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Abstract

The current note presents the power comparisons for disease clustering tests, as originally
reported by Kulldor) et al. (Comput. Statist. Data Anal. 42 (2003) 665). A minor improvement
to the implementation of the M -statistic, motivated by that work, results in dramatically higher
power to detect clusters of disease.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This current note is intended to present the results =rst reported in this journal com-
paring the power of various statistics to detect simulated clusters (Kulldor)
et al., 2003). The original paper compared three statistics: Kulldor)’s spatial scan
statistic (Kulldor), 1997), Tango’s MEET statistic (Tango, 2000) and the M -statistic of
Bonetti and Pagano (Bonetti and Pagano, 2004). At the time of writing, the M -statistic
was relatively in early stages of development. In particular, proper implementation for
simulations and power comparisons was in an early stage. Since then some basic im-
provements have been made to the algorithmic implementation of the M -statistic, and
some fundamental methodological improvements have also enhanced the power of the
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M -statistic to detect simulated clusters. The results presented here are our most recent
e)ort to accurately record the power of detection as it was earlier described (Kulldor)
et al., 2003).

2. Methodology

A brief summary of the conceptual basis for the M -statistic follows, which will help
us make clear the changes that led to the new results.
Bonetti–Pagano’s M -statistic is a non-parametric general test for clustering. It rep-

resents and compares the spatial distributions of two populations (here the null and
alternative data sets) via the interpoint distance distribution. From a collection of n
cases, we can calculate the

( n
2

)
interpoint distances between cases and consider the

distribution of these distances. A resampling procedure on the control population is
used to generate a baseline (or null) distribution. The interpoint distances between the
cases is calculated, and both distributions are binned into histograms, each of which
can be represented as a vector. The test statistic is then a Mahalanobis-like distance
between the two vectors, weighted by an estimate of the covariance between histogram
bins.
More formally, repeated resampling from the null data sets is used to estimate the

distribution of distances under the null hypothesis. Binning these distances and taking
the mean over all iterations gives expected counts for each bin of the histogram. The
number of bins, k, needed to achieve optimum sensitivity and speci=city is being
studied; experience with this method suggests that the optimal number of bins grows
roughly on the order of

√
n, where n is the number of cases being assessed (see

also, Mann and Wald, 1942). Let e denote the vector of expected bin counts. Then a
resampling procedure also allows us to estimate the covariance of e, which we will
write as S, a k by k square matrix.
The interpoint distances for the disease cases are calculated, binned, and written as

a k-dimensional vector o, the observed counts. Then the M -statistic is

M = (o− e)′S−(o− e);
where S− is a generalized inverse of the sample covariance matrix S. Thus we calculate
the di)erence between the expected (under the null hypothesis of no clustering) bin
counts and the observed bin counts of the disease cases, inversely weighed by the
covariance estimator. As S− is a positive semi-de=nite matrix, M¿ 0.

The general asymptotic distribution of M is found in Bonetti and Pagano (2004).
In practice, we can use the resampling procedure to calculate the distribution of M
for the null population. Comparing the calculated value of the test statistic to the null
distribution gives a Monte Carlo p-value that can be interpreted as the probability
that the spatial distribution of the alternative data di)ers from the null by chance
alone.
The relevant changes in the implementation of the M -statistic for these results lie in

the binning procedure used to approximate the interpoint distance distribution. In the
original power comparison Kulldor) et al. (2003), the collection of interpoint distances
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was binned into 40 equispaced bins, as in an ordinary histogram. Since that time,
further investigation has indicated that higher sensitivity may be achieved by using
equiprobable bins. Under this procedure, we estimate quantiles of the distribution of
distances under the null hypothesis. These quantiles are used as the breakpoints for
binning, thus resulting in equal expected counts under the null. We do not need to
consider any particular alternative in order to determine the quantiles under the null,
hence this method does not make any reference to the alternative model.
A typical unimodal distribution, such as we often =nd for the interpoint distances

under the null, has the majority of its probability mass near the mode, and relatively
little mass in the tails. Hence, equispaced bins will have expected counts that are high
near the mode and small near the tails. In order to maintain stable estimates for the
covariance matrix of bin proportions, we must avoid bin counts near zero and thus
must keep an appropriately small number of equispaced bins.
Equiprobable binning allows for a higher number of bins to be used, since com-

