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SUMMARY

The topic of this paper is the distribution of the distance between two points distributed independently
in space. We illustrate the use of this interpoint distance distribution to describe the characteristics of
a set of points within some �xed region. The properties of its sample version, and thus the inference
about this function, are discussed both in the discrete and in the continuous setting. We illustrate
its use in the detection of spatial clustering by application to a well-known leukaemia data set, and
report on the results of a simulation experiment designed to study the power characteristics of the
methods within that study region and in an arti�cial homogenous setting. Copyright ? 2004 John Wiley
& Sons, Ltd.

KEY WORDS: distance-based methods; Monte Carlo sampling; U-statistics; disease clusters

1. INTRODUCTION

Consider the distance between two points. If one of the points is �xed and the other random,
then we have a non-negative random variable and a large scienti�c literature associated with
its study. On the other hand, if both points are random, then the general study of such a
random distance occupies only a rather small part of the statistical literature, and only in
the simpler cases can its distribution be derived analytically (see References [1–4]). To draw
inference about such a distribution, one may take a random sample of n points, which result
in the larger (for n¿3) number of

(n
2

)
dependent distances.

Except for very simple cases, it is very di�cult to analytically express the dependen-
cies among these distances. But yet it is informative, and thus desirable, as we show be-
low, to study such distributions. Their natural estimator, the empirical frequency distribution
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function (‘ecdf’) of the
(n
2

)
dependent distances, can form the basis for inference. Because

of the dependencies, the study of this estimator does not follow the usual paradigm of an
empirical cumulative distribution function based on independent identically distributed
(i.i.d.) observations, and thus it is not as straightforward to obtain its sampling
properties.
There is a round about way of arriving at this estimator that follows more familiar lines.

Suppose n is even. We can easily obtain n=2 independent distances, and construct their
empirical cdf. There are n!=(2n=2(n=2)!) ways of choosing the n=2 independent distances.
To gain e�ciency we can take a resampling approach and average all possible empirical
cdfs based on n=2 independent distances. It is not di�cult to show that with this approach
one recovers exactly the frequency distribution of all the dependent distances, the ecdf. A
parallel may be drawn with the calculation of the sample variance S2n of n (even) num-
bers X1; : : : ; Xn. Given S2n =(n − 1)−1

∑n
i=1(Xi − �Xn)2, with �Xn the sample mean, it is well

known that S2n =(n(n − 1))−1
∑n−1

i=1

∑n
j=i+1(Xi − Xj)2, an average of dependent quantities.

Considering a random permutation � of the indices i=1; : : : ; n, one can then de�ne the esti-
mator S2� = n

−1 ∑n=2
i=1(X2i−1−X2i)2, an unbiased but ine�cient estimator based on independent

summands. Then averaging these S2� over all n!=(2
n=2(n=2)!) distinct ways of creating inde-

pendent pairs, yields exactly S2n .
The ecdf converges to the distribution of the interpoint distance between two randomly

selected observations [3], so that for �nite, but large n, one may compare the ecdf of the(n
2

)
distances to its population counterpart to evaluate the agreement between the sample and

a hypothesized population distribution. The genesis of the idea to use the interpoint distance
distribution is evident in the work of Bartlett [2], who studies points uniformly distributed
within a unit circle and a unit square. This approach is applicable to the situation in which
the points are generated according to an absolutely continuous distribution over a region, as
well as to the situation in which the points are constrained to belong to one of a �xed, and
possibly �nite, set of possibilities.
In what follows we will see that the ecdf of all pairwise distances evaluated at a �nite

number of values along the distance axis has an asymptotic multivariate normal distribu-
tion. More generally, we also provide a new proof of the result that the centred empirical
frequency distribution of the pairwise distances converges to a Gaussian process. One can
then evaluate the di�erence between the empirical frequency distribution and its population
counterpart in a variety of ways. For example, if the ecdf is computed over a �nite grid,
then a statistic resembling a Mahalanobis distance can be used to construct a chi-squared-
like test statistic. In Section 2, we discuss the interpoint distance distribution both in the
continuous case and in the discrete case. The initial motivation for our work was the prob-
lem of the detection of disease clustering over a population non-uniformly distributed over
a region, and in Section 3, we show an application of our methods to that particular setting
with an illustration based on a well-known data set. In Section 4, we describe a simulation
study of the power of the proposed methods in comparison to some other existing clus-
tering statistics. This motivation for our work in�uences the assumptions we make of our
models. In general, we view the sampling region as given and �xed, and not as a sampled
part of a larger whole. As a consequence, for inference we eschew such restrictive assump-
tions as stationarity of underlying point processes and prefer to turn to exact resampling
methods.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:753–773



THE INTERPOINT DISTANCE DISTRIBUTION 755

2. THE INTERPOINT DISTANCE DISTRIBUTION

2.1. The continuous case

Consider �rst a point process where the observations can appear anywhere inside some
bounded region. Let the point distribution over the region be absolutely continuous, so that
for two i.i.d. points X1 and X2 in the region, Pr(X1 =X2)=0.
For any point distribution P in a region S, on which is de�ned a non-negative distance (or

dissimiliarity) function d, the cdf F(·) of the interpoint distance D between two independent
points is F(d)=E1(d(X1; X2)6d), where 1(·) is the indicator function and E denotes expec-
tation with respect to the P×P distribution. For example, on the plane, Bartlett [2] reports the
distribution of the interpoint distances for randomly distributed points on the unit square and
on the unit circle (results originally due to Borel [1]), and he suggests computing a chi-square
test to measure the deviation between the observed and the expected frequencies over a grid.
He also recognizes that distributional problems arise because the observed distances do not
constitute a sample of independent observations.
If one views the sampling region as itself a sample of some bigger space, then to extrap-

olate the results beyond the region we require some property of the process to make this
generalization reasonable. One such property is that of stationarity. A point process de�ned
on a topological space S is said to be stationary if its distribution is invariant under a topo-
logical group G acting continuously on S (a typical example being the group G of rigid
motions acting on the plane). The de�nition, and use, of the interpoint distribution function
F(d) given above does not require that the point process be stationary, but if it is, a number
of theoretical results are available. In the setting of stationary isotropic processes, Ripley [5]
de�nes the K-function

