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SUMMARY

A new, intuitive method has recently been proposed to explore treatment–covariate interactions in survival
data arising from two treatment arms of a clinical trial. The method is based on constructing overlapping
subpopulations of patients with respect to one (or more) covariates of interest and in observing the pattern
of the treatment effects estimated across the subpopulations. A plot of these treatment effects is called
a subpopulation treatment effect pattern plot. Here, we explore the small sample characteristics of the
asymptotic results associated with the method and develop an alternative permutation distribution-based
approach to inference that should be preferred for smaller sample sizes. We then describe an extension
of the method to the case in which the pattern of estimated quantiles of survivor functions is of interest.
Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of interactions between treatment effect and variables of interest is a fundamental part of
the analysis of data arising from clinical trials. Such study may help identify subgroups of patients
for whom treatment effect is largest (or smallest, perhaps even negative) with clear implications
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for the design of later trials and for clinical practice, since the tailoring of treatment decisions to
the individual patient becomes possible. Since many clinical trials are extremely expensive and
time consuming, it is also important that the largest amount of information be obtained from them.
One could argue that it would indeed not be ethical to do otherwise.

One approach to the study of treatment–covariate interactions that has recently been proposed
is based on the analysis of treatment effects across overlapping subpopulations of patients defined
with respect to a covariate of interest. The method is called subpopulation treatment effect pattern
plot (STEPP) and it was introduced in [1, 2]. It has been applied to clinical trials conducted by
the International Breast Cancer Study Group (IBCSG), (see [3–7]) in its implementation based
on measuring treatment effect with the difference in survival probabilities between two treatment
groups at a fixed time point.

In Section 2 we briefly review the STEPP approach. In Section 3 we present the results of a
simulation study designed to explore the small sample properties of the test and the simultaneous
confidence band associated with the method. In that section we describe an alternative permutation
distribution approach to inference, which should be used for the smaller sample sizes. In Section 4
we describe the details of an implementation of STEPP to the case in which treatment effect is
based on a quantile of the survivor function in the two treatment arms. We summarize our findings
and recommendations in Section 5.

2. THE STEPP

Consider n patients in a clinical trial in which they are randomized to one of two treatments
and suppose that on all patients a baseline covariate Z ∈[zmin, zmax]⊂� is observed. The STEPP
approach has been introduced to explore the possible presence of an interaction effect between
treatment and the covariate Z . The approach consists of defining overlapping subpopulations of
patients defined with respect to Z and computing an estimate of treatment effect within each
subpopulation. Here we focus on the case in which Z is one-dimensional, but this is not strictly
necessary. We consider the case in which the subpopulations (P j , j=1, . . .,K ) are constructed
according to a ‘sliding window’ pattern, as this has proved most useful in applications. The
sliding window pattern consists of assigning a patient i to subpopulation P j when zi ∈[l j ,u j ],
where the two non-decreasing sets of numbers {l j} and {u j } are such that l j ∈[zmin, zmax],u j =
inf{u�l j |Pn(l j < Z�u)�p)} for some fixed p∈ (0,1), with Pn the empirical distribution of Z
in the data. The sets of values {l j} and {u j } can be constructed by assigning the values of two
parameters r1<r2<n and then by defining P1 as containing patients having values of Z between
the smallest observed Z value and the p= (r2/n)×100-th percentile of Pn(z), which defines u1.
Equivalently, u1 is the smallest number such that at least r2 patients fall in P1. Subpopulation P2
is then defined by choosing l2 as the smallest value such that at most r1 patients fall between l2
and u1. Then, u2 is defined as the smallest number such that P2 contains at least r2 patients. This
process is repeated until the last possible population is defined.

Within each subpopulation P j an estimate �̂ j of treatment effect is produced and the plot of
these estimates with respect to the median value of Z within each subpopulation is a STEPP plot.
A simultaneous confidence band can be produced if the joint distribution of the treatment effects
can be estimated. If, for example, one can show that the vector of the estimates (̂�1, . . ., �̂K )

of the treatment effects (�1, . . .,�K ) is approximately normal with mean (�1, . . .,�K ) and a
variance–covariance matrix � that can be estimated consistently from the data, then a rectangular

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. (2009)
DOI: 10.1002/sim



A SMALL SAMPLE STUDY OF THE STEPP

simultaneous confidence band of level 95 per cent (say) can be constructed by solving numerically
the equation in � P(

⋂K
j=1{� j ∈ �̂ j ±�(1.96)[v̂ar(̂� j )]1/2})=0.95 for a sample of random variables

generated from the estimated asymptotic distribution of the estimates. The parameter � repre-
sents the widening of the marginal confidence intervals that is necessary to produce the desired
simultaneous coverage of the band.

