
STATISTICS IN MEDICINE
Statist. Med. 2005; 24:2317–2334
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2122

A multistate Markov chain model for longitudinal, categorical
quality-of-life data subject to non-ignorable missingness

Bernard F. Cole1;∗;†, Marco Bonetti2;3, Alan M. Zaslavsky4 and Richard D. Gelber5

1Department of Community and Family Medicine; Section of Biostatistics and Epidemiology;
Dartmouth College Medical School; Lebanon; NH 03756; U.S.A.

2Istituto di Metodi Quantitativi; Universit�a Bocconi; Viale Isonzo; 25; Milano; Italy
3Department of Biostatistics; Harvard School of Public Health; 655 Huntington Avenue; Boston;

MA 02115, U.S.A.
4Department of Health Care Policy; Harvard Medical School; 180 Longwood Avenue; Boston;

MA 02115; U.S.A.
5Department of Biostatistics; Harvard School of Public Health and Dana-Farber Cancer Institute;

44 Binney Street; Boston; MA 02115; U.S.A.

SUMMARY

Quality-of-life (QOL) is an important outcome in clinical research, particularly in cancer clinical trials.
Typically, data are collected longitudinally from patients during treatment and subsequent follow-up.
Missing data are a common problem, and missingness may arise in a non-ignorable fashion. In particu-
lar, the probability that a patient misses an assessment may depend on the patient’s QOL at the time of
the scheduled assessment. We propose a Markov chain model for the analysis of categorical outcomes
derived from QOL measures. Our model assumes that transitions between QOL states depend on co-
variates through generalized logit models or proportional odds models. To account for non-ignorable
missingness, we incorporate logistic regression models for the conditional probabilities of observing
measurements, given their actual values. The model can accommodate time-dependent covariates. Esti-
mation is by maximum likelihood, summing over all possible values of the missing measurements. We
describe options for selecting parsimonious models, and we study the �nite-sample properties of the
estimators by simulation. We apply the techniques to data from a breast cancer clinical trial in which
QOL assessments were made longitudinally, and in which missing data frequently arose. Copyright ?
2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Quality-of-life (QOL) is an important outcome in clinical research. Typically, QOL data are
collected longitudinally from patients at prespeci�ed time points during treatment and follow-
up, and missing data are a common problem. The probability a patient misses an assessment
may be related to the patient’s QOL at the scheduled assessment time [1]. Patients who are
very sick, and presumably have low QOL, may miss assessments because of the burden in
completing them. On the other hand, a patient who is doing well may skip a clinic appointment
and thus miss the corresponding assessment. When the probability of missing an observation
is a function of the unobserved variable, the data are said to be a�ected by non-ignorable
missingness, as de�ned by Little and Rubin [2].
The International Breast Cancer Study Group (IBCSG) conducted a randomized clinical

trial in 1212 postmenopausal women with node-positive breast cancer to evaluate chemoen-
docrine therapies [3, 4]. In this study, patients completed a QOL questionnaire at the beginning
of treatment and at various time points during and after treatment. Many patients missed as-
sessments for reasons that may be related to their QOL at the scheduled assessment time.
Motivated by this issue, we developed a model for longitudinal QOL data subject to non-
ignorable missingness. Our goal was to evaluate the treatment e�ects while accounting for the
possibly informative missing data.
Several authors have considered models for univariate categorical outcomes subject to non-

ignorable missingness. Nordheim [5] considered the problem of estimating the prevalence
rate for a genetic abnormality given �xed missingness probabilities. Fay [6] and Baker and
Laird [7] introduced a class of log-linear models that allow for non-ignorable missingness.
They used the EM algorithm to compute maximum likelihood estimates of the model parame-
ters. Park and Brown [8] and Green and Park [9] extended the log-linear modelling approach
for contingency tables within a Bayesian framework. Bonetti et al. [10] proposed a method-
of-moments estimation procedure that can be used in some situations where maximization of
the likelihood is problematic. Additional literature considered longitudinal models for binary
outcomes that account for non-ignorable missingness. Fitzmaurice et al. [11] described the
bias that can result from non-random drop-out using various estimators based on generalized
estimating equations (GEE). Ten Have et al. [12] proposed mixed e�ects logistic regression
models for longitudinal binary response data with informative drop-out. In a later paper, Ten
Have et al. [13] extended the binary models to ordinal response data with multiple causes of
informative drop-out. Huang and Brown [14] proposed a Markov chain model for longitudinal
categorical data subject to non-ignorable missingness. Their model accommodates intermittent
missingness in addition to monotone missingness (dropout), but it does not provide for the
inclusion of covariates. Troxel et al. [15] considered longitudinal, continuous data with non-
ignorable missingness. Their model involves a Markov assumption regarding the correlation
structure for the longitudinal outcomes. Rotnitzky et al. [16] developed a class of semi-
parametric marginal regression models involving non-ignorable missingness. Their methods
treat the non-response model parameter as known and allow it to vary over its range, thus
producing a sensitivity analysis. Fairclough [17] described multiple imputation techniques for
non-ignorable missing data from longitudinal QOL studies.
In this paper, we develop a Markov chain model for the analysis of longitudinal categorical

