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a b s t r a c t

Hierarchical clustering is a common procedure for identifying structure in a dataset, and
this is frequently used for organizing genomic data. Although more advanced clustering
algorithms are available, the simplicity and visual appeal of hierarchical clustering have
made it ubiquitous in gene expression data analysis. Hence, even minor improvements
in this framework would have significant impact. There is currently no simple and
systematicway of assessing and displaying the significance of various clusters in a resulting
dendrogram without making certain distributional assumptions or ignoring gene-specific
variances. In this work, we introduce a permutation test based on comparing the within-
cluster structure of the observed datawith those of sample datasets obtained by permuting
the cluster membership. We carry out this test at each node of the dendrogram using a
statistic derived from the singular value decomposition of variance matrices. The p-values
thus obtained provide insight into the significance of each cluster division. Given these
values, one can also modify the dendrogram by combining non-significant branches. By
adjusting the cut-off level of significance for branches, one can produce dendrograms with
a desired level of detail for ease of interpretation. We demonstrate the usefulness of this
approach by applying it to illustrative datasets.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Clustering and classification play an important role in many branches of science (Everit, 1993; Gordon, 1999). Assuming
that we can define distances between objects, clustering is done on the basis of some dissimilarity measure. Specifically,
we have a collection of n objects in p dimensional space, and we have a distance measure defined on this space. We
are interested in identifying the cluster structure, if any, inherent in the data. A popular approach in cluster analysis is
hierarchical clustering. In this agglomerative method, one starts with n objects, each as its own cluster, and combines the
‘‘closest’’ clusters into a larger one. This is done successively until a single cluster emerges. The Euclidean distance is perhaps
themost commonly used distance, but the choice of distancemeasure depends on the type of data and the particular features
in which one is interested. Pearson’s correlation coefficient is often used, for example in genetics and time series, although
it is not a ‘‘distance measure’’ in the strict sense.
While a hierarchical clustering algorithm can be implemented easily, interpretation of the resulting dendrograms ismore

difficult. It is well known that they suffer frommany undesirable properties, such as non-uniqueness and inversion (Morgan
and Ray, 1995), as well as sensitivity to outliers and small perturbations in the data (Cheng and Milligan, 1996). Also, the
ordering of the leaves of a dendrogram contains some arbitrariness and can be misleading, although some efforts have been
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made towards a better arrangement algorithm (Bar-Joseph et al., 2001). Thus, the interpretation of a given dendrogram
requires caution. Most importantly, by the nature of the algorithm, hierarchical clustering will always yield clusters even
when no clear cluster structure exists. It is therefore very helpful to assign significance to the apparent clustering in
order to determine whether the dendrogram reliably describes the true structure of the data. While there are methods
for determining when to cut branches of the dendrogram, these rules generally rely on a prespecified branch height, with
all connected branches below considered to be separate clusters. Dynamic tree cutting (Langfelder et al., 2008) has been
developed as a more flexible method for cluster identification, but there is no measure of significance associated with the
resultant dendrogram.
Despite itsmanyweaknesses, hierarchical clustering is pervasive in genomic data analysis, especially for gene expression

data from microarrays. Its intuitive methodology, ease of implementation and simple, attractive visualization in two
dimensions havemade it popular with biologists and clinicians. A large number of more complicated and statistically sound
algorithms frommultivariate statistics andmachine learning have been developed and compared (Gibbons and Roth, 2002).
One reasonable approach has been based on the idea of consensus clustering (McShane et al., 2002;Monti et al., 2003),where
multiple clustering runs aremadewith perturbed data and these are averaged to give the final result. Various methods have
been used to generate perturbed data and to summarize results, including parametric bootstrap (Zhang and Zhao, 2000)
and adding Gaussian noise (Kerr and Churchill, 2001; McShane et al., 2002). Machine learning algorithms for clustering
include those based on genetic algorithms (Falkenauer, 1998) (see Di Gesu et al. (2005) for an example), neural networks,
and Bayesian model selection (MacKay, 2003) (see Grotkjaer et al. (2006) for an example). Gene clustering methods have
also been extended to situations involving repeated measure data (see Yeung et al. (2003) for an example). Yet, the same
standard method first used for expression data several years ago (Eisen et al., 1998) continues to be used pervasively in the
current literature.
Given the continued popularity of the simple hierarchical method, we introduce a method that will facilitate the