To test the null hypothesis of no interaction between the covariate of interest (i.e. across
subpopulations) and treatment effect one can use the test statistic

T =max

{
|̂� j − �̂ALL|

[v̂ar(̂� j − �̂ALL)]1/2
, j =1, . . .,K

}
(1)

where �̂ALL is the measure of treatment effect computed on all patients in the study. The distribution
of T can be estimated by sampling repeatedly from the estimated asymptotic distribution of
(̂�1, . . ., �̂K , �̂ALL), and a Monte Carlo p-value can thus be produced.

Bonetti and Gelber [2] discuss the implementation of the approach for the case in which �̂ j
consists of the estimated difference in survival at a fixed time point t∗ between two arms A and B,
i.e. �̂ j = ŜA, j(t∗)− ŜB, j(t∗), with Ŝ(t)G, j the Kaplan–Meier estimator of survival at time t within
treatment group G inside subpopulation P j .

3. A STUDY OF THE FINITE SAMPLE PROPERTIES, AND AN ALTERNATIVE
APPROACH TO INFERENCE

We explored the small sample properties of the survival difference implementation of STEPP. In
particular, we evaluated the accuracy in the recovery of the type I error � for the test based on
the statistic T , and the coverage of the confidence band around the STEPP plot. For the same
T -based test we also estimated the power under a series of alternative hypotheses. The power
of the STEPP test was also compared with the power of the test for the presence of a non-zero
treatment–covariate interaction using a Cox proportional hazards model that included the terms
treatment arm (Tx), Z , and Z×Tx. Calculations were performed using a combination of the R
programming language [v2.6.2; available at www.r-project.org] and of the C++ compiler g++
[v2.95.2; available at gcc.gnu.org], on a SPARC solaris 8 machine.

3.1. Recovery of the type I error probability of the test and coverage of the confidence band
around the STEPP plot

Under the null hypothesis, patient survival times were randomly generated from an exponential
distribution such that S(4)=0.1, 0.5, and 0.9, where S(.) is the survival function, assuming no
treatment effect anywhere. Patients entered the study uniformly over 5 years with two additional
years of follow up. At 7 years from the opening of accrual, administrative censoring was applied
to the survival times. We randomly assigned to each patient one of two treatment groups (A,B) in
a 1:1 ratio and a continuous covariate Z , where Z ∼N(55,25). Overlapping subpopulations were
created with respect to Z using the sliding window approach. Within each subpopulation, survival
at 4 years was estimated for each treatment group. In addition, an overall estimate of survival at
4 years across all subpopulations was obtained for each treatment group.
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We estimated the covariance matrix �=�A+�B of the vector of treatment effects
[̂�1, . . ., �̂K , �̂ALL], where �̂ j = ŜA, j(4)− ŜB, j(4), j=1, . . .,K and �̂ALL= ŜA(4)− ŜB(4). The
matrices �A and �B were estimated as described in [2].

For each of 300 simulations of sample size n, survival data were generated, the subpopulations
were constructed based on the parameters r1 and r2, and the covariance matrix � estimated. For the
confidence band, within each simulation 1000 vectors of treatment effects of size K were sampled
from the estimated marginal normal distribution of (̂�1, . . ., �̂K ). We then numerically solved for
the parameter value �, thus obtaining the confidence band. We estimated the true probability that
the (random) confidence band contained the vector of the true treatment effects by counting the
number of bands out of the 300 that did contain the zero vector of length K .

For the test statistic T the vector of treatment effects was transformed linearly to obtain the
covariance matrix of the centered treatment effects �̂ j − �̂ALL, j =1, . . .,K . One thousand vectors
were generated from the asymptotic distribution with that covariance matrix and the null distribution
of the test statistic T was estimated from them. The proportion of the simulated values of T greater
than the T statistic observed in the data estimated the p-value for that simulated data set. The
number of times out of 300 simulated data sets for which the p-value was less than � was the
estimated effective � level of the test. For some cases (in particular, for the cases S(4)=0.90 and
S(4)=0.10 with n=100 and n=200) simulated data sets that did not provide estimates at t∗ were
discarded. This reflects the fact that in practice one would only conduct a STEPP analysis when
the value of S(t∗) can indeed be estimated within the subpopulations.