K(t)= �−1E[number of further events within distance t of an arbitrary event]

where � is the intensity of the process, or the (assumed constant) expected number of events
per unit of area. Ripley points out that the K-function shares some of the properties of the
interpoint distribution function, even though it is not a distribution function; indeed, K(t)→ ∞
as t→ ∞. He proposes an estimator of K(t) that in the case of the unit square is unbiased for
t¡1=

√
2; i.e. half of the maximum distance observable in the unit square, and has variance

that increases rapidly as t increases. Also, if we de�ne Y (t) to be the number of interpoint
distances within a region S which are within t of each other (a non-normalized version of the
ecdf), then Silverman and Brown [6, 7] prove the weak convergence of Y (t) on [0; t0] when
t0 is small relative to the maximal distance in S. Within that small interval, Y (t) converges
to a heterogeneous Poisson process (see also [8, p. 44]).
Extending the usual de�nition of an empirical distribution function for random samples, we

de�ne the ecdf of the interpoint distances associated with a random sample X1; : : : ; Xn as

Fn(d)=
1
n2

n∑
i=1

n∑
j=1
1(d(Xi; Xj)6d)

For �xed d, Fn(d) is an example of a V-statistic (see for example Reference [9, p. 172]). In
the appendix it follows that the scaled distribution of Fn(d) computed at a �nite set of values,
d1; : : : ; dm, converges to a multivariate normal distribution as n→ ∞ (see also Reference [3]
for an alternate proof).

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:753–773
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Silverman [3] further showed that the quantity
√
n(Fn(d)−F(d)), considered as a stochastic

process indexed by d, converges weakly to a Gaussian process. His proof can be shortened
considerably by making use of recent results from the theory of U-processes (see Reference
[10]), as shown in the appendix. The ecdf of the set of dependent interpoint distances among
n points in the plane is thus a well-de�ned and behaved summary of a con�guration of points.
One characteristic of such a descriptor is its rotational invariance, a property that it shares
with all distance-based statistics.

2.2. The discrete case

Consider now a region within which points (individuals) can arise at any of the �xed locations
l1; : : : ; lk with probabilities p1; : : : ; pk (with

∑k
j=1 pj=1). Let the random variable D again

represent the distance between two individuals chosen at random from this population. Let dij
be the distance between locations li and lj. The random variable D thus takes on the value
dij with probability pipj. The distribution function of this non-negative random variable is

F(d)=F(d;p)=
k∑
i=1

k∑
j=1
pipj1(dij6d) (1)

Consider a random sample n1; : : : ; nk of individuals over this region, and let n=
∑k

i=1 ni.
Consider all the

(n
2

)
distances between the individuals in the sample, and compute the func-

tion Fn(d)=F(d; p̂), where p̂=(p̂1; : : : ; p̂k) and for i=1; : : : ; k, p̂i= ni=n. Note how these
de�nitions of F(d;p) and F(d; p̂) are the discrete analogues of F(d) and Fn(d) given in
Section 2.1 for the general continuous case.
Since we are interested in the distribution of the distances between individuals, and we do

not wish to make assumptions or inference about the value of the sample size, n, we condition
on it. We can then use the distribution of the distances obtained by choosing samples of size
n at locations li with probabilities pi, i=1; : : : ; k (see Reference [11]) as the null distribution.
Then the null hypothesis of random sampling from the population distribution is the hypothesis
that the ni are a multinomial sample with probabilities p=(p1; : : : ; pk). Since the p̂i are
strongly consistent estimators of the pi (as n→ ∞), for any �xed and real d, F(d; p̂) is a
strongly consistent estimator of F(d;p). A measure of the di�erence between F(d; p̂) and
F(d;p) can thus be used as a gauge of the null hypothesis of spatial randomness.
Note that in this discrete setting (as opposed to the continuous case) one can expect the

underlying population distribution to be known at least approximately. Here, also, for a �xed
value d the empirical cdf F(d; p̂) has

√
n-convergence to E(d(X1; X2)6d). Moreover, the

convergence to a multivariate normal distribution holds when one computes the cdf at the
�nite set of values d1; d2; : : : ; dm.

2.3. Test statistics

A large number of standard test statistics can be used to evaluate the distance between F̂n(·)
and F(·), but the lack of independence between observed distances between individuals pre-
cludes the use of standard statistics without using appropriate modi�cations.
Just as one does for a histogram, one can de�ne an increasing collection of values d=

{d1; : : : ; dm} over the range of D and de�ne the two vectors Fn(d)= {Fn(d1); : : : ; Fn(dm)} and
F(d)= {F(d1); : : : ; F(dm)}.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:753–773
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The asymptotic normality noted in the previous sections suggests the following statistic to
measure the distance between Fn(d) and F(d):

M̃ (Fn(d); F(d))= (Fn(d)− F(d))′�−(Fn(d)− F(d)) (2)

a Mahalanobis-like statistic, where �− is a generalized inverse (see Reference [12]) of the
covariance matrix of the vector Fn(d). For de�niteness we use the Moore–Penrose generalized
inverse. One can, in theory, compute the exact distribution of M̃ , but if n is of any reasonable
size, the calculation is not feasible. As an alternative, one could appeal to the asymptotic results
in the appendix, but empirical experience suggests that the convergence of the distribution of
M̃ to its asymptotic value is quite slow. This is especially so in discrete situations where there
are many locations, since then typically a number of the probabilities pi involved are small.
Because of this, we do not use M̃ , but rather propose using an estimator of M̃ . Consider M
de�ned as M̃ , but with the estimated covariance matrix