QOL measures subject to non-ignorable missingness, and we �t this model to the IBCSG data.
We model transitions between QOL states with a Markov chain having transition probabilities
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that may depend on (possibly time-varying) covariates through generalized logit models or
proportional odds models [18]. Logistic regression is used to model the conditional probability
of observing a measurement, given the actual value. Estimation is by maximum likelihood,
summing over all possible values of the missing measurements. The main advantage of the
model over existing methods is that it allows two or more QOL states, while accommodating
both intermittent, informative missingness and covariate e�ects.
Other authors have analysed the IBCSG data under di�erent assumptions, and these analyses

serve as useful comparisons to the present analysis. H�urny et al. [3] used analysis of variance
to compare the treatment groups at each assessment time, �nding that patients undergoing
chemotherapy tended to have lower QOL, and that QOL tended to improve over time. Bonetti
et al. [10] applied a method-of-moments estimation procedure to the data, assuming the same
missing data mechanism but di�erent distributions of the QOL scores across the treatment
groups. At each time point separately, they estimated parameters associated with non-ignorable
missingness as well as the probability of each QOL state. Their results also showed that
QOL scores tended to increase over time and tended to be lower for patients undergoing
chemotherapy.
In Section 2, we describe the model for the transition probabilities of the Markov chain

as well as the non-ignorable missingness mechanism. Maximum likelihood estimation of the
model parameters is described in Section 3. Section 4 presents simulation studies of the �nite
sample properties of the model estimators. In Section 5, we �t the model to the IBCSG QOL
data. Lastly, Section 6 discusses advantages and limitations of the model along with possible
extensions.

2. THE MODEL

Let Yt; t=1; : : : ; T denote a Markov chain with J states.
De�ne the transition probabilities by

pij(xt)=Pr(Yt = j|Yt−1 = i;xt)

where i; j=1; : : : ; J , and xt is a vector of possibly time-varying covariates. We assume that
Pr(Y1 = j), the likelihood for the initial state, does not depend on any of the parameters
associated with the transition probabilities. Additionally, we assume that the initial state is
always observed.
Let Rt; t=2; : : : ; T denote observation indicators for the Markov chain. That is,

Rt =
{
1 if Yt is observed
0 otherwise

For t=2; : : : ; T , we de�ne the conditional probability that Yt is observed given that Yt = j
by qj(z t)=Pr(Rt =1|Yt = j; z t), where z t is a vector of covariates, possibly time-varying and
including any or all of the covariates in xt .
Under the above assumptions, we have for all i, j, r and t,

Pr(Yt = j; Rt = r|Yt−1 = i;xt ; z t)=pij(xt)qj(z t)r{1− qj(z t)}1−r (1)
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If the response categories are not ordered, the transition probabilities can be modelled using
generalized logits. Using the J th category as a reference, the logits can be parameterized as

log
{
pij(xt)
pi J (xt)

}
=�′

ijxt ; j=1; : : : ; J − 1 (2)

where each �ij is a vector of parameters. Under the model de�ned by (1) and (2), the
transition probabilities are given by

pij(xt)=
exp(�′

ijxt)∑J
‘=1 exp(�

′
i‘xt)

where we set �iJ ≡ 0 for all i to ensure identi�ability. We refer to (1) and (2) as the
generalized logit model.
The proportional odds model is appropriate for ordinal outcomes. De�ning the cumulative

probabilities, wij(xt)=pi1(xt) + · · ·+ pij(xt), the cumulative logits can be parameterized as

log
{

wij(xt)
1− wij(xt)

}
= �ij + �′

ixt ; j=1; : : : ; J − 1 (3)

where each �ij is an intercept parameter, and each �i is a vector of slope parameters. The
�ij must be non-decreasing in j for �xed i to ensure monotonicity among the cumulative
probabilities wij(xt). Under (3) the transition probabilities are

pij(xt)=
1

1 + exp(−�ij − �′
ixt)

− 1
1 + exp(−�i; j−1 − �′

ixt)

where we de�ne �i0 ≡ −∞ and �iJ ≡ +∞.
For both models, we can further model the probabilities of observing the outcomes Y2; : : : ; YT

using logistic regression. That is, we let

log
{

qj(z t)
1− qj(z t)

}
= �′

jz t

where �j is a vector of parameters, j=1; : : : ; J . Equivalently,

qj(z t)=
1

1 + exp(−�′
jz t)

3. INFERENCE

3.1. Parameter estimation

Estimation of the model parameters can be achieved by maximizing the full likelihood via
the Newton–Raphson algorithm and enumeration of all possible complete-data chains. Let
{yit}; i=1; : : : ; n; t=1; : : : ; Ti, denote the observations from n independent Markov chains,
where Ti denotes the length of chain i (including missing elements). Let rit denote the obser-
vation indicator for yit , and let xit and zit denote the corresponding covariate vectors, which
we assume are always observed. To simplify notation, we let yi denote the ith chain of data, y
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denote all of the chains of data, and � denote the vector of all model parameters (i.e. all �, �
and � parameters). Finally, we let yObsi and yMissi denote the observed and missing components
of yi, respectively.
We �rst consider the complete-data likelihood for a single chain. This represents the like-

lihood under the assumption that all missing elements of a chain are known, as well as the
observation indicators. For chain yi, the conditional likelihood for the complete-data chain
given the initial state is

Lc(�; yi)=
Ti∏
t=2
pyi(t−1) ;yit (xit)qyit (zit)

rit{1− qyit (zit)}1−rit

The full likelihood for a single chain is∑
yMissi

Pr (Yi1 =yi1)Lc(�; yi) (4)

where the summation is over all possible values for the missing components of yi. Under the
assumption that the initial state is always observed, (4) can be written as