Tables I and II show the estimated � level of the test T for a treatment–covariate interaction and
the estimated coverage of the 95 per cent confidence band around the STEPP plots, under a variety
of parameter values S(4),r1,r2,n, and �. Note that the parameter values (r1=30, r2=40) produce
subpopulations that contain approximately 20 patients in each treatment arm and that estimation

Table I. Estimated � level of the test for interaction based on the T statistic. Results are
based on 300 simulations of sample size n.

�

S(4) n r1 r2 0.01 0.05 0.10

0.1 100 30 40 0.03 0.11 0.26
200 60 80 0.03 0.11 0.19
500 150 200 0.01 0.11 0.17
1000 300 400 0.00 0.04 0.07

0.5 100 30 40 0.05 0.12 0.19
200 60 80 0.01 0.08 0.13
500 150 200 0.01 0.06 0.12
1000 300 400 0.00 0.05 0.09

0.9 100 30 40 0.01 0.10 0.20
200 60 80 0.01 0.05 0.10
500 150 200 0.01 0.05 0.12
1000 300 400 0.01 0.05 0.11

The standard errors for the three � levels 0.01, 0.05, and 0.10 are equal to 0.006, 0.013, and 0.017, respectively
(based on the normal approximation). The distribution of the covariate of interest Z is N(55, 25). Entry times
follow a Uniform(0, 5) distribution, and follow up ends at 7 years from start of accrual.
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Table II. Coverage of the 95 per cent confidence band around point estimates for the
population-specific estimated treatment effects �̂ j .

S(4)

n r1 r2 90 per cent 80 per cent 50 per cent 20 per cent 10 per cent

100 30 40 0.99 0.84 0.86 0.91 0.97
200 60 80 0.98 0.92 0.92 0.89 0.96
500 150 200 0.94 0.96 0.94 0.93 0.90
1000 300 400 0.93 0.95 0.95 0.93 0.93

Results refer to the survival estimates Ŝ(t∗) (with t∗=4 years) and are based on 300 simulations of sample
size n. The standard error for each probability is equal to 0.013 (based on the normal approximation). The
distribution of the covariate of interest Z is N(55, 25). Entry times follow a Uniform(0, 5) distribution, and
follow up ends at 7 years from start of accrual.

is likely to be problematic in that case. In the simulated data that were used to produce Table II,
the value of � that we obtained for the confidence bands was roughly constant and equal to 1.3.

It seems clear from Table I that there is a tendency to an inflation of the type I error probability
for n as high as 500. This phenomenon becomes worse for smaller sample sizes and it occurs
across the range of null parameters that we considered for the survival distribution. This dangerous
behavior can clearly lead to false rejections of the null hypothesis. It is not observed when n=1000,
in which case � is recovered appropriately.

The coverage of the confidence band reported in Table II is satisfactory for sample sizes equal to
500 or more. In general, the coverage tends to deteriorate when the survival pattern is extreme, as
when estimating a very small survival proportion, but these situations can be avoided by choosing
the time point t∗ appropriately. For sample sizes smaller than 500, the results obtained are not
satisfactory.

3.2. Power comparisons

We considered seven different scenarios to gain some information on the power performance of the
STEPP test. All scenarios are based on the exponential assumption for the time to event distribution
conditional on the value of the continuous covariate Z , i.e. �(t |Z = z)=�(z). We compared the
estimated power of the STEPP test for interaction with the test on the interaction parameter in
a Cox model. We based such a comparison on the assumption that the latter is probably the
most commonly performed analysis when one suspects the presence of a treatment–covariate
interaction. In the simulated data, the covariate Z was generated from a normal distribution. Here
we used Z ∼N(55,49) to ensure that results be in useful ranges for the comparison of the power
characteristics of the two tests.

In all scenarios, for one of the two arms (arm 1) we assumed the hazard function �1(t; z)=
�1(z)=�1 for the time to event random variable. It follows that within a subpopulation {Z ∈[zL, zU]}
the conditional survival function at t∗ is equal to S(t∗|Z ∈[zL, zU])=exp{−�1t∗}, with �1 such
that S1(t∗)=0.4 at t∗ =4 years.