M (Fn(d); F(d))= (Fn(d)− F(d))′S−(Fn(d)− F(d)) (3)

where S is the sample covariance estimator obtained after taking repeated samples, with
replacement, of size n. This is the statistic we propose to use, with the generalized inverse
matrix S− chosen to be the Moore–Penrose generalized inverse of S. In practice we have
sampled repeatedly 1000 times with success.
When comparing the sample and theoretical distributions, it is sometimes more instructive

to see the scaled �rst di�erence function fn(d)

fn(d)= 1
� [Fn(d+ �=2)− Fn(d− �=2)]

One typically de�nes (and plots) a vector fn(d)= (fn(d1); : : : ; fn(dm)) of values computed
at values d1; : : : ; dm taken here to be such that dj − dj−1 = � for j=1; : : : ; m and m some
positive integer. We set d1 = �=2, and de�ne fn(d1)=Fn(�)=� so that it includes the origin.
The population equivalent of fn(d) is the vector f(d)= (f(d1); : : : ; f(dm)) computed at the
same values d1; : : : ; dm, but replacing Fn(·) by F(·). Because of its linear relationship with
Fn(·), the �rst di�erence function fn(·) has

√
n-convergence to the expected value E(1(d −

�=2¡d(X1; X2)6d+�=2), and for a �xed d, n1=2fn(d) has an asymptotically normal distribution.
The joint asymptotic distribution for multiple values of d also follows immediately.
Above we have de�ned the statistic M and M̃ in terms of F(·) and Fn(·), but note that

we could equally well de�ne them in terms of fn(·) and f(·) computed at the same val-
ues d=(d1; : : : ; dm). The two forms with, of course, appropriate de�nitional changes in the
covariance matrix, yield identical results. Statistics other than M can be de�ned by choos-
ing a di�erent distance measure between fn(·) and f(·). Below we explore the following
possibilities:

M1(fn; f) =
∫ ∞

0
(fn(x)− f(x))2 d�(x)

M�2 (fn; f) =
∫ ∞

0

(fn(x)− f(x))2
f(x)

d�(x)

MKL(fn; f) =
∫ ∞

0
log

(
fn(x)
f(x)

)
f(x) d�(x)

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:753–773
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M1 is the L2 norm of the di�erence between fn and f; M�2 is a �2-type distance; and MKL is
the well-known Kullback–Leibler semi-metric. One method of approximately evaluating these
integrals is with respect to the discrete measure � that puts equal mass at equispaced points
at which fn and f are evaluated, so that they become sums. Derivation of the asymptotic
distributions of these statistics is di�cult, but we can again rely on the Monte Carlo sampling
approach to construct tests of hypotheses.

3. AN APPLICATION TO CLUSTER DETECTION

3.1. Disease clustering

The search for clusters in the spatial distribution of a set of points is an important problem
with a long history in statistics. One notable application of methodologies developed in this
context is the search for disease clustering, especially in response to alarms raised by the
public. (See for example Reference [13] and references therein).
In their search for such clusters, the Centres for Disease Control and Prevention in

Atlanta have issued cluster detection guidelines that contain the rather pessimistic statement
that ‘in many reports of cluster investigations, a geographic or temporal excess in the number
of cases cannot be demonstrated’ [14]. This guarded view may be the result of the rather
poor success rate in cluster detections (out of 108 suspected cancer clusters investigated over
22 years, no clear cause was found for any of them; see Reference [15]), although this could
mean either that false alarms are raised too easily (alarms that under further study are readily
dismissed), or that existing methods are not su�ciently powerful for detecting clusters. Some
of the existing clustering methods are reviewed in Reference [16], where one can also �nd a
description of many model-based approaches aimed at assessing dependence in spatial point
processes.
We can use the methods described here to test whether the observed interpoint distance

distribution among the individuals with a certain disease is consistent with the hypothesis of
no disease-induced clustering. It should be noted that these methods are designed to detect any
disturbance from such distribution, and not just a single cluster. This can be quite important,
since in most cases one does not know the number, shape and location of the clusters that
may exist. In this section we discuss the discrete case, because the application that follows
is discrete, as it is in many cluster investigations since the data typically is only available
in aggregate form; either because of the data collection method or because of concerns for
con�dentiality.
For a given set of �xed centres, the lack of deviations from the population distribution is

equivalent to choosing as cases of the disease of interest individuals, at random, from the
centres, with probabilities given by the appropriate population proportions: pi, i=1; : : : ; k.
So when we consider a group of individuals with a particular ailment (leukaemia, say), and
ask whether they are geographically distributed as in the population—the null hypothesis of
no clustering—then we immediately think of the goodness-of-�t problem, and the associated
classical chi-squared test for the multinomial distribution. This test is a general one and is not
targeted at the clustering problem at hand. Indeed, we can think of the chi-squared goodness-
of-�t test as a quadratic form (p̂−p)′�−(p̂−p) involving the di�erence between the observed
(p̂) and expected (p) proportions, where the weighting matrix �− is the generalized inverse

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:753–773
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Interpoint distance
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Figure 1. The solid line is the cdf of the distances between individuals reported in the 1980 census and
the dotted line is the cdf for the distances between individuals diagnosed with leukaemia between 1978
and 1982, whose addresses were known, for the eight county upstate New York area in Figure 3.

of the variance–covariance matrix of the di�erences [17, p. 44]. This formulation makes it
clear that the geography of the region in question plays no role in such a statistic, since
the statistic is invariant to permutations of the physical position of the locations, and thus is
in general not likely to have good power against most alternative hypotheses of interest—in
particular, clustering, which is a geographic phenomenon.
To overcome this shortcoming, Tango [18] proposes replacing the inverse of the variance–

covariance matrix with one that re�ects the distances between the locations. He de�nes a
statistic T , in which he chooses to bring the distances between individuals into play by using
a weight function with weights exponentially decaying as the distance increases. Whittemore
et al. [19] take a di�erent tack. They argue that the fundamental variable of interest is the
distances between individuals, and consider the average (�) of these distances. While we
agree with the authors that consideration of the distances between individuals is pivotal to
this problem, we feel that averaging may be too severe a summarization. This feeling is borne
out by the power study in Section 4.