Pr(Yi1 =yi1)L(�; yObsi ) (5)

where

L(�; yObsi )=
∑
yMissi

Lc(�; yi)

The combined likelihood (5) can then be factored into components for the initial state and
the subsequent transitions. Under the assumption that the parameters of these components are
distinct, we can ignore the initial-state likelihood when we estimate the parameters for the
state transitions, which are those of interest.
The total log-likelihood for the sample of chains is ‘(�; yObs)=

∑n
i=1 ln L(�; y

Obs
i ): In Ap-

pendix A, we compute the �rst and second derivatives of ‘(�; yObs) for the purpose of applying
the Newton–Raphson algorithm.
After �tting the model, the parameter estimates can be used to impute missing data using

the predictive distribution for each chain, Pr(YMissi |YObsi ; �̂)=Lc(�̂; yi)=L(�̂; yObsi ). For example,
one could draw from this distribution in a multiple imputation analysis, or if appropriate, the
mean of the predictive distribution can be substituted for the missing data items.
It may be appropriate to model missing observations which occur at the end of a chain

di�erently from missing observations that occur between two non-missing observations. Miss-
ingness at the end of a chain may be due to loss of follow-up for reasons unrelated to QOL
(study dropout). A variety of models representing alternative assumptions can be obtained by
varying the way in which the likelihood incorporates these missing observations. Summing
over all missing observations following dropout assumes that these outcomes follow the same
Markov model and that missingness continues to be related to the actual, unobserved QOL
in the same way as prior to dropout. Conversely, if one assumes that the transition mech-
anisms and observation probabilities following dropout are independent of and unrelated to
pre-dropout mechanisms, one would sum only over missing observations occurring prior to the
last non-missing observation. An intermediate assumption, that we follow in the analysis of
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the IBCSG data, is that the �rst few missed reports following dropout arise similarly to pre-
dropout missing observations, but henceforth a di�erent process leads to permanent dropout.
The corresponding likelihood is obtained by summing over a shortened range of post-dropout
observations.
We use a robust (‘sandwich’) estimator of the asymptotic variance matrix of the maximum

likelihood estimates [19]. Our model assumes that the successive transitions for a given subject
are independent, but in fact there might be some unmodelled dependence. The sandwich
estimator corrects for the e�ects of clustering of transitions within subjects. Let I(�̂) denote
the observed information matrix evaluated at the maximum likelihood estimate �̂ of �, and
let si(�̂) denote the score vector for subject i evaluated at �̂. Both I(�̂) and si(�̂) are obtained
as byproducts of the maximization of ‘(�; yObs) via the Newton–Raphson method. Then, the
sandwich estimator of the covariance matrix for �̂ is

�̂= I(�̂)−1SI(�̂)−1 where S=
n∑
i=1
si(�̂)si(�̂)′

3.2. Model selection and model �t

The proposed models require a possibly large number of parameters, but more parsimonious
models can be obtained by imposing constraints such as setting a parameter to 0, or constrain-
ing two or more parameters to be equal. Such restrictions can be applied to the transition
probability models, the missingness mechanism models, or both.
The number of intercept parameters in the proportional odds model can also be reduced.

For example, we can assume that each intercept follows the model

�ij= �i + �j (6)

where 0= �1¡�2¡ · · ·¡�J−1. Under this model, the spacings of the cutpoints (for an under-
lying continuous variable) are the same for each state being exited. Ideally, the choice to
restrict model parameters should have a scienti�c rationale. However, it is also possible to
make judicious use of hypothesis tests (e.g. Wald tests) to choose among several models, as
we illustrate in Section 5.
To evaluate the Markovian dependence assumption, we examine lagged values of the QOL

states as predictors of future transitions. This represents a semi-Markov model. In this case,
missing QOL states will lead to missing covariate values; however, these can be accommo-
dated by replacing the missing state with its enumerated value when computing the likelihood.

4. SIMULATION STUDY OF THE ESTIMATORS

We performed a simulation study of the estimators to examine how well they perform in
�nite samples and when the missingness model is mis-speci�ed. In all cases, we simulated
data from a binary Markov chain with length 10. For the transition probabilities, we in-
cluded a single covariate and used the parameter values �11 = 0:7, �21 = − 0:4, �1 = 0:2 and
�2 =−0:3 (based on the proportional odds model notation described in Section 2). The covari-
ate was generated from a standard normal distribution. For the observation probabilities, we
�rst considered an intercept-only model and three sets of parameter values: [�1 = 0:0; �2 = 0:5],
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[�1 = 0:5; �2 = 0:7], [�1 = 1:5; �2 = 0:7], representing a range of (non-ignorable) missingness
probabilities. We also performed simulations under a mis-speci�ed model for the observation
probabilities, where the observation probability depends on the current state and the missing-
ness of the previous state. In particular,

Pr(Yt is observed)=
1

1 + exp(−�j − �Rt−1)
where we set �=0:3.
Sample sizes (total number of chains) were 60, 125, 250, 500, 1000 and 2000 for the

properly speci�ed model. For the mis-speci�ed model, we simulated sample sizes of 250, 500,
1000 and 2000. For each combination of parameter values and sample sizes, we generated
1000 samples and estimated the coverage probability for the 95 per cent con�dence interval
corresponding to each parameter.
Table I shows the simulation results. When the model is properly speci�ed (i.e. �=0),

adequate coverage probabilities (at least 94 per cent for nominal 95 per cent intervals) were
obtained for sample sizes of 125 or more. Under the mis-speci�ed model, coverage probabil-
ities were variable. As one would expect, coverage probabilities for the parameters pertaining
to the observation probabilities were poor. However, con�dence interval coverage associated
with the e�ect of the covariate on transition probabilities was very good (i.e. generally above
93 per cent), especially as the amount of missingness decreased. This was observed even for
the largest sample sizes, when any bias due to mis-speci�cation becomes more noticeable.