Scenario 1: The first scenario consists of assigning to treatment group 2 the conditional hazard
function �2(t; z)=�2(z)=�0+�1z. The parameters �0 and �1 were chosen to have �2(40)=
(0.2)�1 and �2(70)=�1. In particular, �0=−(65/75)�1 and �1= (2/75)�1. The conditional survival
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function S(t∗|Z ∈[zL, zU]) at t∗ corresponding to the model �(z)=�0+�1z within each subpop-
ulation {zL, zU} is equal to

P(T > t∗|Z ∈[zL, zU])= exp{−�0t
∗}∫ zU

zL
exp{−�1t

∗u} fZ (u)du

FZ (zU)−FZ (zL)
(2)

Scenario 2: In the second scenario the conditional hazard �2(t; z)=�2(z) follows a logistic function
defined to have limz→∞ �2(z)=�1 and limz→−∞ �2(z)=�1−� for a fixed (and smaller than �1)
value of �. Also, we designed this scenario so that it would be �2(60)=�1−�/2 and �2(62)=
�1−�/10. One can easily show that these constraints imply that

�2(z)= (�1−�)+�
exp{�0+�1z}

1+exp{�0+�1z} (3)

with �0=−30 log(9),�1= log(9)/2, and �=�1/2.
Scenarios 3–7: The remaining scenarios consist of modifying the conditional hazard function to
have �2(t; z)=�1[1−��(z;�,	2)] with � the normal density function, so that it has a peak at
z=� and with �=10.

By varying the values of the parameters � and 	2 we obtain the five alternative models (3)
�=55,	=6; (4) �=60,	=5; (5) �=60,	=9; (6) �=58,	=6; (7) �=58,	=7.

For a fixed value Z = z one has that S(t |z)=exp{−�(t |z)} with �(t |z)=∫ t
0 �(u|z)du the cumu-

lative hazard function. In the exponential model being considered here we have immediately that
S(t |z)=exp{−�(z)t}. Figure 1 shows the hazard functions and the proportion surviving at t∗ =4
for the two arms as a function of the covariate Z . The three displays refer to scenarios (1), (2),
and (3), the last one taken as an example of scenarios (3)–(7).

Table III shows the results of the power study for the seven scenarios and for varying values
of n (and of r1,r2). For each setting, the empirical power of the two 0.05-level tests of the null
hypothesis of no treatment–covariate interaction is reported. The tests are based on the test statistic
T for STEPP and on the parameter corresponding to the interaction term for the proportional
hazards model.

These power results should be considered reliable since they are based on larger sample sizes.
The results suggest that the benchmark Cox model test for the interaction produces higher powers
in the two Scenarios (1) and (2), in which the alternative hypothesis consists of a monotone (with
respect to Z) hazards ratio between the two arms. However, when the group of patients for whom
the treatment effect is largest is somewhere in the middle of the patient population, the STEPP
method produces similar or higher powers than the Cox test for all sample sizes considered. It
should be pointed out that Scenarios (3)–(7) do not produce an extremely concentrated group of
patients for whom the treatment effect is largest, as could be obtained if one for example were to
set 	 to values smaller that 5. Should that be done, then one would expect even better performance
of STEPP relative to the Cox model.

The fifth column in Table III refers to the procedure described later in Section 4. This procedure
performs similarly to the T test described above.

Clearly, no simulation exercise can cover all the possible combinations of parameter values
and possible alternative models. For example, the number and relative sizes of the subpopulations
could be modified (here we used r2/n=0.4 and 7 subpopulations), as could the model chosen
for the null hypothesis, the various alternative scenarios and for the power part the form of the
alternative model and its implications on the kind of interactions that one considers.
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Figure 1. Three representative scenarios for the power comparisons are reported in Table III.
The three scenarios are (left to right) (1), (2), and (3), as described in Section 3. The top graphs
show the hazard as a function of the covariate Z (�1(z) and �2(z)), and the bottom graphs the
proportion surviving at t∗ =4, also as a function of Z (S1(t∗|z) and S2(t∗|z)). Dashed lines
refer to the first treatment group and solid curves to the second treatment group. The dotted

curve is a sketch of the density function of the covariate Z .