3.2. Leukaemia in upstate New York

Figure 1 shows the cdf F(·)=F(·;p) for a population of a little over 1 million individuals
reported in the 1980 census in 790 census subdivisions de�ned over these 8 counties in upstate
New York (shown in Figure 3 [left]). Also shown in Figure 1 is the ecdf Fn(·)=F(·; p̂) of the
distances between 581 individuals diagnosed with leukaemia during the 5-year period 1978–
1982 in the region. (The real number of cases during that period of time was 592, but here we
report only those whose location is known with certainty). The question of interest is whether
the leukaemia cases in upstate New York show any evidence of geographic clustering over
and above the natural clustering levels existing at the population centres, and if that is the
case, where does the clustering occur. These data originated from the New York State Cancer
Registry, and this example was �rst discussed in Reference [20], and later in Reference [21].

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:753–773
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Interpoint distance
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Figure 2. First di�erence functions of the two cdf curves in Figure 1. The solid line corresponds to the
population density (the solid cdf) and the dotted line to the leukaemia density (the dotted cdf).

These authors apply various methods of analysis to this data, and we refer to those references
for a description and comparison of those methods.
One can see a di�erence between the two functions displayed in Figure 1, but Figure 2

is much more visually satisfying. In the latter �gure we show the two ‘density’ functions
corresponding to the cdfs in Figure 1. For the density functions we used a grid of 300
equally spaced points.
One can distinguish between two kinds of clusters; we may call them endogenous and

exogenous. An endogenous cluster is one apparent in the population distribution (such as a
population centre) evidenced on the interpoint density function through the presence of peaks,
as in the solid curve in Figure 2. For example, the peak around 110 km is mostly due to the
clustering in the two major urban centres (Binghamton and Syracuse), while that around 60 km
is mostly due to the population clustering in Binghamton and the other three more populated
areas (from left to right, Cortland, Ithaca and Norwich) in the middle of the region, as well
as the clustering in Syracuse and Cortland, since these �ve pairs of population centres are
each approximately 60km apart. Note also the smaller peaks at 40km (distance from Syracuse
to Auburn) and at 80 km (distance from Syracuse to both Ithaca and Norwich).
An exogenous cluster is one that is superimposed on the population distribution (with its

existing endogenous clusters) and it is introduced by some force not uniformly evident in
the whole population. The endogenous clusters are important because they form the baseline
against which clusters need to be evaluated. In this application, we might suspect that the dif-
ference between fn(·) and f(·) is big, and possibly too big to attribute to sampling variability,
especially for small distances, as pointed out by a number of authors (see References [19, 22],
for example). We contend that additional information is available in the discrepancy for larger
distances as well, and that if we do not consider them, we are discarding power unnecessar-
ily. Indeed, we see that there is an increase in the peaks near the origin, at about 60 km, at
about 110 km and possibly even at 40 km in fn(·) when compared to f(·), but that there is
no increase at 80 km. Note that since the integrals under these two functions are the same,
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the troughs must compensate for the excesses in the peaks. These e�ects help in identifying
possible exogenous clusters. In fact, the big increases at 60 and 110km can be explained rather
nicely by a cluster of leukaemia cases around Binghamton. This would cause an increase in
the frequency at the distances between Binghamton and the sites located at roughly 60 km
(Ithaca, Cortland and Norwich) and 110 km (Syracuse) from Binghamton as is evident in the
�gure. Further, the lack of an increase at 80 km would indicate the lack of a cluster near
Syracuse, Ithaca or Norwich. On the other hand, an increase in the frequency at 40 km can
be caused by a cluster at Auburn (an increase at Syracuse would have also produced a peak
at 80 km, and that peak was not observed). Note how these observations should be attempted
only once the test statistic rejects the null hypothesis, as peaks and valleys will also occur
under the null, and there would be risk of over-interpretation otherwise.
Testing for clustering using the proposed statistic M rejects the null hypothesis, at the

5 per cent level, that the leukaemia cases can be considered a random sample from these
population centres (p=0:000). When applying other existing statistics to this data set (see
Section 4 below) we obtain p-values of 0.000 for T , 0.944 for DC, and 0.804 for � implying
that Tango’s statistic is signi�cant, but Diggle’s and Whittemore’s statistics do not �nd any
evidence for clustering.

3.3. Locating clusters

Deciding that a sample exhibits evidence of clustering may not be an end unto itself, unless
for example one is interested in establishing whether a disease is infectious. Typically, one
is interested in the location(s) where the clustering may be occurring. A cluster will not
only have an impact at a primary location (as exhibited by the behaviour of f(·) near the
origin), but will also have secondary impacts on the peaks of f(·) at those distances that
re�ect its distances from other underlying clusters; typically, dense, urban areas. To locate
where the disease-induced clusters may be in the discrete setting, we consider an (admittedly
ad hoc) method based on decomposing the M statistic. We �rst decompose M to assign to
each location its contribution to the total. To this end we rewrite M as

M (fn(d); f(d)) = (fn(d)− f(d))tS−(fn(d)− f(d))

=
m∑
h=1
(fn(dh)− f(dh))

m∑
t=1
sht(fn(dt)− f(dt))=

m∑
h=1
�hWh

where �h=(fn(dh)−f(dh)) and Wh is the internal summation. From the de�nitions of f(d)
and fn(d), the contribution �hWh of each interval (dh−�=2; dh+�=2] to M can be decomposed
among each of the contributing pairs of locations (li; lj), i; j=1; : : : ; k as

�hWh=
k∑
i=1

k∑
j=1
�h(i; j)Wh

with

�h(i; j)=
1
�
1(dh − �=2¡dij6dh + �=2)

(
ninj
n2

− NiNj
N 2

)

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:753–773
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This contribution to the statistic M , �h(i; j)Wh, represents a contribution from two locations,
li and lj. How to make the attribution to each of these locations is not unique. We choose to
consider the deviation between the observed proportions (p̂i= ni=n) and the expected propor-
tions (pi=Ni=N ) at those locations. To this end de�ne,

