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Abstract

Introduction: Statistical analysis of syndromic data has typically focused on univariate test statistics for spatial, temporal, or
spatio-temporal surveillance. However, this approach does not take full advantage of the information available in the data.

Objectives: A bivariate method is proposed that uses both temporal and spatial data information.

Methods: Using upper respiratory syndromic data from an eastern Massachusetts health-care provider, this paper illustrates a
bivariate method and examines the power of this method to detect simulated clusters.

Results: Use of the bivariate method increases detection power.

Conclusions: Syndromic surveillance systems should use all available information, including both spatial and temporal
information.

Introduction
In 2002, CDC advised health departments to seek routinely

collected electronic data as part of early warning systems for
biologic terrorism (1). The potential cost-effectiveness of such
systems might explain why certain major metropolitan areas
(e.g., Boston and New York) are beginning to implement
CDC’s recommendation (2,3). The primary concern of a
biosurveillance system is to analyze and interpret data as they
are collected and then decide whether further investigation is
required. This report proposes a statistical methodology needed
to make such a system efficient and effective and focuses on
how to use information about the number of patients affected
and where they live to detect outbreaks or other deviations
from the normal pattern of disease.

Two statistical concerns are fundamental to surveillance:
1) determining a reasonable definition of “normal” behavior,
and 2) being vigilant for deviations from this normalcy. CDC’s
weekly surveillance for pneumonia and influenza mortality in
122 U.S. cities is one example of an attempt to put this into
practice (see MMWR Weekly at http://www.cdc.gov/mmwr). In
that model, historic data allow for time-series modeling of sea-
sonal fluctuations in deaths; the model represents an attempt to
define normalcy. Building on a sinusoidal model for the sea-
sonal baseline, standard statistical methods (4) provide a confi-
dence band outside of which mortality can be considered a
deviation from the norm. Such a definition of normalcy is too
stringent because deviations from normalcy occur almost every
year; therefore, its usefulness for a surveillance system might be
questionable. However, a too-lenient definition of normalcy
might then never detect a deviation from normal.

Combining Univariate Statistics
Combining more than one test statistic from a single data

source poses problems. In certain situations, multiple testing
without an appropriate statistical adjustment leads to an
inflation of the false-positive rate. However, such adjustments
can be conservative and adversely affect the power of the tests.

One approach that avoids the multiple-testing problem
involves investigating the joint distribution of the test statis-
tics. As a result, the information encoded in each statistic is
used, but the false-positive rate can still be carefully controlled.
The bivariate methodology described in this paper is one
example of combining univariate statistics. Although the con-
cept generalizes easily to other settings, implementation of
this methodology will necessarily differ, depending on the situ-
ation. The requirements and assumptions (as well as the
strengths and weaknesses) of the particular univariate models
and statistics used will affect the power and robustness of any
implementation of this bivariate approach.

Data
Data for this study were obtained from a major health-care

provider in eastern Massachusetts. As patients arrive for emer-
gency care, their cases are geocoded (typically by using the
patient’s residential or billing address); this information is cen-
tralized electronically on a daily basis. For this study, a subset
of the data was selected, consisting of upper respiratory infec-
tions (URIs) during January 1, 1996–October 30, 2000, for
a period of 1,399 days. (For protection of confidentiality, the
spatial data provided in this report were aggregated by census
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FIGURE 1. Sample box plots of daily case volume of upper
respiratory infections, by day

Note: Caseload on weekends is lower, when certain clinics are closed.
Monday counts are, on average, slightly higher but are also more variable
because Mondays are often holidays (which, in turn, results in an elevated
average Tuesday caseload).

tract and white noise was added to the centroids of the tracts.)
Thus, the data stream provides the temporal patterns of dis-
ease (i.e., the number of cases arriving each day), as well as the
spatial patterns of disease (i.e., the locations of patients over
time).

Using all available information should provide better detec-
tion power than using just the number of patients or only
their locations. Thus, the proposal is to analyze the temporal
series first, then the spatial series, and, finally, to conduct a
joint analysis of the two.

Methods

Time-Series Modeling
Time-series modeling is one approach for analyzing tempo-

ral data. Certain trends in the number of patients reporting
daily with URIs make modeling challenging. One such trend
is a seasonal effect, which can be modeled efficiently. Super-
imposed on the seasonal effect is a substantial daily effect,
including a slight downward trend in the number of URIs
from Monday through Friday, as well as a substantially higher
variance from the start of the week to the end (Figure 1). Week-
ends and holidays must be analyzed separately because cer-
tain clinics and other locations are closed on those days,
resulting in lower case volume and a different spatial distribu-
tion of patients. Health-care demand for weekends and holi-
days is often satisfied on Mondays or weekdays immediately
after holidays, resulting in a higher case volume on those days.