We do feel, however, that the information gained in this small study is sufficient for one to
appreciate the fact that STEPP may be effective at detecting interactions of uncommon shapes.
However, the study also indicates quite clearly the poor small-sample behavior of the procedures.
As a consequence, we suggest using a permutation distribution-based procedure for inference.

3.3. A permutation distribution approach to inference for STEPP

Note that under the null hypothesis of no treatment–covariate interaction, one is allowing for a
covariate effect on survival, but that such effect is the same across the two arms with respect to
the definition of interaction used here: SA(t∗|z)−SB(t∗|z) should be constant (and in particular
equal to SA(t∗)−SB(t∗)). Following the approach taken in [8], this suggests the possibility of
using a general permutation approach to inference in which one permutes the covariate values
across the patients within each treatment group and then re-computes on the permuted samples
the test statistic T , where the variances are estimated from the permuted samples. This produces
a sample from the permutation distribution of T to be used for testing. (For a general reference
on permutation tests see also [9].)

We repeated the simulation experiment reported in Table I using this alternative permutation
distribution approach. Three hundred data sets of size n were simulated and within each simulated
data set the subpopulations were constructed and the test statistic T calculated. In particular, if
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Table III. Estimated powers of the (0.05 level) test for treatment–covariate interaction.

Scenario r1 r2 n Est. median surv. Ŝ(4) Cox

1 150 200 500 0.30 0.28 0.72
300 400 1000 0.65 0.52 0.95
450 600 1500 0.85 0.73 0.99

2 150 200 500 0.26 0.27 0.41
300 400 1000 0.47 0.44 0.75
450 600 1500 0.71 0.60 0.89

3 150 200 500 0.20 0.37 0.06
300 400 1000 0.47 0.65 0.06
450 600 1500 0.70 0.83 0.07

4 150 200 500 0.70 0.78 0.77
300 400 1000 0.94 0.99 0.97
450 600 1500 1.00 0.99 1.00

5 150 200 500 0.13 0.16 0.20
300 400 1000 0.20 0.21 0.29
450 600 1500 0.29 0.31 0.42

6 150 200 500 0.29 0.43 0.31
300 400 1000 0.72 0.70 0.51
450 600 1500 0.91 0.91 0.66

7 150 200 500 0.24 0.25 0.21
300 400 1000 0.53 0.43 0.31
450 600 1500 0.63 0.59 0.49

Results refer to the test T when treatment effect is based on the survival estimate (‘Ŝ(4)’), to the test of the
interaction term in a proportional hazards model (‘Cox’), and to the test T when treatment effect is based on
the estimated median survival (‘Est. median surv.’, see Section 4). Results are based on 300 simulations of
sample size n. Probability of survival at 4 years is S(4)=0.4. The distribution of the covariate of interest Z is
N(55, 49). Entry times follow a Uniform(0,5) distribution and follow up ends at 7 years from start of accrual.

for any of the simulated data sets the survival time within each treatment arm and/or within each
treatment arm and subpopulation combination was not estimable at t∗, another simulated data
set was generated. This process continued until the 300 simulated data sets were generated. For
each of these 300 simulated data sets, 1000 permutations of survival time and survival status were
performed within each arm. (Here, too, another permuted sample was generated if the Kaplan–
Meier estimator did not provide an estimate at t∗, until all 1000 permutated data sets were generated
for each of the 300 simulated data sets.) For each of the 1000 permuted data sets the test statistic
T was calculated, thus obtaining an estimate of its permutation distribution. The critical value for
rejection, say at the 0.05 level, is the 95th percentile of these 1000 T statistics. The p-value for the
test was calculated as the proportion of the 1000 T statistics greater than the value of T observed
on the simulated data set. Results are shown in Table IV and they clearly indicate an improvement
in performance compared with the asymptotic results shown in Table I.

4. AN EXTENSION: STEPP FOR QUANTILES OF A SURVIVAL FUNCTION

The survival estimate implementation of STEPP can be extended to the case in which the treatment
effect is defined as the difference in an estimated quantile of the survival function between two
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Table IV. Estimated � level of the test for interaction based on the T statistic for the
STEPP implementation based on the difference in estimated survival at 4 years.