�(i; j)=
|p̂i − pi|

|p̂i − pi|+ |p̂j − pj|
and assign �(i; j)�h(i; j)Wh and (1 − �(i; j))�h(i; j)Wh to li and lj, respectively. For each of
the intervals (dh − �=2; dh + �=2] for h=1; 2; : : : ; m, one can then de�ne for each location li a
total contribution to M (or ‘score’) equal to

Score(i)=
m∑
h=1

k∑
j=1
�(i; j)�h(i; j)Wh

It is easy to verify that
∑k

i=1 Score(i)=M , so that the scores decompose M . Note how this
decomposition approach is similar in spirit to the examination of local statistics in the analysis
of spatial autocorrelation (see References [23–25]).
The locations can then be ranked according to their score. In a particular data set, if the

M statistic is signi�cantly di�erent from what would be expected under the null hypothesis,
then the locations can be studied to see which locations impact M the most. One strategy
for identifying locations with large contributions to M may be to consider the di�erence
between the observed value of M and the cut-o� M ∗ corresponding to the test, and �nd the
minimum number of locations (having the largest scores) such that the sum of their scores
equals M −M ∗.
Application of this procedure yields the map on the right in Figure 3. In the �gure, we

highlight the top 13 locations selected. Even though the interpretation of the results of the
cluster localization procedure is perhaps a bit beyond the scope of the proposed tests (and
should therefore be taken with caution), the locations selected can be seen to be suspiciously
close to some of the waste sites shown on the map. The number of locations to plot was
chosen based on the fact that the di�erence between the observed value of M (144.1) and
the cut-o� point for the corresponding 5 per cent sampling test (44.6) is roughly equal to
the sum of the scores of the top 13 locations (99.7). All of these locations show an excess
in the number of leukaemia cases. To ensure stability of the estimated distribution of M we
have used 32 bins for the calculation of the p-value and for the identi�cation of suspicious
locations. However, a p-value equal to zero and a �gure very similar to Figure 3 were
obtained when using 300 bins in the de�nition of M .
Consistent with the impression gained by contrasting fn(·) with f(·), there is an indication

that the locations around Binghamton form a cluster of locations with excess numbers of
leukaemia cases. The locations so identi�ed follow the �ow of the Susquehanna river through
that region. Two other areas identi�ed are in the upper-left corner and in the middle of the
map. These regions were also identi�ed in Reference [20] using the geographical analysis ma-
chine method [26] designed for �nding areas with high rates. Unfortunately, the latter method
does not lead to a quantitative assessment of the signi�cance of the observed pattern, so that
it is hard to interpret its results. The possibility of clustering of cases around Binghamton
was also indicated in Reference [27], where the hypothesis of randomness was also rejected.
Their likelihood-based approach is constructed on the alternative ‘hot-spot’ model de�ned in
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Figure 3. On the left is the map of the New York study area with location of cell centroids indicated
by ‘·’. The dense cluster in Cayuga county is Auburn, the one in Onondaga is Syracuse, the one in
Tompkins county is Ithaca, the one in Cortland county is Cortland, the one in Chenango is Norwich,
and the one in Broome county is Binghamton. The graph on the right is the same region, with the
identi�ed 18 locations with large contributions to M shown by circles, and the labelled hazardous waste

sites containing trichloroethylene indicated by dots.

Reference [28]; i.e. that the probability of leukaemia is elevated and constant within a par-
ticular radius of a point de�ned to be the centre of the cluster. We should note that the M
statistic does not de�ne an alternative hypothesis, but that this does not mean that it is good
(or bad) for all alternative hypotheses, nor that methods based on probability models can only
perform well only under those speci�c models.
Also from Figure 3, we see that the clusters around Cortland and Auburn are close to

identi�ed waste sites. The other three locations, one in Chenango and two in Onondago, are
rather distant from all waste sites. Of course, these implied relationships are quite suggestive,
but before one can make any more de�nitive statement one would need to investigate them
further. In particular, the many issues associated with the study of the e�ects of exposure
to toxic substances (whose quantity and toxicity should in general be expected to vary over
the exposure period) are well beyond the scope of our work here. The migration patterns
of the population across the region in the time period considered and any cumulative e�ect
of exposure to the toxic substances (as well as the kinds of toxic substances) should all
be considered before drawing any conclusions about the e�ect of the toxic waste sites on
the population. Our methods do not attempt to solve such a complex and general problem,
but rather our inference is limited to the study of deviations of the spatial distribution of
the leukaemia cases from the underlying population distribution. As a consequence, Figure 3
should only be meant as a visual exploratory analysis of the possible connection between the
locations of the sites and the distribution of the cases.
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It is of interest to note that only two of the many locations in and around Syracuse (427
locations within a radius of 20 km from the centre of Syracuse) are identi�ed as having
excessive numbers of individuals with leukaemia, even though over 40 per cent of the region’s
population lives there. Thus the proposed method seems to show considerable speci�city in
this example.

4. A SIMULATION STUDY

We performed a power study to compare the proposed statistics M , M1, M�2 , and MKL de�ned
in Section 2.3 with three well-known currently available and easily implementable alternative
statistics: the � statistic [19], the T statistic [18], and the DC statistic [22] based on Ripley’s
K-functions. The statistic DC was designed under the assumption of a Cox process, i.e. that
the underlying distribution be a realization of a Poisson point process having as intensity the
realization of a further probability distribution. This implies that the ni should be zeroes or
ones, but this constraint is usually ignored in application, and we continue in the same vein
to use DC both in the discrete and in the continuous setting.
Whittemore and colleagues [19] derive the �rst two moments of the � statistic and prove its

asymptotic normality, but rather than rely on this asymptotic result we sample from the exact
distribution since this would yield more accurate results. We do the same for the T statistic.
For the DC statistic we use a ratio of 2 to 1 for the number of controls to the number of
cases.
We consider two settings: �rst, the situation where points are distributed uniformly over

the unit square; and second, the common situation of �xed locations over a highly non-
homogeneous map (the New York State map described in Section 3.2) with more than one
individual at each location.