For the time series N(t) of number of URIs to be accurately
modeled, a sinusoidal baseline curve must first be fitted to
account for seasonal variations. Each data point can then be
considered as a residual departure from the baseline predic-
tion. The residuals are then modeled to find a best predicted
value of N(t). Because patient behavior varies by day of week,
days are categorized as follows: 1) weekend days or holidays;
2) Mondays or days after holidays; and 3) all other weekdays.
Seasonal and daily effects are incorporated into a linear model.
The residuals from this mean function are autocorrelated;
therefore, a third-order autoregressive component and a first-
order moving average component (Autoregressive Moving
Average [ARMA] [3,1] are used to model this autocorrelation.
Thus, the final model is formulated as

log[N (t )] = (seasonal sinusoid + daily indicators +
interactions) + e (t) + β1e (t – 1) + β2e (t – 2) +
β3e (t – 3) + γ log [N (t –1)]

where e(t) is the residual (observed or predicted value) at time
t, and the β, γ are ARMA coefficients estimated from a stan-
dard statistical package. The standard deviation of the residu-
als is used as a measure of the model’s goodness-of-fit. After
inclusion of the ARMA terms, the standard deviation of the
residuals was reduced from 0.732 to 0.321 (on the log scale),
indicating that the ARMA series has a better fit than the simple
sinusoid. Standard deviations for holidays and weekends,
Mondays and days after holidays, and other weekdays are all
comparable; however, these are measured on the log scale, and
thus, the higher case volume on Mondays and days after holi-
days, together with greater variation on those days (Figure 1),
reduces the model’s predictive power for those days as com-
pared with weekends and holidays, which have lower mean
case counts.

The time series N(t) is an attempt to describe normal
behavior. The residuals are distributed approximately normally
with mean 0, and a nominal alpha level can be chosen on the
basis of historic data, and any observation falling outside
of a particular critical region can be considered worthy of
investigation.
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FIGURE 2. Frequency polygons of distances for five
nonoverlapping periods, illustrating seasonal stability of the
empirical cumulative distribution function of interpoint
distances

Note: Although equiprobable bins are used when calculating the M statistic,
they are displayed here as a standard (equal width) format for ease of
viewing.

F D( )

Spatial Statistic
Temporal analysis provides only one perspective, albeit a classic

one, of the information in the surveillance data (i.e., the num-
ber of patients) The geocoded portion of the data set (i.e., the
location of the patients) provides a second perspective. Other
researchers have used spatial analytic approaches (2,3,5) on the
assumption that terrorist attacks might produce a pattern of
disease with a distinctive spatial signature (6).

Multiple spatial statistics have been designed to detect dis-
tinctive spatial patterns (7,8). Because the particular disease
pattern that a terrorist attack might produce remains unknown,
a statistic should be sufficiently flexible to detect multiple dis-
tortions from normalcy without requiring a priori knowledge
of how such a distortion might appear. For this analysis, simple
application of the M-statistic (9), which is based on the distri-
bution of distances between patients, was chosen. To com-
pute the M statistic for detection of outbreaks, all pairwise
distances between locations of patients arriving for care each
day are calculated. An empirical cumulative distribution func-
tion (ECDF) of these distances can then be compared with
the historically determined distribution of distances to yield a
test statistic, M. Asymptotic properties of the M statistic (9)
or empirical simulation allow for a nominal alpha level to
determine substantial deviations from the norm.

Fundamental to use of the M statistic is the remarkable
stationarity of the distribution of distances over time. The
frequency polygon of distances, derived from the ECDF, for
five randomly chosen, nonoverlapping 30-day periods distrib-
uted across seasons and throughout the approximate 4-year
study period, is illustrated (Figure 2). The ECDF is sufficiently
stable from season to season and year to year to establish a
definition of normalcy.

Daily geocoded data enables 1) calculation of the ECDF
         (where F(D) denotes the cumulative distribution func-
tion of interpoint distances determined from historic data)
for each day’s disease cases, and 2) calculation of a test statistic
measuring the departure from F(D). To avoid complexities,
the daily case load is used to calculate distances between
patients; typically, memory can be incorporated into the sys-
tem by extending a temporal window within which to calcu-
late distances. This extension would be especially important
when dealing with a contagious ailment that has an incuba-
tion distribution. To facilitate calculation of the statistic, all
of the interpoint distances are placed into 10 bins that are
equiprobable under the distribution F(D), and a Mahalanobis-
like distance is calculated as

M = (o – e)t S – (o – e)

where o is the 10-dimensional vector of observed proportions
of distances in each bin; e is the vector of expected propor-
tions (equal to [0.1, … , 0.1]) under the null distribution;
and S is an estimator of the variance-covariance matrix ∑ of
the bin proportions calculated under the null. S is calculated
from the historic data and a generalized inverse S – is used
because S is not of full rank.