�

S(4) n r1 r2 0.01 0.05 0.10

0.1 100 30 40 0.00 0.04 0.12
200 60 80 0.02 0.07 0.13
500 150 200 0.01 0.05 0.08

1000 300 400 0.00 0.07 0.09
0.5 100 30 40 0.01 0.07 0.11

200 60 80 0.01 0.07 0.13
500 150 200 0.01 0.05 0.08

1000 300 400 0.01 0.05 0.09
0.9 100 30 40 0.03 0.09 0.14

200 60 80 0.01 0.05 0.10
500 150 200 0.01 0.06 0.11

1000 300 400 0.02 0.07 0.12

Results are obtained from 300 simulations of sample size n and they are based on the permutation
approach to inference. The standard errors for the three � levels 0.01, 0.05, and 0.10 are equal
to 0.006, 0.013, and 0.017, respectively (based on the normal approximation). The distribution
of the covariate of interest Z is N(55, 25). Entry times follow a Uniform(0, 5) distribution and
follow up ends at 7 years from start of accrual.

arms. In particular, the difference in median survival between two groups is an intuitive and widely
used measure of treatment effect. Clearly, the computation of the median survival may not always
be the best choice (nor be possible) if the survival curve decreases too slowly relative to the length
of follow up available, in which case one may use a higher percentile than the 50th without any
major changes in the approach that we now describe.

Consider first treatment group A. Let �A,1, . . .,�A,K be the survival medians within each of the
K subpopulations. Call (�̃A,1, . . ., �̃A,K ) the estimated median survival obtained by inversion of
(ŜA,1(·), . . ., ŜA,K (·)), the vector of the Kaplan–Meier estimators of the marginal survival functions
SA, j(·), j=1, . . .,K . Specifically,

�̃A, j = sup{t : ŜA, j(t)> 1
2 }, j=1, . . .,K (4)

One may apply the resampling method introduced in [10] to obtain an estimate of the joint
distribution of the estimated quantiles. Under the assumption of a common median survival 

across the K subpopulations, one has that

√
n

⎡⎢⎢⎢⎢⎣
(ŜA,1(
)−1/2)

...

(ŜA,K (
)−1/2)

⎤⎥⎥⎥⎥⎦ d→NK (0,�A) (5)
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and that the covariance matrix �A can be estimated consistently (see [2]). Call the estimated covari-
ance matrix �̂A. One can generate a large number M of multivariate samples (ulA,1, . . .,u

l
A,K ),

l=1, . . .,M from the distribution NK (0, �̂A/n), and for each sample solve the equations

ŜA,1(�
l
A,1)− 1

2 −ulA,1 = 0

... (6)

ŜA,K (�lA,K )− 1
2 −ulA,K = 0

to obtain the solutions (�lA,1, . . .,�
l
A,K ). Following the argument in Appendix 2 of [10], one can then

use the distribution of (�lA,1− �̃A,1, . . .,�
l
A,K − �̃A,K ) to approximate the distribution of (�̃A,1−

�A,1, . . ., �̃A,K −�A,K ) (which after rescaling is also asymptotically a mean zero multivariate
normal). In particular, from the generated sample of the (�lA,1, . . .,�

l
A,K ), l=1, . . .,M , one can

estimate the covariance matrix of the estimators �̃A, j , j=1, . . .,K .
By repeating the process for treatment group B one can then immediately obtain an estimate of

the asymptotic variance–covariance matrix of the (asymptotically normal) vector of the treatment
effects �̂ j = �̃A, j − �̃B, j, j =1, . . .,K . As we have seen above, an additional (K +1)st subpopulation
is needed for the definition of the test statistic T that contains all patients in the study.

Testing of the null hypothesis of no treatment–covariate interaction and the construction of a
confidence band around the estimated treatment effects then follows as described in Section 2.

Here, too, one is concerned about being too far from the asymptotic distribution for realistic
sample sizes. Trouble is likely since this median survival implementation is based on the same
asymptotic result used for the survival estimate implementation. Table V illustrates this point by
showing a comparison of the � level recovery ability of the asymptotic versus the permutation
distribution approach to inference. For the asymptotic approach we estimated the median survival
within each subpopulation and across subpopulations for each treatment arm, as well as the covari-
ance matrix of the estimated treatment effects (after subtracting from each the overall treatment
effect for T ). In particular, the covariance matrix estimation required that within each of the 300
simulations we also generate 1000 samples (uA1, . . .,uAK ) and (uB1, . . .,uBK ) from the distribu-
tions NK (0, �̂A) and NK (0, �̂B) within the two treatment arms and that we solve equations (6).
The � level of the T test statistic for this implementation of STEPP was then estimated similarly
to what was done for the survival estimate case. As far as the permutations-based method is
concerned, its specialization to this quantile implementation is straightforward. Here, too, in some
cases (S(4)=0.1,n=100 and S(4)=0.5,n=100) simulated and permuted data sets that did not
allow the estimation of the median survival were discarded and a replacement data set (or permuted
sample) generated until the target number was obtained. The results shown in Table V suggest that
the permutation distribution approach should probably be preferred also for this implementation
of STEPP.