4.1. Continuous homogeneous setting

We test the performance of the statistics under the homogeneous point process setting �rst
proposed in Reference [29], and also discussed in Reference [22]. We follow the instruc-
tions for the simulation in Reference [22], as best we can, to generate the powers for the
other statistics, and quote these authors for the power results of their statistic (their esti-
mates are based on 100 simulations, ours on 1000). Under the null distribution a sample of
n1 = 50 points is generated uniformly on the unit square, while under the various alternatives
(identi�ed by the parameters q, �, and 	) some 50q� of these points are deleted and replaced
by 50q clusters of � cases, with centres distributed completely at random and cluster mem-
bers displaced independently from their corresponding cluster centre according to an isotropic
bivariate normal distribution with standard deviation 	 in either co-ordinate direction—thus
with probability one no two points fall in the same location. We computed the power for �
and M (with m=20, see Section 2.3) under some of the parameter combinations reported in
Reference [22]. For the remaining parameter combinations we could not reconstruct the exact
algorithm used to generate the samples as reported in that article since 50q� is not an integer.
Note that Tango’s T cannot be used immediately in this setting, so that it does not appear in
the table below.
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Table I. Estimates of power under the point process setting.

q : 0:10 0.20 0.10

�=2 �=4

n2 = 50 � M DC � M DC � M DC

	=0:001 0.09 0.48 0.49 0.17 0.97 0.95 0.30 1.00 1.00
	=0:005 0.12 0.43 0.40 0.13 0.96 0.90 0.29 1.00 1.00
	=0:01 0.11 0.44 0.28 0.16 0.96 0.79 0.30 1.00 1.00

n2 = 200 q : 0:02 0.04 0.06

�=4

� M DC � M DC � M DC

	=0:01 0.10 0.24 0.57 0.14 0.63 0.98 0.21 0.90 1.00

The entries for DC are quoted from Diggle and Chetwynd [23].

For the values of q=0:1 and 0.2 the DC statistic was based on 50 cases and 50 controls,
while for the values of q=0:02; 0:04, and 0.06 it was based on 50 cases and 200 controls.
The results from these power estimates are shown in Table I, and they show that the DC
and M statistics should be preferred to � in such a homogeneous setting, with the DC doing
considerably better than M for smaller q, and M doing slightly better than DC in the case of
several relatively large clusters (q¿0:10 and 	=0:01) and fewer controls. DC was constructed
using 100 bins, but [22] also reports some results obtained using 10 bins and �=2. With that
implementation of DC the performance of that statistic seems to improve for smaller 	, but
deteriorates for larger 	.

4.2. Discrete inhomogeneous setting

For this �rst part of the power study we use the New York State population distribution
described in Section 3.2. We construct the null distribution of the statistics to be studied by
taking samples from the 790 census subdivisions’ centroids with probabilities proportional to
each subdivision’s population count. We �rst consider samples of size 105 cases, and then
528 cases. These correspond to prevalences of 0.0001 and 0.0005, respectively. By sampling
from these null hypotheses we establish the cut-o� values for the Monte Carlo tests for the
statistics being compared. The cut-o� values are chosen to achieve a type I error level of 5
per cent.
We construct the alternative hypotheses by adding one cluster, placed at di�erent locations

to study the e�ect of the geography. To determine the placements, we sort the locations by the
population density around them. This is done by computing the total number of individuals
living within a circle of radius 10 km from each location. We then pick as a centre of the
cluster for the alternative hypotheses in turn the locations corresponding to several percentiles
of such a population density distribution. We call these locations Q10, Q15, Q20, Q25, Q30,
Q40, Q50, and Q100, respectively, naming them after their corresponding percentiles.
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All deciles between the median and the largest value correspond to locations within or
around Syracuse, and they yield results similar to Q100 (that we label ‘C’ in Table II). Since
we want a broader representation, we also hand-pick two more locations as positions for
the cluster centre. These locations are in the middle of Auburn (‘A’) and Binghamton (‘B’)
respectively, chosen as representatives of small and medium-sized urban centres. Binghamton
is also chosen because of the interest in the potentially hazardous waste sites near that city.
We saw in the previous section that the region around Binghamton is identi�ed as a possible
location of a cluster of leukaemia cases.
To study the extent of the in�uence of a cluster, a radius, 
, around the cluster centre

is chosen within which the probability of becoming diseased is elevated. We choose three
values: 
=2, 5, and 10 km to indicate clusters with increasing impact. Within the radius of
in�uence, we choose a factor � by which to increase the probability of becoming diseased.
At the centre of the cluster, the probability of becoming diseased is multiplied by (1 + �),
and the increase-factor decreases linearly to one at the perimeter of the circle of radius 
.
(The probabilities are re-scaled to add to one). We choose di�erent values �, as shown in
Table I. This is an example of a ‘clinal’ (or ‘conic’) cluster as de�ned in Reference [28].
We also study ‘cylindric’ clusters, i.e. clusters for which the same factor (1+�) is applied

to all locations falling within the cluster, irrespectively of their distance from the centre of the
cluster. Among cylindric clusters we experiment with elliptically shaped clusters with ratios
between the longest and the shortest diameter in turn equal to 1, 2.5, and 5. These clusters
all have their smallest diameter equal to 4 km, so that they are uniquely identi�ed as having

 equal to 2, 5, and 10 km, respectively.
The powers of the statistics are estimated by counting the proportion of the samples (gen-

erated according to some alternative hypothesis) that are more extreme than the 5 per cent
cut-o� values obtained from the null distribution. The way in which we create the alternative
hypotheses is such that putting a cluster on a densely populated area will have a stronger
impact on the overall distribution of the cases than a cluster placed on an area of low popula-
tion density, since we condition on the total number of cases. This way of creating alternative
hypotheses thus makes clusters placed in highly populated areas easier to detect, and gives
an overall impression of varying prevalence.
Table II shows that the power of all statistics varies with the location of the cluster centre,