Because the distribution of distances between patients is sta-
tionary, an alert based on M can be instituted so that large
values of M generate the alert; exactly how large these values
must be is determined by the desired false-positive rate. The
null distribution of M is determined by the null distribution
of the distances; however, asymptotically, NM has a χ2 distri-
bution with degrees of freedom equal to the rank of the cova-
riance matrix ∑ –

∑ (where NM refers to the product of the
test statistic M(t) and number of cases N at a time t). Thus,
the distribution of NM is asymptotically independent of the
number of cases used to calculate the statistic. As the degrees
of freedom increase, the log of a χ2 random variable approxi-
mates a normal distribution, and experience has confirmed
that the values log(NM) give a close normal approximation.
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FIGURE 3. Subset of the null (N) and alternative (A) populations
used to train the quadratic discriminator for using the bivariate
test statistic to perform power calculations for spatio-temporal
disease surveillance

Note: The horizontal axis measures the spatial component of the data, the
vertical axis measures the temporal component, and the solid black line (a
portion of the classification boundary) is used to decide whether a particular
day’s observation falls into the null (normal) or alternative (unusual/outbreak)
population.

More importantly, this demonstrates that the random vari-
ables NM and N are approximately independent for large N
(i.e., N >40). Thus, the temporal information and spatial
information are orthogonal (for large N).This substantiates
combining the two to produce an even more powerful statis-
tic, as discussed in the following section.

Bivariate Test Statistic
Use of a bivariate test statistic, composed of the two statis-

tics described previously, is proposed to increase the power of
outbreak detection. N(t) permits calculation of a residual value
for the number of cases arriving, on the basis of the time-
series prediction for that day, with residuals that are approxi-
mately normal. Log(NM) expresses the deviation of the spatial
distribution of cases from normalcy, and this statistic is
approximately normal as well. Standard techniques from mul-
tivariate analysis can be used to construct an elliptical rejec-
tion region for a bivariate normal population at prespecified
alpha level (false-positive rate) that can be used to detect
deviations from normalcy. However, this might not offer par-
ticular protection against the alternative of interest (i.e., an
outbreak resulting from release of a biologic agent).

As another approach, potential biologic attacks can be mod-
eled to simulate bivariate values in the event of an attack; in
this case, an optimal discriminator (the quadratic classifica-
tion rule) exists between two bivariate normal populations: 1)
the bivariate distribution under the null, and 2) the modeled
bivariate distribution under the alternative of a biologic at-
tack (10). The classification rule is a quadratic form that, given
log(NM) and the one-step-ahead time-series residuals, assigns
one day’s observations to either the null or alternative popula-
tion. This rule minimizes the expected error of misclas-
sification. The false-positive rate can be controlled by shifting
the quadratic boundary appropriately, as determined through
simulation or resampling of the historic record. A typical case
of the null and alternative populations, together with the
boundary of the discriminator, is illustrated (Figure 3).

Results
Because no biologic terrorism events occurred in eastern

Massachusetts during the period of study, an outbreak simu-
lation was necessary. To this end, for each of four locations,
either six, nine, or 12 additional URIs were added to the
existing data set. The range of 6–12 cases represents approxi-
mately 0.25–1.25 standard deviations of the original caseload,
depending on the day of the week (mean daily case count is
approximately 15 cases/day on weekends, 55 cases/day on
Mondays, and 40 cases/day on other weekdays). The signal

was dispersed across adjacent census tracts (i.e., adding six
cases at a particular location amounted to choosing six nearby
tracts and adding one case to each tract). (For brevity, such a
simulated signal is called a cluster.) By using the statistics dis-
cussed previously, power was calculated on the basis of this
simulated disease signal. Although other methods might have
higher power to detect a concentrated cluster (e.g., six addi-
tional cases in one tract), they are less likely to perform as well
when the signal is dispersed.

A simulated cluster was added to each of the 1,399 days of
data, 1 day at a time, to assess how frequently different statis-
tics might detect such a signal. Power calculations were per-
formed separately for each of the three daily categories
(weekend days or holidays, Mondays or days after holidays,
and all other weekdays) because prediction and behavior dif-
fer within each of these categories. A detection threshold was
set for each statistic on the basis of an alpha level of 0.05. For
daily observations (as are illustrated here), this is equivalent
to one false alert every 20 days. Power equals the ratio of
detections to the total number of observations.

The four locations chosen for the simulation are in differ-
ent geographic areas covered by the data. Previous simula-
tions have demonstrated that power to detect a cluster might
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FIGURE 4. Simulated clusters for use in outbreak-detection
power calculations involving spatial and bivariate test statistics

Note: Four different sets of simulations were performed, using different
cluster locations; these are indicated by the circles. Within each circle, large
dots indicate census tracts for which cases were added to simulate a disease
cluster. The small dots represent census tract locations across the Greater
Boston area.