Note that the permutation construction that we have discussed above actually consists of the
absence of a covariate effect on survival within each arm, while allowing for different survival
levels in the two arms. Similar to what was pointed out in [8, p. 196], one can expect the test
to detect alternative hypotheses in which a treatment–covariate interaction does exist because the
subpopulation-specific treatment effects will in fact vary. On the other hand, in situations of no
interaction but with (equal) covariate effect one would expect adequate recovery of the alpha
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Table V. Estimated � level of the test for interaction based on the T statistic for the median
survival implementation of STEPP.

Asymptotic Permutation

� �

n r1 r2 0.01 0.05 0.10 0.01 0.05 0.10

S(4)=0.1 100 30 40 0.00 0.02 0.06 0.01 0.07 0.12
200 60 80 0.01 0.04 0.06 0.01 0.04 0.09
500 150 200 0.01 0.04 0.08 0.01 0.06 0.10
1000 300 400 0.01 0.04 0.06 0.00 0.06 0.11

S(4)=0.5 100 30 40 0.01 0.04 0.10 0.03 0.08 0.12
200 60 80 0.01 0.03 0.07 0.01 0.04 0.10
500 150 200 0.00 0.01 0.06 0.00 0.04 0.10
1000 300 400 0.01 0.02 0.04 0.01 0.05 0.09

Results are obtained from 300 simulations of sample size n and they are based on the asymptotic
approach and on the permutation approach to inference, respectively, for the left and right side of
the table. The standard errors for the three � levels 0.01, 0.05, and 0.10 are equal to 0.006, 0.013,
and 0.017, respectively (based on the normal approximation). The distribution of the covariate of
interest Z is N(55, 25). Entry times follow a Uniform(0, 5) distribution and follow up ends at 7
years from start of accrual.

level and to check this we have considered the two additional scenarios shown in Figure 2. The
scenarios consist of a constant (but different across the two arms) survival probability at t∗ =4
(Scenario A) and of a decreasing survival probability at t∗ as Z increases, but such that the
survival difference between the two arms is constant (Scenario B), so that in both cases non-
treatment–covariate interaction exists. In particular, also with survival time distributed exponen-
tially, these scenarios are: (A) No effect of Z on survival, but presence of a non-zero treatment effect
SA(t∗|z)−SB(t∗|z)=�, which is however not a function of Z . In particular, �A(t |z)=�A(t)=
�A and �B(t |z)=�B(t)=�B =−(1/t∗) log[SA(t∗)−�]=−(1/t∗) log[exp{−t∗�A}−�]; (B) Effect
of Z on survival and presence of a non-zero treatment effect SA(t∗|z)−SB(t∗|z)=�, which
is however not a function of Z . In particular, �A(t |z)=�A(z)=gA(z)=�0+�1 z and �B(t |z)=
�B(z)=gB(z)=−(1/t∗) log[exp{−t∗(�0+�1 z)}−�]. It is easy to check that these expressions do
indeed correspond to the situation SA(t∗|z)−SB(t∗|z)=�. In (A) we used SA(t∗)= SA(4)=0.6,
to which correspond the hazard �A =0.1277064. Using �=0.2 yields �B =0.2290727. In (B)

