
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Fig. 4. Results from fitting a spline-based Cox proportional hazards model to the IBCSG Trial IX data.

the two treatment arms (results not shown). We found no indication of differences in these distributions

between the two arms. Differential compliance to treatment between the two arms might also explain

trends in the treatment effect estimates computed on patient subpopulations, and we examined for that

possibility. We defined a patient to be noncompliant to the tamoxifen treatment if she received fewer than

51 months of tamoxifen. The overall tamoxifen noncompliance rate was 7%. No significant trend was

observed across the STEPP subpopulations. For completeness, chemotherapy noncompliance in the CMF

arm (defined as a patient’s receiving fewer than the three cycles) was quite constant at about 9% across

the STEPP subpopulations.

5. DISCUSSION

We have provided a framework for the common practice of performing treatment effect estimation

on overlapping subsets of patients enrolled in clinical trials. That intuitive practice can represent a useful
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tool to study treatment–covariates interactions, as the STEPP plots highlight patterns of treatment effect

differences without deviating from the conceptual simplicity of subset analysis. Among the advantages

deriving from this similarity, the nonparametric nature of the method allows flexibility without imposing

strong functional assumptions. In comparison to other approaches (such as the spline method described in

Gray, 1992), our subgroup approach is also characterized by the fact that treatment effects are estimated on

clearly defined patients subgroups, and use clinically familiar quantities (e.g. the Kaplan–Meier estimator

of survival).

One can also plot the observed pattern of treatment effects over a background of reference curves

to help identify particular characteristics of the observed path. Such paths can be simulated from the

estimated finite-dimensional asymptotic distribution, and plotted under the assumption that all treatment

effects are identical to the overall treatment effect. Figure 5 shows an example of such simulated paths

for the difference in DFS at 5 years for the IBCSG Trial IX data. Each of the top six graphs shows the

observed path of treatment effect (the thicker line) and a reference curve generated from the estimated

multivariate normal distribution. The graph at the bottom of the figure shows the observed curve (thick)

and 20 such reference curves. The techniques in Bowman and Wright (2000) can also be used to produce

reference bands, but only under the hypothesis of independence between survival time and the covariate of

interest within each treatment group, and under the hypothesis of a proportional hazards structure. Neither

of these assumptions are necessary to the subset approach that we discussed here.

It should be stressed that the common practice of reporting treatment effect estimates within subgroups

of patients defined with respect to different covariates is a particular case of the methods discussed

here. Treatment effect estimates computed on ER-positive patients and on patients older than 40 years

of age (say) are clearly correlated, since they are based on overlapping groups of patients. The joint

estimation and interpretation of such subgroup treatment effects and of subgroup hypothesis tests requires

distributional results such as those presented here, as a Bonferroni adjustment is likely to be too

conservative. The results presented here apply immediately, if one defines the subpopulations accordingly.

The approach that we have taken here can be applied to other measures of treatment effect. For

example, STEPP can be used to study the difference in median survival between treatment arms (details of

that implementation will be presented elsewhere). Also, one can use model-based measures of treatment

effect as was done in Bonetti and Gelber (2000), where the Cox proportional hazards model was used

to estimate treatment effects. In that context, however, for definiteness one must assume that the model

is the same in all subpopulations, and that no treatment–covariate interaction is present. As discussed in

Bonetti and Gelber (2000), the analysis in that case is therefore aimed at testing such null hypothesis and

at suggesting the form of possible deviations from it, rather than at estimating the magnitude of treatment

effects.

As a last comment, note how above we focused on data arising from clinical trials. However, subgroup

analyses are also common in observational studies, and the methods are also relevant for that setting, with

the addition of the usual caveat of the need for dealing carefully with possible confounding. As we have

seen in Section 4, issues of selection bias are relevant more in general (also for randomized studies),

since the identification of the causal effects of interest is complicated if randomization is not available (or

effective) to reduce confounding and compliance rates differ in the two arms across the subpopulations.
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APPENDIX A

A.1 Asymptotic distribution of the collection of estimators of treatment effect

Let Pn = (1/n)
∑n

i=1 1δYi
be the empirical measure corresponding to the sample Yi = (Xi , Zi ),

i = 1, . . . , n (with 1δy indicating the probability distribution that is degenerate at y). Also, let Fn(y) =
(1/n)

∑n
i=1 1(Yi ! y) = ∑n

i=1 1(Zi ! z, Xi ! x) be the corresponding empirical cdf, and T (Fn) some

functional of Fn . Let F(y) be the population cdf of Y .