putational problems with sparse bin counts near the tails can be controlled as the
number of bins increases. Because the bins are of variable width, the bins near the
tails are much wider than the bins near the mode. When calculating the test statistic,
the heteroskedasticity associated with these variable bin widths is accounted for via the
covariance matrix. Equiprobable binning allows one to use many more bins and hence,
in most cases, to achieve greater sensitivity to potential disturbances in the distribution
of distances. This greater sensitivity is reKected in the improved results below.
For the results reported here, 200 equiprobable bins were used, with quantiles es-

timated from the null data sets. To make the di)erences in binning clear, with 600
cases there are

( 600
2

) ∼ 180; 000 interpoint distances. This gives an expected value of
roughly 900 distances per bin across all 200 bins. To contrast this with the case of 40
equispaced bins, for the null data sets used in this study the expected counts for the
last three bins were only 2.8, 1.6, and 0.4.

3. Results

Tables 1 and 2 present the results for the M -statistic under the hot spot and global
chain (GCC) models, respectively. The column labelled Mes contains the results of the
M -statistic under equispaced binning, as computed in the original paper (Kulldor) et al.,
2003). The column Mep contains the new results for the M -statistic under equiprobable
binning. Only the results for the data sets with 600 cases were recomputed. Figures
for the scan statistic and MEET are also from the original paper.
For the single hot spot alternatives (in particular urban and rural clusters), the

M -statistic showed considerable gains in power after implementing the new binning
procedure. For this class of alternatives, the M -statistic still underperforms the scan
statistic, as expected for a single hot spot model. The GCC models with small =xed and
exponential distances also showed marked improvement. In particular, the M -statistic
is now the most powerful test for GCC alternatives with zero or short exponential
distances.
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Table 1
Estimated power of the spatial scan statistic, the M -statistic and the MEET for 35 di)erent alternative models
with di)erent hot-spot clusters, for 600 simulated cases and for signi=cance levels 0.05 and 0.01

Counties 	= 0:05 	= 0:01

Scan Mep Mes MEET Scan Mep Mes MEET

Rural (edge) 1 0.998 0.816 0.355 0.196 0.992 0.653 0.127 0.057
2 0.991 0.753 0.406 0.221 0.986 0.546 0.154 0.072
4 0.973 0.428 0.292 0.229 0.946 0.194 0.082 0.064
8 0.971 0.293 0.241 0.213 0.937 0.094 0.058 0.055
16 0.969 0.204 0.197 0.229 0.936 0.053 0.041 0.062

Mixed (corner) 1 0.936 0.885 0.909 0.925 0.871 0.759 0.757 0.833
2 0.939 0.853 0.883 0.896 0.871 0.704 0.703 0.771
4 0.937 0.767 0.815 0.838 0.873 0.578 0.590 0.654
8 0.941 0.692 0.794 0.817 0.876 0.472 0.567 0.599
16 0.949 0.602 0.745 0.832 0.886 0.372 0.484 0.602

Urban (central) 1 0.922 0.907 0.342 0.941 0.818 0.805 0.115 0.870
2 0.903 0.859 0.397 0.920 0.823 0.722 0.154 0.830
4 0.892 0.905 0.711 0.961 0.794 0.799 0.428 0.902
8 0.913 0.855 0.844 0.983 0.824 0.705 0.619 0.951
16 0.926 0.738 0.777 0.986 0.836 0.527 0.504 0.950

Rural and mixed 1 1.000 0.992 0.980 0.964 0.999 0.974 0.916 0.910
2 0.999 0.986 0.970 0.952 0.997 0.954 0.894 0.871
4 0.997 0.934 0.931 0.930 0.987 0.814 0.804 0.793
8 0.996 0.862 0.915 0.931 0.986 0.689 0.741 0.772
16 0.996 0.774 0.827 0.941 0.982 0.535 0.590 0.804

Rural and urban 1 1.000 0.994 0.709 0.970 0.998 0.980 0.400 0.923
2 0.999 0.987 0.644 0.962 0.996 0.949 0.334 0.895
4 0.992 0.975 0.811 0.971 0.974 0.924 0.538 0.912
8 0.991 0.939 0.884 0.977 0.968 0.830 0.667 0.936
16 0.987 0.835 0.776 0.975 0.947 0.634 0.481 0.915