its extent (
), and the overall prevalence. The power of any statistic in general depends very
strongly on the underlying population distribution as well as on all these parameters, but it
seems clear that the proposed statistics M1, M�2 , MKL and M perform very well, and that in
particular the power gain of M over all the other statistics is large. This is probably due to the
fact that M is the only one among these statistics that explicitly accounts for the covariance
structure in fn(d). Tango’s T statistic performs quite well, especially when the cluster is placed
in highly populated areas such as Q50 and B (in which cases it sometimes even outperforms
all other statistics). Quite often, however, its power is much smaller than M ’s. Notice that we
choose the parameter � in the expression of T to be equal to 5, thus making bene�cial use of
prior information (external to the data) about the alternative hypotheses. That information is
not usually available. In fact, expanding exp(−d=5) to the linear term gives 1−d=5, so that T
gives most weight to deviations from the expected counts occurring in the same direction at
pairs of locations that are roughly within 5 km of each other. Note that other weight matrices
could be de�ned, that take into consideration an assumed spatial structure (see for example
Reference [30]).
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The performance of � and DC in this setting is quite disappointing, with powers greater
than 0.50 only when large clusters are placed at the two highly populated locations B or C.
The power estimates for � shown in Table II are based on the use of a two-sided test rather
than on a one-sided test as may at �rst seem appropriate. The one-sided test (in the direction
of rejecting the null hypothesis of randomness when � is too small) may possibly work well
for uniform underlying populations, but it creates problems for general populations, since the
strong dependence among the interpoint distances can cause the statistic to actually be driven
in the opposite direction as the intensity of an added cluster is increased. In fact, we also
compute the powers corresponding to the one-sided test in the simulations (data not shown),
and in several instances they result in powers for � equal to zero because of this phenomenon.
The overall performance of the statistic M appears to be superior to that of �, T , and DC,

especially from the point of view of the robustness of their performance as the cluster is
placed in di�erent positions. Examination of Table II shows that these results are consistent
across the two kinds of clusters (cylinder vs conic). However, care should be taken, as always,
when interpreting any simulation results, because of their restricted generalizability.

5. DISCUSSION

We describe the use of the interpoint distribution function as a statistic for the description of
spatial patterns, and in particular we use it to assist in the detection of clustering that may
exist over and above the natural clustering present in the underlying population. Clearly, no
simulation study can provide absolute conclusions about the properties of any of the statistics
discussed here. From our experiment there is indication that the interpoint distance distribution
methods perform well when the underlying population is highly inhomogeneous (although this
is not necessarily the case in all applications, see for example Reference [31]). The interpoint
distance distribution even seems to perform reasonably well when the points are generated
according to a homogeneous distribution, but in that setting the DC statistic [22] performs
better, especially when one uses a large number of controls in the computation of DC. We
thus suggest that the M statistic should be added to the researcher’s toolbox when assessing
the possible presence of disease clusters over inhomogeneous populations.
On a more theoretical level, our M statistic shares some similarities with DC. The latter

was designed for the setting in which no two points can share the same co-ordinates, as
their approach extends the work of Ripley [5] to construct the statistic DC that is based
on the di�erence between K-functions. The K-function resembles a little the ecdf of the
distances between individuals, even though the former is unbounded. One shortcoming of the
K-function is that it cannot be estimated with any degree of accuracy for distances beyond a
small neighbourhood of each observation, and in fact it can be estimated only for distances up
to half the maximal distances between the individuals on the map. This shortcoming implies
that no information can be gained from larger interpoint distances, while the presence of a
cluster may have a great impact on those distances, as is indeed the case in the example
we present. The K-function approach seems designed to detect a clustering process (thought
of as ‘coagulation’, meant as the process of creating many small clusters) rather than the
addition of one (or a few) clusters to an existing population. In fact, the K-function is a
second moment measure of the entire point process and, like a covariance, it is a summary of
clustering=regularity behaviour over all observed events. A single, very localized cluster may
not induce much evidence for clustering over the entire observed process.
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In contrast to that approach, the interpoint distance distribution considered here is con-
ditional on the region, and it summarizes the behaviour of the interpoint distance over its
whole range and not only for smaller values. For example, in the New York state application,
the largest distance between any two individuals is about 162 km, while the circumradius
is about 80. This precludes the DC statistic from considering the quite informative peak at
110 km. In fact, our method is based on conditioning on the region actually observed—as
opposed to trying to estimate the second-order characteristics of an underlying process, as
the K-functions do, an undertaking of somewhat questionable value in the inhomogeneous
setting. This may explain some of the superiority of the power characteristics of M for the
alternatives considered in the application. Another di�erence between the two statistics is the
consideration of the covariance structure of the cdf in the de�nition of M , which seems to
be an e�ective way of capturing the strong dependence implicit in the very de�nition of
interpoint distances. We believe that these di�erences explain the power observed for M in
the simulation study, in particular in the New York State setting. On the other hand, when
the underlying process is a homogeneous point process—i.e. when concentration on the in-
terpoint distances close to zero is most informative—then the K-function approach seems to
perform better than M in some cases. This could also be due to the absence of endogenous
clusters.
Note also that for the very de�nition of a K-function there needs to be an underlying space

on which one can de�ne a (preferably homogeneous) point process, while there is no such
requirement for the interpoint distance distribution; in the latter, the de�nition of a distance
or dissimilarity measure su�ces. The stated assumption of independence between the points
does provide (in the continuous setting) the underpinnings for a Poisson approximation to the
underlying spatial distribution as the number of points goes to in�nity [32], but we feel that
it is more natural not to rely on asymptotics (whose accuracy is questionable) but rather to
work with the actual exact distributions whenever possible, as we have done here.
The lack of power of � suggests that just considering the mean distance is perhaps too