5. ANALYSIS OF THE IBCSG DATA

We �t the model to the QOL data from the IBCSG trial. The trial randomized 1212 post-
menopausal women with node-positive breast cancer into a 2× 2 factorial study of chemoen-
docrine treatment. The four treatment groups were: tamoxifen alone for 5 years (Tam only,
n=306), tamoxifen plus three early single cycles of cyclophosphamide, methotrexate, and
�uorouracil (CMF) on months 1, 2, and 3 (Tam+early CMF, n=302); tamoxifen plus de-
layed single courses of CMF on months 9, 12, and 15 (Tam+delayed CMF, n=308); and
tamoxifen plus early and delayed CMF on months 1, 2, 3, 9, 12, and 15 (Tam+early+delayed
CMF, n=296). A full description of the trial and its �ndings is published elsewhere [3, 4].
Patients were asked to complete a QOL questionnaire at the beginning of treatment, 2

months later, then every 3 months for 2 years, and at 1 month and 6 months after disease
relapse. The QOL instrument was administered in the clinic prior to chemotherapy. Following
H�urny et al. [3], we analysed the answers to the perceived adjustment=coping question: ‘How
much e�ort does it cost you to cope with your illness?’ which was assessed with a single-
item linear analog self-assessment scale ranging from zero (‘no e�ort at all’) to 100 (‘a
great deal of e�ort’). We focused on the data collected during the �rst 18 months following
randomization (a maximum of seven observations) or until disease relapse. This allowed us
to evaluate QOL conditional on being free of recurrent disease.
As in previous analyses of these data [10], we used the coping measure de�ned by three

possible values: ‘good’ (responses ¡13), ‘medium’ (responses ¿13 and ¡40), and ‘poor’
(responses ¿40). The three categories of QOL were de�ned so that each would contain
about one-third of the observed scores. The rationale for categorizing the coping measure
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Table I. Ninety-�ve per cent con�dence interval coverage probabilities based on 1000 simulated
datasets∗.

Model parameters

Sample size �11 �1 �21 �2 �1 �2

Correctly speci�ed model (�=0:0)
[�1 = 0:0; �2 = 0:5]
60 0.931 0.937 0.919 0.946 0.937 0.916
125 0.941 0.955 0.942 0.945 0.948 0.950
250 0.947 0.947 0.940 0.943 0.941 0.949
500 0.953 0.948 0.953 0.952 0.949 0.953
1000 0.962 0.944 0.956 0.960 0.948 0.950
2000 0.945 0.955 0.942 0.973 0.951 0.949

[�1 = 0:5; �2 = 0:7]
60 0.927 0.946 0.933 0.942 0.930 0.932
125 0.949 0.944 0.942 0.950 0.944 0.945
250 0.939 0.954 0.931 0.948 0.938 0.941
500 0.951 0.947 0.949 0.947 0.953 0.946
1000 0.950 0.942 0.950 0.950 0.960 0.961
2000 0.954 0.948 0.943 0.953 0.958 0.961

[�1 = 1:5; �2 = 0:7]
60 0.924 0.951 0.941 0.939 0.951 0.935
125 0.956 0.956 0.943 0.941 0.950 0.953
250 0.957 0.942 0.953 0.952 0.942 0.948
500 0.953 0.932 0.960 0.953 0.948 0.956
1000 0.942 0.940 0.952 0.950 0.961 0.943
2000 0.949 0.945 0.949 0.960 0.951 0.950

Mis-speci�ed model (�=0:3)
[�1 = 0:0; �2 = 0:5]
250 0.816 0.926 0.872 0.944 0.572 0.907
500 0.758 0.931 0.812 0.949 0.390 0.909
1000 0.673 0.924 0.754 0.957 0.224 0.882
2000 0.537 0.909 0.603 0.938 0.041 0.874

[�1 = 0:5; �2 = 0:7]
250 0.874 0.945 0.888 0.953 0.736 0.866
500 0.882 0.940 0.902 0.948 0.669 0.844
1000 0.880 0.951 0.895 0.953 0.542 0.859
2000 0.867 0.958 0.873 0.941 0.308 0.824

[�1 = 1:5; �2 = 0:7]
250 0.910 0.955 0.911 0.948 0.939 0.778
500 0.915 0.943 0.904 0.941 0.927 0.670
1000 0.879 0.930 0.871 0.932 0.929 0.492
2000 0.788 0.954 0.821 0.928 0.916 0.223

∗In all cases, data were simulated from a binary Markov chain. Transition probabilities involved a single
covariate (generated from a standard normal distribution) and used the parameter values �11 = 0:7, �21 =−0:4,
�1 = 0:2 and �2 = − 0:3 (based on the proportional odds model notation described in Section 2). For the
observation probabilities, an intercept-only model was used with the parameter values indicated. A latent
covariate, with corresponding parameter � was added to achieve mis-speci�ed models.
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Table II. Number (per cent) of transitions between QOL states in the IBCSG clinical trial.