Mixed and urban 1 0.987 0.997 0.964 0.998 0.950 0.990 0.868 0.995
2 0.984 0.990 0.950 0.995 0.950 0.967 0.829 0.984
4 0.966 0.986 0.954 0.991 0.901 0.954 0.830 0.969
8 0.954 0.954 0.970 0.990 0.871 0.876 0.873 0.960
16 0.935 0.873 0.929 0.984 0.811 0.696 0.742 0.935

Rural, mixed 1 1.000 1.000 0.991 0.999 0.999 1.000 0.958 0.997
and urban 2 1.000 0.999 0.981 0.998 0.999 0.997 0.920 0.992

4 0.996 0.996 0.979 0.994 0.981 0.984 0.895 0.973
8 0.992 0.981 0.980 0.989 0.964 0.932 0.901 0.952
16 0.977 0.908 0.929 0.983 0.916 0.755 0.744 0.918

Only power for the M -statistic has been revised.
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Table 2
Estimated power of the spatial scan statistic, the M -statistic and the MEET for 26 global chain clustering
models, for 600 simulated cases and for signi=cance levels 0:05 and 0:01

Distance(r) 	= 0:05 	= 0:01

Scan Mep Mes MEET Scan Mep Mes MEET

Twins
No distance 0 0.791 1.000 0.860 0.990 0.513 0.995 0.616 0.945

Fixed 0.005 0.392 0.600 0.346 0.624 0.197 0.368 0.130 0.376
distance 0.01 0.285 0.269 0.163 0.406 0.131 0.123 0.044 0.201

0.02 0.194 0.100 0.087 0.264 0.084 0.032 0.019 0.110
0.04 0.124 0.052 0.060 0.174 0.049 0.012 0.014 0.068
0.08 0.080 0.052 0.051 0.109 0.024 0.013 0.009 0.038
0.16 0.055 0.053 0.050 0.059 0.014 0.012 0.009 0.014

Exponential 0.005 0.452 0.789 0.449 0.738 0.229 0.563 0.189 0.486
distance 0.01 0.351 0.550 0.304 0.556 0.165 0.319 0.106 0.299

0.02 0.262 0.314 0.184 0.378 0.110 0.130 0.051 0.171
0.04 0.185 0.162 0.114 0.250 0.073 0.055 0.027 0.096
0.08 0.124 0.095 0.083 0.166 0.042 0.026 0.018 0.056
0.16 0.080 0.061 0.059 0.107 0.023 0.015 0.010 0.029

Triplets
No distance 0 0.995 1.000 0.996 1.000 0.949 1.000 0.969 1.000

Fixed 0.005 0.674 0.839 0.569 0.884 0.460 0.684 0.291 0.728
distance 0.01 0.491 0.400 0.253 0.646 0.309 0.229 0.087 0.415

0.02 0.318 0.130 0.117 0.430 0.178 0.051 0.032 0.237
0.04 0.189 0.063 0.070 0.265 0.094 0.018 0.018 0.135
0.08 0.102 0.060 0.053 0.141 0.038 0.018 0.010 0.057
0.16 0.046 0.061 0.049 0.050 0.010 0.017 0.011 0.015

Exponential 0.005 0.762 0.968 0.734 0.960 0.538 0.894 0.457 0.862
distance 0.01 0.610 0.800 0.497 0.826 0.388 0.602 0.232 0.615

0.02 0.436 0.489 0.294 0.599 0.253 0.262 0.099 0.363
0.04 0.289 0.226 0.162 0.390 0.144 0.089 0.043 0.202
0.08 0.171 0.112 0.096 0.226 0.068 0.030 0.021 0.096
0.16 0.091 0.064 0.062 0.115 0.027 0.014 0.013 0.036

Only power for the M -statistic has been revised.

The results suggest that the M -statistic is comparable to both the spatial scan statistic
and the MEET statistic for the most alternative models of clustering. We see that the
M -statistic’s power was within 0.05 or greater than that of the spatial scan statistic on
16 of the 35 hot spot models, and 19 of the 26 GCC models. Likewise, the M -statistic
was within 0.05 or greater than that of the MEET statistic on 23 of 35 hot spot models
and 11 of 26 GCC models.
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