TABLE. Powers for three statistical tests in detecting disease
outbreaks when simulated clusters of size six, nine, and 12 are
superimposed on original data from four locations (census
tracts 446, 185, 364, and 212)
Location, cases Holidays/ Days after
and cluster size Overall weekends Weekdays holidays

Temporal test*
N + 6 0.128 0.168 0.112 0.100
N + 9 0.213 0.304 0.187 0.117
N + 12 0.286 0.408 0.234 0.217

Spatial test using the M-statistic
446, N + 6 0.141 0.162 0.138 0.108
185, N + 6 0.141 0.148 0.151 0.090
364, N + 6 0.093 0.103 0.092 0.075
212, N + 6 0.054 0.078 0.044 0.042
446, N + 9 0.258 0.299 0.264 0.156
185, N + 9 0.254 0.256 0.276 0.175
364, N + 9 0.187 0.237 0.171 0.142
212, N + 9 0.064 0.087 0.051 0.061
446, N + 12 0.383 0.422 0.395 0.258
185, N + 12 0.382 0.397 0.410 0.250
364, N + 12 0.292 0.349 0.283 0.203
212, N + 12 0.072 0.075 0.071 0.071

Bivariate statistic
446, N + 6 0.441 0.536 0.453 0.200
185, N + 6 0.456 0.520 0.514 0.117
364, N + 6 0.373 0.424 0.416 0.117
212, N + 6 0.308 0.360 0.327 0.133
446, N + 9 0.659 0.776 0.682 0.333
185, N + 9 0.652 0.776 0.682 0.283
364, N + 9 0.564 0.728 0.575 0.183
212, N + 9 0.391 0.464 0.416 0.150
446, N + 12 0.777 0.904 0.790 0.467
185, N + 12 0.807 0.896 0.850 0.467
364, N + 12 0.747 0.864 0.780 0.383
212, N + 12 0.509 0.608 0.537 0.200

* Results for this test are not stratified by location because the statistic
depends only on the number of cases and not on location.

depend on the local geography and location of the signal source
(11). This effect is confounded by the population distribu-
tion in the data available. Locations on the outskirts of the
region covered tend to be more sparsely populated; hence, the
signal is more widely dispersed. The census-tract locations in
the study area, together with the four locations at which clus-
ters were simulated, are illustrated (Figure 4). The cluster at
location 446 corresponds to an area approximately circular
with radius 0.5 miles; at locations 185 and 364 with radius 1
mile; and at location 212 with radius 1.5 miles. These radii
reflect population densities.

Power calculations for the three test statistics are provided
(Table). Results for the univariate test statistic N based on
time-series modeling are not stratified by location because the
statistic depends only on the number of cases and not on
locations. Power to detect an additional six, nine, or 12 cases
added to the case counts of the final 399 days of data was then
calculated by using the first 1,000 days to train the model
(Table).

Next, a training sample was generated based on a modeled
signal consisting of 12 cases near location 446, superimposed
on each of the first 1,000 days of data. This permitted genera-
tion of two distinct bivariate normal populations of values,
consisting of N(t) residuals together with log(NM) calcula-

tions, as a training sample. Next, for a simulated cluster in the
final 399 days of data, the corresponding bivariate test statis-
tic was calculated, and the quadratic classification rule was
used to place each day’s simulated cluster into the null (no
signal) population or the alternative (signal present) popula-
tion (Table). Power in this case equals the number of clusters
classified in the alternative divided by the total number of
observations.

Conclusions
The power of the univariate statistic N, which detects

deviations from the predicted number of cases daily, illustrates
the difficulties of time-series modeling for public health sur-
veillance. The behavior of the time series N(t) is nonstationary,
with differing variation according to season and day of the
week. Rather than relying on a simple autoregression, detec-
tion results could be improved by considering a multivariate
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periodic autoregression (12). Meanwhile, the spatial statistic
M has exhibited promise in other contexts to detect spatial
deviations from the norm (3,9). Further research into the char-
acteristics of this and other spatial statistics is needed, as dif-
ferent complementary spatial methods exist that can be used
in conjunction with differing detection power.

Development of additional statistical methods and research
into those methods are critical to the terrorism surveillance
effort. Because routinely collected electronic data are often
available to public health departments and researchers, effi-
cient analysis of these data provides a low-cost method for
surveillance. Although one cannot make any claims as to the
robustness or generalizability of the bivariate method to other
data sets or other univariate statistics, the power calculations
provided here demonstrate that information on the number
of cases as well as the spatial distribution of those cases can be
used effectively in combination to improve the efficiency of
surveillance systems.
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