interpretation of the result in that framework.We propose a permutation test thatmeasures the significance of each division
in a dendrogram. The method is based on the observation that if the clustering algorithm correctly finds the clusters, the
within-cluster scatter will be relatively small. We compute a statistic that summarizes these variances and obtain a p-value
based on this statistic. While the ‘‘tightness’’ of certain clusters can be sometimes discerned by visual inspection of the
dendrogram, i.e., by comparing the lengths of different branches, this is not always reliable. With the permutation test, we
are able to assign a level of significance for the division into two branches at each node in a systematic way, based on the
original data. The method we introduce does not assume any parametric form for the distribution of the data, nor do we
preselect the number of clusters in the data as is done, for example, in the Hierarchical Ordered Partitioning and Collapsing
Hybrid (hopach) approach (van der Laan and Pollard, 2003). The method we propose is a simple way of annotating the
dendrogram to indicate a degree of confidence in each node. We deal with a single tree from one clustering algorithm in
this work, but it can also be applied to a consensus tree or to other situations.

2. Methods

After performing hierarchical clustering and obtaining a dendrogram, one has below each node a subset of the data
divided into two clusters. We compute a statistic that measures the ‘‘goodness’’ of this apparent clustering. This procedure
is similar, in spirit, to the multiresponse permutation procedure (MRPP) (Mielke et al., 1976; Good, 2005), which uses a
permutation procedure on between-object distances to evaluate the hypothesis of non-random clustering. We propose that
this statistic be based on the within-cluster variance as described below.
Measuring clustering quality.Weuse the pooledwithin-cluster variancematrix tomeasure the goodness of clustering (Wilks,
1932). This is similar to the idea behind hypothesis testing in Multivariate Analysis of Variance (manova), which
involves decomposing the total variance into between-cluster and within-cluster components and comparing their relative
sizes (Wald andWolfowitz, 1944). We compute the between, within, and total variance matrices, respectively, for g groups
with nl elements in group l (l = 1, . . . , g) as follows:

B =
g∑
l=1

nl (x̄l − x̄)(x̄l − x̄)′,

W =
g∑
l=1

nl∑
j=1

(xlj − x̄l)(xlj − x̄l)′,

T = B+W =
g∑
l=1

nl∑
j=1

(xlj − x̄)(xlj − x̄)′.

Here xlj is the element j in group l, x̄l is the average of the elements in group l, and x̄ is the average over all the elements.
We say that the difference between groups exists if the within-cluster variance is sufficiently small in some metric when
compared to the between-cluster variance. There are several formal statistics to assess this equality of multivariate means,
they include Wilks’ lambda statistic, λ = |W|/|B +W| = 1/|BW−1 + I|; the Lawley–Hotelling Trace, tr(BW−1); the Pillai
Trace, tr(B(B+W)−1); and Roy’s largest root, the maximum eigenvalue of BW−1. If one assumes normality, then as sample
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sizes increase, these tests become equivalent, and p-values can be obtained from the appropriate asymptotic distributions.
Wilks’ lambda is themost common statistic, as it is equivalent to the likelihood ratio test under the assumption of normality.
Advantages and disadvantages of various statistics are described, for example, in Johnson and Wichern (1982).
The major disadvantage of using these asymptotic results, however, is that they require the assumption of normality.

While this may be valid in some cases, there is usually no a priori reason to assume it to be true. In particular, it does
not seem to apply to microarray data, which provides the original motivation for this work. Some have noted that the
gene expression levels might be close to a log-normal distribution (marginally), but this assumption is difficult to justify
in many cases (Strimmer, 2003). Without normality, asymptotic distributions do not seem to hold readily, and thus testing
hypotheses is not feasible. This is of course even more difficult for small samples, and we cannot standardize the statistic to
obtain a p-value.
In general,B andWoffer an attractivewayofmeasuring goodness of clusters and they should beused together to compute

a single measure. In the permutation test we propose below, however, we note that T = W + B always remains constant
across all permutations. Therefore, it is sufficient to consider only howW varies for our statistic. A slightly differentmeasure
of cluster quality is the Mann–Whitney U-test (Mann and Whitney, 1947; Gordon, 1994) and it appears, in our experience,
to give comparable results.
Using the singular values.We now discuss some choices regarding the use ofW. In the univariate case, the group sum-of-
squares is used as a natural criterion in the analysis of variance (anova). The simplest generalization of this sum-of-squares
to the multivariate case is the trace, tr(W) =