drastic a summary of the whole distribution of the interpoint distances. Tango’s T statistic
performed quite well under certain conditions, but not very well under others. Like DC, T
also does not make full use of the information contained in the distribution of the interpoint
distances at large distances, since it concerns itself with local behaviour. Also, the estimated
powers for both � and T do change quite a bit depending on whether the tests are one-
or two-sided, highlighting the di�culties in the de�nitions and interpretation of these two
statistics.
Tango [18] shows an interesting example of why he considers the � statistic inappropriate

for use over inhomogeneous populations. To whit, consider an arti�cial study area comprising
of three locations in an equilateral triangle, and p=(0:2; 0:3; 0:5). It is easy to show that
� takes on the same value both when there is no clustering and p̂=p, and when there
is clustering and p̂=(0:5; 0:3; 0:2) (a clear deviation from randomness). In this example all
the interpoint distances are equal, so that � is actually invariant to all of the 6 possible
permutations of the elements of p. A similar argument can be made against the interpoint
distance distribution. One cannot rule out the possibility that two di�erent spatial distributions
may yield the same F(d). However, in the discrete setting this only seems possible if there
exist locations having the same set of distances from all of the other locations, and this
situation seems extremely hard to achieve when the geography is not trivial. In the continuous
setting the construction of such an example seems even harder.
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It should also be noted that a similar argument can be made against the Tango statistic. The
de�nition of the matrix A in T is such that its being positive de�nite is not guaranteed, so
that there exist situations in which T itself may be equal to zero while p̂ �=p. Also, Kulldor�
[33] shows an example of a clustering point process designed to cause DC to be identically
equal to zero. In general, the derivation of the properties of the mapping from the data to the
statistics used to test for clustering is a di�cult problem, and, because of its importance, it
deserves continued investigation.
Observe that as one moves from the discrete model to the continuous model, one can think

of the position of the individuals as being measured with increasing precision, so that in
many cases one can think of the discrete setting as being a discretization of an underlying
continuous process. The issues associated with the convergence from the discrete setting to
the continuous setting, as one increases the resolution of the data, is one that deserves further
study.
Note that while inhomogeneous spatial processes are also being studied (see for example

References [34–36]), one can in contrast summarize the interpoint distance distribution ap-
proach as being a conditional, non-parametric approach. The interpoint distance distribution
is clearly a function of the distribution of the observations (and in particular, of the region
being considered), so that in general it is hardly identi�able with a parametric form. The
use of the interpoint distance distribution is very intuitive and similar in spirit to the use of
the empirical cdf. Consideration of the interpoint distance distribution and of its empirical
estimator Fn(·) can thus be regarded as an extension of the commonly used non-parametric
approach for random samples, with the advantage that the use of the empirical cdf of multi-
variate co-ordinates (or equivalently, the estimation of the corresponding intensity functions)
is hard to accomplish in high dimensional settings (see Reference [37] for related work in two
dimensions in the uniform case), whereas the interpoint distance can always be de�ned and
used whenever a metric between observations is available (see Reference [38] for an example
using genetic distances).

APPENDIX: WEAK CONVERGENCE OF
√
n(Fn(·)− F(·))

Let (S;S; P) be a probability space, and let {X1; : : : ; Xn} be an i.i.d. sample from the
distribution P. We consider the asymptotic properties of the stochastic process Un(d)=

(n
2

)−1∑
16i1¡i26n 1(d(Xi1 ; Xi2)6d), which is asymptotically equivalent to Fn(d). In general, if H is

a measurable VC-subgraph class of real symmetric functions h∈H on S2 with an envelope
H square integrable for P2, P a probability measure on (S;S), then,

{√
n(Un(h)− P2h) : h∈H} →L {4GP(Ph) : h∈H} in l∞(H)

where Un(h)=
(n
2

)−1 ∑
16i1¡i26n h(Xi1 ; Xi2), n¿2, P

2h=
∫
hd(P×P) and GP(·) is a Gaussian

process evaluated at the values Ph, h ∈ H (with covariance function cov(GP(Ph); GP(Pg)),
for (Ph)(x)=

∫
h(x; u)dP(u)) (see Reference [10, Theorem 5.3.3], specializing to n=2). In

our setting we let S be some bounded region of the plane. Then the class of functions H is
H= {1{d(X1 ; X2)6t}; t ∈ [0; tmax]}, and we can take as the square integrable envelope the function
H (X1; X2; t)≡ 1 ∀(X1; X2)∈ S2 and ∀t ∈ [0; tmax], where tmax is the maximum interpoint distance
that can be observed on S. In fact, H is measurable, everywhere �nite and square integrable,
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given the boundedness of S. Since the indicators above are real symmetric functions of X1 and
X2, it remains to prove only that H is indeed a measurable VC-subgraph class of functions
on S. This is indeed so since the graphs of the indicators 1{d(X1 ; X2)6t} are ordered by inclusion
and therefore they cannot shatter any set of two or more points. This proves the result.
Because of the very de�nition of a Gaussian process, this general result implies that for a

�xed value d the empirical cdf Fn(d) has
√
n-convergence to E(d(X1; X2)6d)=F(d). More

generally, the weak convergence implies that the joint asymptotic distribution of the centred
empirical cdf

√
n(Fn(d)−F(d))=

√
n(Fn(d1)−F(d1); : : : ; Fn(dm)−F(dm)) computed at a �nite

number of �xed values d=(d1; : : : ; dm) is multivariate normal with covariance matrix � as
described by the process above. In particular, for two distances da and db, the corresponding
covariance term in � is

	a; b=4(E[1{d(X1; X2)6da; d(X1; X3)6db)}]− P(d(X1; X2)6da)P(d(X1; X2)6db))
Lastly, the asymptotic distribution of M̃ can easily be obtained. In fact, if we call �− a

generalized inverse of the matrix �, then by Theorem 25 in Reference [39, p. 69] it follows
that:

nM̃ (Fn(d); F(d))= n[Fn(d)− F(d)]′�−[Fn(d)− F(d)]
has as asymptotic distribution a �2 distribution with degrees of freedom equal to rank(�−�).
In fact, the necessary and su�cient condition ��−��−�=��−� is true by de�nition of
generalized inverse.
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