THEOREM 1 Let T (·) be a Hadamard-differentiable functional. Define the conditional empirical distri-
bution function

F(x; l, u) =
∫
1(X ! x)1(l < Z ! u) dF(Y )∫

1(l < Z ! u) dF(Y )
,

where (x, l, u) ∈ W = ) × {(l, u) ∈ )2|Zmin < l ! Zmax, u − l " η} for some η > 0. Then√
n[T (Fn(x; l, u)) − T (F(x; l, u))] converges weakly to a Gaussian process indexed by (x, l, u) ∈ W .

We need to consider empirical processes indexed by sets (see for example van der Vaart and Wellner,

1996). It is easy to show that the two collections of sets C1 = {(l, u] ⊂ )} and C2 = {(−∞, x] ⊂ )} both
have finite VC-index. Each elementC of their product C = C1×C2 can be identified by the triplet (x, l, u),
and since it is the product of two VC-classes, it is also a Donsker class. Thus the empirical process Gn =√
n(Pn − P) converges weakly to a tight limit G in l∞(C), where C can be identified with the subset of )3

{(l, u, x)|Zmin ! l < u ! Zmax, x ∈ )} and where Pn(C) = Pn(x, l, u) = (1/n)
∑n

i=1 1(Xi ! x)1(l <

Zi ! u). Any collection of sets (C1, . . . ,Ck) of C can therefore be identified by the triplets ((x, l, u)1,

. . . , (x, l, u)k). By the square-integrability of the indicator functions of the sets in C one has that for any
such finite collection of sets the multivariate central limit theorem guarantees that the asymptotic distribu-

tion of the vector (GnC1, . . .GnCk) ↔ (Gn(x, l, u)1, . . .Gn(x, l, u, )k) is multivariate normal. Coupled

with the tightness result above, this fact proves the convergence to a Gaussian process, and the result is

still valid when one restricts C to contain only sets such that P(u < Z ! l) " ε > 0 (since the VC-class

property is preserved). Note that if one assumes that the support of Z is some interval [Zmin, Zmax], then
the latter restriction is equivalent to the requirement that u − l " η > 0, as shown in Figure 1. The map

P(x, l, u) 1→ F(x; l, u) = P(x, l, u)/
∫
x∈) dP(x, l, u) is therefore Hadamard-differentiable (since the

denominator is bounded away from zero). The differentiability of the map follows from the linearity of

the integral and from the chain rule theorem (see Theorem 20.9 in van der Vaart, 1998). Application of the

functional delta method then completes the proof. The Kaplan–Meier estimator of survival is Hadamard-

differentiable (see for example pp. 372 and 392 in van der Vaart and Wellner, 1996), where one has to

specialize X to be the pair (S ∧C, 1(S < U )) with S survival time and U an independent censoring time.

A.2 Asymptotic distribution of estimates of S(t∗)
Recall the following notation from Section 4. In addition, define the cumulative hazard function )(t) =∫ t
0 (1 − F(u−))−1 dF(u), the counting process Ni (t) = 1(Xi ! t, δi = 1), and the compensator Ai =∫ t
0 Yi (s) d)(s) (where Yi (t) = 1(Xi " t)) and Mi (t) = Ni (t) − Ai (t). If we indicate the sums over all

observations of the Y (t), Ni (t), Ai (t), and Mi (t) by Y (t), N (t), A(t), and M(t) respectively, then it is

well known that M(t) = N (t) −
∫ t
0 Y (s) d)(s) = ∑n

i=1(Ni (s) −
∫ s
0 1(Xi " u) d)(y)). The quantity

Ŝ(t) − S(t) can be approximated by the quantity

S(t)

∫ t

0

Ŝ(s−)

S(s)

1(Y (s) > 0)

Y (s)
dM(s) (A.1)
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(see for example Fleming and Harrington, 1991, p. 37). By the uniform convergence of Ŝ(t) to S(t) and the

Glivenko–Cantelli theorem, the integrand in the expression above (multiplied by n) converges uniformly

to the function h(s) = (P(X " s))−1. One thus has

Ŝ(t) − S(t) ≈ 1

n
S(t)

∫ t

0

h(s) dM(s) = S(t)
1

n

n∑

i=1
ηi ,

with ηi =
∫ t
0 h(s) d(Ni (s)−

∫ s
0 1(Xi " u) d)(u)) being only a function of i , and thus the collection of the

ηi being i.i.d. random variables. Now, consider the two conditional survival distributions S j (t) = S(t |P j ),

j = 1, 2, let n j = ∑
1(i ∈P j ), and extend the notation above to h j (s), ) j (s), N j (s) and η j i to indicate

the corresponding quantities within the two subpopulations (set η j i = 0 if i /∈ P j ). One then has

[ √
n1(Ŝ1(t) − S1(t))√
n2(Ŝ2(t) − S2(t))

]
≈ 1√

n





√
n
n1
S1(t)

∑n
i=1 η1i√

n
n2
S2(t)

∑n
i=1 η2i



 ,

and assuming that n j/n
n→∞−→ p j for j = 1, 2, by Slutsky’s theorem and by the multivariate central limit

theorem the left-hand side converges in distribution to the N2(0, A'A) distribution, with

A =
[
S1(t)/

√
p1 0

0 S2(t)/
√
p2

]
and ' = E((η1 η2)

′(η1 η2)).