State entered

State exited Poor Medium Good Missing

All patients (n=974)
Poor 829 (51) 331 (20) 124 (8) 347 (21)
Medium 255 (18) 634 (45) 325 (23) 186 (13)
Good 81 (6) 242 (17) 891 (64) 187 (13)
Missing 162 (22) 171 (23) 154 (21) 254 (34)

Tam only (n=238)
Poor 122 (42) 67 (23) 31 (11) 72 (25)
Medium 46 (14) 163 (49) 85 (25) 40 (12)
Good 15 (4) 58 (14) 285 (68) 59 (14)
Missing 37 (20) 38 (20) 43 (23) 68 (37)

Tam+ early CMF (n=245)
Poor 226 (54) 77 (18) 27 (6) 90 (21)
Medium 59 (17) 152 (43) 92 (26) 48 (14)
Good 23 (7) 68 (20) 210 (61) 42 (12)
Missing 34 (18) 52 (27) 40 (21) 67 (35)

Tam+ delayed CMF (n=244)
Poor 218 (50) 87 (20) 35 (8) 92 (21)
Medium 72 (20) 158 (45) 70 (20) 53 (15)
Good 24 (8) 50 (16) 200 (64) 38 (12)
Missing 45 (23) 45 (23) 31 (16) 71 (37)

Tam+ early+ delayed CMF (n=247)
Poor 263 (54) 100 (21) 31 (6) 93 (19)
Medium 78 (22) 161 (44) 78 (22) 45 (12)
Good 19 (6) 66 (20) 196 (60) 48 (15)
Missing 46 (27) 36 (21) 40 (24) 48 (28)

was to accommodate the distribution of the data. In particular, substantial numbers of patients
provided responses at the extreme high and low ends of the scale.
Of the 1212 randomized patients, 225 were excluded from this analysis because they did

not complete the initial QOL assessment. An additional 13 patients were excluded due to
disease relapse occurring before scheduled follow-up assessments. This analysis includes data
from the remaining 974 patients. All types of transitions are well represented in the observed
data as shown in Table II. In each group, the most probable transition from each state was to
the same state, while transitions from ‘good’ to ‘poor’ or the reverse were relatively unusual.
We included the �rst two time points following study dropout in all calculations (see

Section 3.1). The resulting mean per-patient chain length was 6.3. In 58 per cent of the
chains at least one outcome was missing. The average number of missing observations in
chains having some missing observations was 1.7, and the maximum was 5. Approximately
19 per cent of transitions entered an unknown state. The total number of completed-data chains
enumerated for the likelihood estimation was 9174. We also examined the sensitivity of our
results to the handling of post-dropout missingness by re-�tting the model after including all
missing timepoints following dropout. The parameter estimates for these two cases were very
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similar, and our conclusions were not a�ected. Therefore, we present only results from the
model that includes the �rst two timepoints following dropout.
Because the QOL states are ordinal, we used the proportional odds model for this analysis;

however, we also compared these results to those of the generalized logit model. We included
chemotherapy as a time-varying covariate in the analysis, coding it as 1 if the QOL assess-
ment occurred at a time when chemotherapy was planned (for an intention-to-treat analysis),
and 0 otherwise. An indicator variable was included for the presence of 4 or more a�ected
lymph nodes as a measure of disease severity. Age in years at study entry was included as a
continuous covariate. All three covariates were used to model the transition probabilities and
the observation probabilities.
We began the analysis by �tting a model that included lagged values of the QOL state as

covariates in the transition models. Using Wald tests, we found that �rst- and second-lagged
measures were signi�cant predictors (�2 = 45:61 with 3 d.f., p¡0:0001 and �2 = 13:22 with
3 d.f., p=0:004, respectively). Including a third-lagged measure did not improve model �t
(�2 = 0:72 with 3 d.f.; p=0:9). Therefore, we �t a semi-Markov model with 2 lags. Table
III shows results from the full proportional odds model, including all 33 parameters.
To obtain a parsimonious model, we used a backward-elimination approach with Wald

tests and removed parameters that did not signi�cantly (i.e. p¿0:05) di�er from zero. we
also tested whether the intercept parameters satisfy constraint (6) in the proportional odds
model. Table IV details the process used to arrive at the �nal model, which is shown in
Table V. We used robust estimates of the variance–covariance matrix; however, the corrected
standard errors were similar to the uncorrected estimates. In general, the covariate e�ects were
similar for the various transition types, allowing us to reduce the number of parameters by
forcing equality of these parameters. With the exception of chemotherapy group, none of the
covariates analysed was signi�cantly associated with the observation probabilities.
To investigate how well the large-sample properties of the estimators hold in the context of

the IBCSG data, we simulated 2000 samples of 974 chains under the estimated model shown
in Table V. We generated values for the initial QOL state, the covariates, and the chain
lengths from their joint empirical distribution by drawing bootstrap samples from the IBCSG
data. Using the simulation results, we then estimated the 95 per cent coverage probability for
each model parameter. It should be noted that this simulation study is limited by the fact that
the true parameter values are unknown. Overall, coverage probabilities ranged from 93.4 to
95.9 per cent, indicating generally adequate coverage.
Results from the reduced model suggest that older women tend to have lower probability of