we follow the structure of arm B in the power scenario 1: in particular, for arm A we choose
�0=−(65/75)(0.2290727) and �1= (2/75)(0.2290727). These values are such that the hazard
rate in this arm increases linearly as a function of Z , so that survival at t∗ =4 decreases (non-
linearly) as Z increases. To achieve a constant decrease � in survival when we move from arm A
to arm B we calculate for arm B the conditional hazard function �B(t |z) given above. In Figure 2
we show the hazard functions and the survival percentages at t∗ =4 for the two scenarios. The
results for these additional scenarios are reported in Table VI, which shows accurate recovery of
the alpha level also for these cases by both implementations of STEPP. Note that for the median
implementation Scenario B is not shown, as it is designed to satisfy the lack of interaction as
defined by a constant difference in survival proportions at t∗ =4 and not a constant difference in
medians.
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Figure 2. Two additional scenarios for the alpha recovery simulations reported on in Table V. The two
scenarios are (A) and (B) as described in Section 3. The top graphs show the hazard as a function of
the covariate Z (�1(z) and �2(z)), and the bottom graphs the proportion surviving at t∗ =4, also as a
function of Z (S1(t∗|z) and S2(t∗|z)). Dashed lines refer to the first treatment group and solid curves to
the second treatment group. The dotted curve is a sketch of the density function of the covariate Z .

5. DISCUSSION

STEPP is an exploratory tool with graphical features that makes it easier for clinicians to interpret
the results of the analysis. The method provides an opportunity to detect interactions beyond those
that may be apparent based on regression models (such as Cox models). Positive results should
be confirmed using results from other data sets investigating similar treatment comparisons. It
should also be clear that STEPP is not meant to determine specific cutpoints in the range of
values of the covariate of interest, but rather to provide some indication on ranges of values
where the treatment effect might have a particular behavior. As pointed out in [1, 2], checking
for robustness of the analysis to the choice of the parameters that define the subpopulations is
recommended.

In this paper, we explored the performance of STEPP for detecting some cases of heterogeneity
in treatment effect with respect to a covariate; we studied the goodness of the asymptotics-
based inference and we introduced a new implementation of STEPP that uses the difference in
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Table VI. Estimated � level of the test for interaction based on the T statistic for the
STEPP implementation based on the difference in estimated survival at 4 years and on the
difference in median survival. Results refer to scenarios A and B as described in the text.

S(4) implementation Median survival implementation

� �

n r1 r2 0.01 0.05 0.10 0.01 0.05 0.10

Scenario A 100 30 40 0.01 0.05 0.10 0.01 0.06 0.12
200 60 80 0.01 0.05 0.09 0.01 0.03 0.06
500 150 200 0.01 0.06 0.11 0.02 0.07 0.12

1000 300 400 0.01 0.04 0.08 0.01 0.04 0.08

Scenario B 100 30 40 0.01 0.04 0.09 — — —
200 60 80 0.01 0.03 0.08 — — —
500 150 200 0.02 0.05 0.08 — — —

1000 300 400 0.01 0.05 0.09 — — —

Note: Results for Scenario B are only shown for the survival proportion implementation, as the
scenario is not a no interaction scenario for the median difference definition of treatment effect.

an estimated percentile of the survival function between the two treatment groups. Because of
limitations of the asymptotic inference, we proposed an alternative permutation-based inference,
which has clearly been shown to be preferable. Note that this approach could also be exploited
for future implementations of STEPP.

A comment on the meaning of interaction is useful. The interaction between a covariate value
and the magnitude of treatment effect depends on the measure of treatment effect being used.
For example, a no interaction model looking at relative risk is an interaction model looking at
absolute differences in 5-year survival if the baseline survival risk differs across subpopulations.
This fact should be kept in mind when examining the results from the power comparison of the
STEPP test with the test on the interaction coefficient in a Cox model described in Section 3.2.
Also, as in all smoothing methods, the choice of the parameters that determine the amount of
smoothing may have an important impact on the results of the analysis. When using STEPP one
should in particular be careful while experimenting with different values of the two parameters r1
and r2.

STEPP is designed to investigate patterns of treatment effect across subpopulations defined
according to a covariate of interest. Situations might arise in which treatment appears to be
particularly effective in a subpopulation, but not in another subpopulation, that is, overlapping
with it. In such cases we suggest that investigations using other data sets be performed to further
study the behavior of treatment effect in such regions.

As a last remark, note that the STEPP methodology addresses the well-known problem of
multiplicity that arises when one conducts several subgroup analyses, as heterogeneity is evaluated
in an overall way with an omnibus statistical test. However, this is only done with respect to the
covariate being studied, so that if one performs additional analyses (STEPP or other) on other
subgroups or other variables, the multiplicity concerns remain and should be considered. Finally,
the usual caveats regarding pre-specified versus post-hoc analyses also remain, as do the general
considerations on the appropriate reporting of subgroup analyses (see for example [11]).
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