Note how the asymptotic normality of the collection of estimators also follows from Theorem 1, but

not the explicit expression of their asymptotic variance–covariance matrix. The matrix A can be estimated

consistently by replacing Ŝ j (t) and n j/n in its expression. The matrix' can also be estimated consistently

by the quantity

'̂ = 1

n

n∑

i=1

[
(̂η1i )

2 (̂η1i η̂2i )

(̂η1i η̂2i ) (̂η2i )
2

]

where the η̂ j i can be obtained by plugging in ĥ j (s) = n j/
∑n

i=1(1(X " s)1(i ∈P j )) for h j (s) and by

replacing ) j (s) by Nelson’s estimator )̂ j =
∫ s
0

dN j (u)

Y j (u)
. Since the stochastic process N j (s) has jumps of

size δi1(i ∈P j ) at the Xi and the process )̂ j (s) has jumps of size δi1(i ∈P j )/
∑n

h=1 1(Xh " Xi )1(h ∈P j )

at the Xi , after some manipulation the final expression for η̂ j i is

η̂ j i = 1(i ∈P j )

(
n jδi1(Xi ! t)∑n

h=1 1(Xh " Xi )1(h ∈P j )
−

n∑

w=1

(
1(w ∈P j )1(Xi " Xw)δw1(Xw ! t)
[∑n

h=1 1(Xh " Xw)1(h ∈P j )
]2

))

.

An alternative resampling approach can also be used to obtain samples from the asymptotic distribution

described above. For simplicity, consider the case of two overlapping subgroups. As in (A.1) above, one

can write

√
n
(
Ŝ(t) − S(t)

)
≈ −S(t)

∫ t

0

Ŝ(u−)
√
n

S(u)y(u)
dM(u) = −S(t)

n∑

i=1

∫ t

0

Ŝ(u−)
√
n

S(u)y(u)
dMi (u),

where the quantity Hi = (Ŝ(u−)
√
n)/(S(u)y(u)) is a predictable process (since left-continuous). It is

well known that the right-hand side is a martingale with respect to t , and that it asymptotically follows a
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normal distribution. Also, because of the strong consistency of Ŝ(t), the asymptotic distribution does not

change if one substitutes the terms Gi dNi for the dMi , where the Gi , i = 1, . . . , n are standard normal

random variables (see Tsiatis, 1981). After approximating S(u) by Ŝ(u−), and by the definition of the

counting processes Ni , one thus has

√
n
(
Ŝ(t) − S(t)

)
≈ −S(t)

n∑

i=1

{∫ t

0

Ŝ(u−)
√
n

S(u)y(u)
dNi (u)

}

Gi ≈ −Ŝ(t)
n∑

i=1

{√
nδi1(Yi ! t)

y(Xi )

}
Gi .

The asymptotic variance of the left-hand side can then be estimated by generating many samples of

n independent standard normal random variables. Observe that the procedure is clearly not necessary

if one is only interested in the asymptotic variance of the Kaplan–Maier estimator computed for one

subpopulation (or for non-overlapping subpopulations), since Greenwood’s formula can be used directly

in those cases. If we now call P1 and P2 two (possibly overlapping) sets of indices that define two patient
populations, then (with obvious notation) we can use the procedure above to estimate the covariance

matrix of the bivariate vector of the survival estimates in the two subgroups. In fact,




√
n1

(
Ŝ1(t) − S1(t)

)

√
n2

(
Ŝ2(t) − S2(t)

)



 ≈





−S1(t)
∑n1

i=1
∫ t
0

Ŝ1(u
−)

√
n1

S1(u)y1(u)
dMi (u)

−S2(t)
∑n2

i=1
∫ t
0

Ŝ2(u
−)

√
n2

S2(u)y2(u)
dMi (u)



 ,

where y1(u) = ∑n
k=1 1(Xk " u)1(k ∈P1), and similarly for P2. Or finally,

√
n





(
Ŝ1(t) − S1(t)

)

(
Ŝ2(t) − S2(t)

)



 ≈




−Ŝ1(t)

∑n
i=1

√
nδi1(Yi!t)1(i ∈P1)

y1(Xi )
Gi

−Ŝ2(t)
∑n

i=1
√
nδi1(Yi!t)1(i ∈P2)

y2(Xi )
Gi



 .
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