making transitions into ‘poor’ or ‘medium’. This may be due to the better prognosis generally
seen in older women with breast cancer as compared to younger patients. Chemotherapy was
associated with a higher probability of transitions into ‘poor’ or ‘medium’. This e�ect is likely
due to toxicity experienced with chemotherapy. As expected, higher values of lagged QOL
scores were associated with lower probability of transitions into ‘poor’ or ‘medium’.
The analysis also suggested the presence of some non-ignorable missingness in the data. The

predicted observation probability was highest for the ‘medium’ state and lowest for the ‘poor’
state. Chemotherapy was associated with an increased observation probability for the ‘poor’
state but did not signi�cantly impact the observation probabilities for the other states. There
are a number of possible explanations for this e�ect. First, patients undergoing chemotherapy
had to make a clinic visit, and therefore, may have had a greater opportunity to �ll out
questionnaires (e.g. while waiting for chemotherapy infusions). Second, anticipation of adverse
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Table III. Parameter estimates for the full proportional odds model applied to the IBCSG clinical trial
with three QOL states: 1 = ‘poor’, 2 = ‘medium’ and 3 = ‘good’.

Parameter Variable Estimate (SE) p-value

Transitions from ‘poor’
�11 Intercept for ‘poor’ 2.2212 (0.5537) 0.0001
�12 Intercept for ‘medium’ 3.8063 (0.5588) ¡0:0001
�11 CMF 0.1372 (0.1108) 0.2
�12 4+nodes 0.0967 (0.1165) 0.4
�13 Age −0:0168 (0.0090) 0.06
�14 1-lag QOL −0:4392 (0.0968) ¡0:0001
�15 2-lag QOL −0:0206 (0.0969) 0.8

Transitions from ‘medium’
�21 Intercept for ‘poor’ −0:1237 (0.6002) 0.8
�22 Intercept for ‘medium’ 2.0642 (0.5868) 0.0004
�21 CMF 0.2254 (0.1222) 0.07
�22 4+nodes 0.0772 (0.1148) 0.5
�23 Age −0:0069 (0.0091) 0.4
�24 1-lag QOL −0:3233 (0.0837) 0.0001
�25 2-lag QOL −0:1376 (0.0712) 0.05

Transitions from ‘good’
�31 Intercept for ‘poor’ −0:2609 (0.7123) 0.7
�32 Intercept for ‘medium’ 1.1890 (0.7179) 0.1
�31 CMF 0.2582 (0.1466) 0.08
�32 4+nodes 0.3727 (0.1560) 0.02
�33 Age −0:0237 (0.0112) 0.03
�34 1-lag QOL −0:3105 (0.0778) 0.0001
�35 2-lag QOL −0:1907 (0.0613) 0.002

Logits of observation probabilities for ‘poor’
�10 Intercept 0.7756 (0.6680) 0.2
�11 CMF 0.3649 (0.1319) 0.006
�12 4+nodes −0:1878 (0.1626) 0.2
�13 Age −0:0021 (0.0107) 0.8

Logits of observation probabilities for ‘medium’
�20 Intercept 1.1954 (3.5495) 0.7
�21 CMF 0.9408 (1.2667) 0.5
�22 4+nodes −2:1020 (2.3775) 0.4
�23 Age 0.0434 (0.0348) 0.2

Logits of observation probabilities for ‘good’
�30 Intercept 3.0957 (1.3360) 0.02
�31 CMF −0:2267 (0.1918) 0.3
�32 4+nodes 1.6013 (0.5932) 0.007
�33 Age −0:0241 (0.0206) 0.2

Log-likelihood = − 6045:36.

side e�ects may have also played a part in motivating patients to complete questionnaires.
These results di�er somewhat from a previous analysis of the same data set [10] which found
higher levels of missing data for the ‘good’ QOL state. This di�erence is likely due to di�ering
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Table IV. Summary of sequential Wald tests used to arrive at a �nal parsimonious model for the
proportional odds analysis of the IBCSG clinical trial.

Model No. pars. Description �2 d.f. p-value

0 33 Full model — — —
1 30 �15 = �25 = �35 = 0 in Model 0 13.22 3 0.004
2 31 �15 = �25 = �35 in Model 0 2.22 2 0.3
3 28 �14 = �24 = �34 = 0 in Model 2 45.61 3 ¡0:0001
4 29 �14 = �24 = �34 in Model 2 0.21 2 0.9
5 26 �11 = �21 = �31 = 0 in Model 4 11.14 3 0.01
6 27 �21 = �31 = 0 in Model 4 1.73 2 0.4
7 24 �12 = �22 = �32 = 0 in Model 6 11.95 3 0.008
8 25 �12 = �22 = 0 in Model 6 4.82 2 0.09
9 22 �13 = �23 = �33 = 0 in Model 8 1.82 3 0.6
10 19 �11 = �21 = �31 = 0 in Model 9 10.26 3 0.02
11 20 �11 = �21 = �31 in Model 9 0.46 2 0.8
12 17 �12 = �22 = �32 = 0 in Model 11 5.52 3 0.1
13 14 �13 = �23 = �33 = 0 in Model 12 8.94 3 0.03
14 15 �13 = �23 = �33 in Model 12 1.15 2 0.6
15 14 �23 = 0 in Model 14 2.74 1 0.1
16 13 �12 − �11 = �22 − �21 = �32 − �31 in Model 15 30.98 2 ¡0:0001

Table V. Parameter estimates for the reduced proportional odds model applied to the IBCSG clinical
trial with three QOL states: 1 = ‘poor’, 2 = ‘medium’ and 3 = ‘good’.