∑n
i=1Wii , where the within-group sum-of-squares is computed over all the

variables. In the context of hierarchical clustering, this idea is related to that of the Ward method (Ward, 1963), in which
the pair of clusters that minimizes the sum-of-squares is combined among all possible pairs at each step of the algorithm.
While the trace criterion is often used, there are some problems associated with it. One problem is that it implicitly tries

to produce spherical clusters in p dimensions. Thus, when this is used as a clustering measure, this can result in an incorrect
set of clusters. For example, it will fail to identify ellipsoidal clusters that are very close to each other (Everit, 1993). Another
problem with the trace is that it is scale-dependent. When the raw data are standardized differently, different clusters will
result by this criterion.
Some prefer the determinant, |W|. However, it still makes the implicit assumption that all the clusters have the same

shape, but this requirement is less stringent than that of the trace. The determinant criterion is scale-independent and is not
affected by normalization of the data. Formore discussion of the use of the determinant instead of the trace, see Johnson and
Wichern (1982). There are other advantages to using |W|, such that highly correlated components are not given excessive
weight (Marriott, 1971).
While the determinant is preferred in general, a problem occurs when the number of components is greater than the

number of samples (p > n). This is the case when clustering the samples in microarray data, which has a distinguishing
characteristic that the number of genes typically far exceeds the number of samples. There are several ways of screening
genes to assess their potential relevance and filter them to obtain a smaller set of genes, but in most case p is still much
larger than n and, as a result,W is singular.
A solution in this case is to compute the quantity

∑r
i=1 σi, where r is the rank ofW (rank(W) = r < min(n, p)) and σi

are the (non-zero) singular values ofW. Recall that by singular value decomposition,Wn×p = Un×n Dn×p Vp×p, where U and
VT are orthonormal (UUT = UTU = In×n and VVT = VTV = Ip×p), and the entries of the diagonal matrix D are the singular
values σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 = · · · = 0.
So when the matrix is (1) singular because p > n; or (2) p < n after filtering but still nearly singular due to highly co-

expressed genes, we can use the product of the singular values in place of the determinant. In general, deciding on the right
threshold for counting a singular value as zero is not simple; but our threshold based on the product of the largest singular
value and the machine precision appears to work well. For computing the singular values, fast and stable algorithms are
available. If the number of genes is very large or the computation is limited by the memory size, we can resort to the trace,
which is not affected by the problem of a singular matrix. In our applications below, the trace and the product of singular
values give similar results, with the trace generally giving slightly larger p-values.
Implementation of the permutation approach in this setting is simple. Following Pitman (1937), in spirit, at each node

of the dendrogram we compare the value of the statistics to the values of the statistic we would have obtained if the group
memberships had been randomly assigned. In each random sample, the same data points are used and the number of
elements in each of the two groups remains the same, but different sets of elements are assigned to each group.We perform
this membership permutation many times, and compute a p-value by counting the proportion of times that the same or a
more extreme value of the statistic is obtained in the random samples. For small n, we can do a complete enumeration; in
general, we can only sample from the permutation distribution.
An illustrative example. Fig. 1(a) shows a two-dimensional sample dataset with a clearly defined cluster structure. Two sets
of ten data points, numbered {1–10} and {11–20}, were generated from two multivariate normal distributions with equal
identity covariance matrices but with means 4 units apart in each dimension. In Fig. 1(b), we performed a hierarchical
clustering using the Euclidean distance and average linkage. The p-values shown are from the permutation test based on
|W|, using 1000 samples at each node. One can see the presence of two distinct clusters, as evidenced by the low p-value of
<0.001 at the top division. Following the left branch, the p-value is 0.010, which suggests that the left cluster that consists
of {6, 1, 5, 3, 4} is distinct from the right cluster containing {9, 8, 10, 2, 7}. There is no clearly defined structure past that point
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(a) Sample data: two clusters of size 10 (labeled {1–10} and {11–20}, respectively) are generated, each from a bivariate normal
distribution with identity covariance matrix; the two means are µ1 = (0, 0) and µ2 = (4, 4).
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(b) Dendrogram for data in Fig. 1(a), showing the results of the permutation test based on |W|. The p-values are computed with
1000 membership-permuted datasets at each node.