Parameter Variable Estimate (SE) p-value

Intercept parameters for transition probabilities
�11 ‘Poor’–‘poor’ 2.0268 (0.3080) ¡0:0001
�12 ‘Poor’–‘medium’ 3.5877 (0.3174) ¡0:0001
�21 ‘Medium’–‘poor’ 0.3419 (0.3321) 0.3
�22 ‘Medium’–‘medium’ 2.5098 (0.3220) ¡0:0001
�31 ‘Good’–‘poor’ −0:7611 (0.3476) 0.03
�32 ‘Good’–‘medium’ 0.6729 (0.3234) 0.04

Shared coe�cients for the transition probabilities
�11 = �21 = �31 CMF 0.2062 (0.0653) 0.002
�13 = �23 = �33 Age −0:0133 (0.0050) 0.007
�14 = �24 = �34 1-lag QOL −0:3545 (0.0527) ¡0:0001
�15 = �25 = �35 2-lag QOL −0:1261 (0.0420) 0.003

Logits of observation probabilities for ‘poor’
�10 Intercept 0.5476 (0.1067) ¡0:0001
�11 CMF 0.4127 (0.1187) 0.0005

Logits of observation probabilities for ‘medium’
�20 Intercept 3.0287 (0.8300) 0.0003

Logits of observation probabilities for ‘good’
�30 Intercept 1.7973 (0.1552) ¡0:0001

Log-likelihood = − 6064:33.
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assumptions used in the modelling as well as a lack of covariate adjustment in the earlier
analysis.
Results for the generalized logit model were similar, and we omit them for brevity. The

choice of the ‘better’ model is best based on interpretability, and here, the proportional odds
model is more useful given the ordinal nature of the data.
To summarize the results, we computed observed and predicted mean QOL states by as-

signing numerical scores of 1, 2 and 3 to the states ‘poor’, ‘medium’ and ‘good’, respectively.
The observed-data mean at each follow-up time point was computed using only those patients
from whom a QOL assessment was available. This represents an analysis based on assum-
ing that missingness is completely at random. Complete-data predicted means were based
on observed data where available and means of imputations for the missing observations.
Figure 1 shows the observed and predicted mean QOL states across the seven assessment
time points for the four treatment groups. Generally, the non-ignorable missingness model re-
sulted in predicted mean scores that were lower than observed scores. This is consistent with
the �tted model for non-response which indicates that patients with better QOL are more
likely to complete QOL assessments. Note that the time trend is a�ected by dropout since we
did not impute beyond the second timepoint after the last observation.

6. DISCUSSION

We have introduced a model for longitudinal categorical QOL data subject to non-ignorable
missingness and applied the model to QOL data derived from the IBCSG clinical trial. In
general, our results con�rmed those of previous analyses of the IBCSG data. Of note is the
�nding that non-ignorable missingness exists in the data and that the missingness mechanism
was a�ected by treatment.
The proposed model has a number of general advantages. First, it accommodates longi-

tudinal data, which are increasingly common in the context of QOL measurement. Second,
non-ignorable missingness is likely since QOL is typically self-assessed and the probability
a response is observed may depend on current QOL. Third, the model accommodates co-
variate e�ects (including time-varying covariates), both for the transition probabilities and
for the missingness mechanism. Accommodating time-varying covariates enhances the useful-
ness of the model, especially when transition probabilities may depend on an intermittently-
administered treatment. Of course, in some cases, covariate values may be missing along with
a missing QOL assessment (e.g. when a patient misses a clinic visit), and our model does
not accommodate this kind of missingness. Nevertheless, in many clinical research settings,
some covariates are collected longitudinally by health practitioners (e.g. performance status,
laboratory outcomes) even when QOL data are missing.
Time-varying covariates can also be used to relax the Markovian assumption with higher-

order dependencies, or to model non-stationarity. For example, lagged QOL values or the
cumulative amount of time spent in each state are potential time-varying covariates. In addi-
tion, the time since last assessment could be included as a time-varying covariate if spacings
between assessments are not equal.
The proportional odds form of the model may be used when categories are ordinal. The

generalized logit form can be used for unordered categorical data, or when the proportional
odds assumption is not appropriate. The model may be used to evaluate covariate e�ects or to
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Figure 1. Observed and predicted mean quality-of-life states in the IBCSG clinical trial. The solid line
shows observed means of available cases and the dashed line shows completed-data means with missing
data imputed under the proportional odds model. The numbers of observations available at each time

point are shown along the x-axis.

impute values for the missing data. The model is easily estimated using maximum likelihood.
In simulation studies with moderately large samples (125 or more subjects), con�dence interval
coverage probabilities were adequate.
Our assumptions about the longitudinal dependence structure enable us to ‘borrow strength’

from adjacent observations to estimate parameters of the non-ignorable missingness
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mechanism. Without any such assumptions, the data are uninformative about the non-ignorable
aspect of the mechanism. In that case, we would be limited to analysis of the sensitivity of
the results to various hypothesized values of the missingness parameters, as done in the semi-
parametric setting [16].
Limitations of the model are that it requires a Markov assumption and that the algorithm for

maximum likelihood estimation is computationally intensive. Also, the number of parameters
can be large but may be reduced by appropriate restrictions. Ideally, such restrictions should
be identi�ed a priori based on a scienti�c rationale. As we have shown, Wald tests can be
used to aid in model selection, but data-driven model-building approaches may su�er from a
lack of statistical power given the large number of parameters involved.
The model that we have introduced is for categorical outcomes. In practice, it may be

necessary to categorize a continuous QOL measure in order to �t our model. If there is concern
that information is lost in this process, a �ner slicing of the data can be used, as the proposed
model does not limit the number of QOL states. Of course, this will result in a larger number
of parameters and may make estimation and interpretation more challenging. The proposed
model may su�er from a lack of identi�ability in cases were missingness is either very heavy
or very light and=or speci�c transition types are poorly represented. Additional work is needed
to establish identi�ability conditions along these lines.
The proposed model can be extended in a number of ways. One useful extension would

allow for di�erent types of missing data. For example, data that are missing by design, non-
ignorable missing data while enrolled, and dropout could be handled in the same analysis
by allowing the model for Rt to vary by reason for non-response. Other possible extensions
involve including random e�ects or accounting explicitly for unequally spaced observations
along the lines of Lee et al.’s [20] proposed bivariate model for markers and latent health
status.

APPENDIX A: LOG-LIKELIHOOD DERIVATIVES

In this appendix, we compute the �rst and second derivatives of ‘(�; yObs) for the purpose of
applying the Newton–Raphson algorithm for maximization. To improve notation, we de�ne
the complete-data log-likelihood for a single chain by ‘c(�; yi)= ln Lc(�; yi).
We have that

@‘(�; yObs)
@�u

=
n∑
i=1

1
L(�; yObsi )

{∑
yMissi

Lc(�; yi)
@‘c(�; yi)
@�u

}

and

@2‘(�; yObs)
@�u@�v

=
n∑
i=1

1
L(�; yObsi )

∑
yMissi

Lc(�; yi)
[{
@‘c(�; yi)
@�u

} {
@‘c(�; yi)
@�v

}
+
@2‘c(�; yi)
@�u@�v

]

−
n∑
i=1

1
L2(�; yObsi )

[∑
yMissi

Lc(�; yi)
{
@‘c(�; yi)
@�u

}] [∑
yMissi

Lc(�; yi)
{
@‘c(�; yi)
@�v

}]
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Therefore, we require the �rst and second derivatives of ‘c(�; yi). We have,

@‘c(�; yi)
@�u

=
T∑
t=2

[
@ ln pyi(t−1) ;yit (xit)

@�u
+ rit

@ ln qyit (zit)
@�u

+ (1− rit)@ ln{1− qyit (zit)}
@�u

]

and

@2‘c(�; yi)
@�u@�v

=
T∑
t=2

[
@2 ln pyi(t−1) ;yit (xit)

@�u@�v
+ rit

@2 ln qyit (zit)
@�u@�v

+ (1− rit)@
2 ln{1− qyit (zit)}

@�u@�v

]

Further solution of these equations depends on the model being used. In the notation that
follows we substitute x for xit , z for zit , ‘ for yi; t−1, j for yit and the � and � parameters
for the �’s as described in the text.
For the generalized logit model, we have the following non-zero derivatives:

@ ln p‘j(x)
@�‘u

= x
{
1{j= u} − p‘u(x)

}
@2 ln p‘j(x)
@�‘u@�‘v

=−xx′p‘u(x)
{
1{u= v} − p‘v(x)

}
@ ln qj(z)
@�j

= z{1− qj(z)}
@2 ln qj(z)
@�2j

=−zz′qj(z){1− qj(z)}

@ ln[1− qj(z)]
@�j

=−zqj(z)
@2 ln[1− qj(z)]

@�2j
=−zz′qj(z){1− qj(z)}

For the proportional odds model, it is �rst convenient to de�ne w‘0 ≡ 0 and let

g‘j(x) =w‘j(x){1− w‘j(x)}=p‘j(x)
g∗
‘j(x) =w‘; j−1(x){1− w‘; j−1(x)}=p‘j(x)

For all j, the derivatives of qj(z) are the same as in the generalized logit model. The
remaining non-zero derivatives for the proportional odds model are

@ ln p‘j(x)
@�‘

= x
{
g‘j(x)− g∗

‘j(x)
}

@2 ln p‘j(x)
@�2‘

= xx′[g‘j(x){1− 2w‘j(x)} − g∗
‘j(x){1− 2w‘; j−1(x)} − {g‘j(x)− g∗

‘j(x)}2]
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For j=1; : : : ; J − 1,

@ ln p‘j(x)
@�‘j

= g‘j(x)

@2 ln p‘j(x)
@�2‘j

= g‘j(x){1− 2w‘j(x)− g‘j(x)}

@2 ln p‘j(x)
@�‘j@�‘

= xg‘j(x){1− 2w‘j(x)− g‘j(x) + g∗
‘j(x)}

For j=2; : : : ; J ,

@ ln p‘j(x)
@�‘; j−1

=−g∗
‘j(x)

@2 ln p‘j(x)
@�2‘; j−1

=−g∗
‘j(x){1− 2w‘; j−1(x) + g∗

‘j(x)}

@2 ln p‘j(x)
@�‘; j−1@�‘

=−xg∗
‘j(x){1− 2w‘; j−1(x)− g‘j(x) + g∗

‘j(x)}

For j=2; : : : ; J − 1,
@2 ln p‘j(x)
@�‘j@�‘; j−1

= g‘j(x)g∗
‘j(x)
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