Fig. 1. An application of the permutation test to illustrative data.

if we are to use the typical p = 0.05 value. Note that without these numbers, it is difficult to determine which nodes may
be more significant just from the dendrogram. For example, the node joining {12, 18} and {16, 20, 14, 11, 13} is similar in
appearance to the one joining {6, 1, 5, 3, 4} and {9, 8, 10, 2, 7}. But the first node has a larger p-value associated with it than
the second one. These and other similar observations are consistent with the structure of the data shown in Fig. 1(a). Note
also that for low dimensional data, such as this example, one may resort to examining the original data. But, this option is
generally not available, especially for high dimensional data.
In Fig. 2(a), we list the p-values computed on the same data using the tr(W) criterion. The values are mostly similar to

those obtained previously, except near the bottom of the dendrogram where the number of objects within each group is
too small to give meaningful results. One reason for the dissimilarity is the different assumptions underlying each criterion.
For example, because the trace tends to be smaller for spherical structures, the p-values may be inflated slightly if there
are adjacent elongated structures correctly captured by the hierarchical clustering. In that case, some cluster-membership
permutations may result in more spherical clusters with a smaller trace even though the clustering is incorrect.
After identifying significant nodes, one can proceed to combine the non-significant branches, as is done in Gordon (1994).

Using a cut-off p-value of 0.05, we revise the dendrogram shown in Fig. 1(b) and display it in Fig. 2(b). There are only two
nodes with p-values less than 0.05 and so there are only three clusters left. Looking at the data in Fig. 1(a), we see that the
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(a) Dendrogram for data in Fig. 1(a), showing the results of the permutation test based on tr(W) using 1000
samples. The p-values are comparable to those obtained using |W|.

(b) Dendrogram from Fig. 1(b) after modification by combining the non-significant (p ≥ 0.05) branches.

Fig. 2. A continuation of the application of the permutation test to illustrative data.

new dendrogram is a good summary of the data. The cut-off p-value can be chosen to reflect the desired level of detail in the
dendrogram. Since the repeated tests on subsets of the samedata are not independent,we canuse a ‘‘correction’’ as explained
inWestfall and Young (1993). Sincewe aremore intent on displaying the properties of the dendrogram trimming algorithm,
we chose to use the simpler Bonferroni correction idea as a guide in selecting an initial cut-off value, e.g., 0.05/(n−1), since
there are n− 1 nodes.

3. Applications

Spatial data. In the analysis of spatial data, one is often interested in determining if there is any clustering of cases. This
clustering can represent any number of interesting aspects, such as excess cases of disease (Bonetti and Pagano, 2005),
point sources of exposure (Meselson et al., 1994) or the existence of health disparities within a community (Schulz et al.,
2002). Consider the spatial data collected by Alt and Vach (1995) who map a medieval burial site in Neresheim, Baden-
Wurttemberg, Germany. The authors address an anthropologic question regarding burial patterns; specifically to determine
if members of the same family tend to be buried in close proximity as a familial unit. To answer this question, the authors
examined skeletal remains of 152 grave sites for evidence of a knownhereditary genetic feature:missing or reducedwisdom
teeth. The locations of the 30 grave sites with dental feature (referred as cases) are presented in Fig. 3(a). In this example,
if the proposed hypothesis is correct, and familial units are buried together, then we would expect to see several clusters
distributed throughout the grave site. In fact, each (extended) family might be considered its own cluster.
We perform hierarchical clustering on the spatial locations of the cases using Euclidean distances and average linkage.

Fig. 3(b) shows the resulting dendrogram, from which it is nearly impossible to determine which groupings are important.
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(a) Cases from the medieval burial site data collected by Alt and Vach (1995). Note that there are two cases located at
approximately (5500, 6000), labeled 16 and 17 and two cases located at approximately (11000, 5500) labeled 28 and 29.

(b) Dendrogram for data in Fig. 3(a), showing the results of the permutation test based on |W|. The p-values are computed
with 1000 membership-permuted datasets at each node.

Fig. 3. An application of the permutation test to a spatial dataset.

We calculate p-values for each node from the permutation test based on |W|, using 1000 simulations at each node, which
are also shown in Fig. 3(b). These p-values suggest 4 distinct clusters, where the node significance is less than Bonferroni
corrected p-value, p = 0.001724 among the cases. These clusters are composed of the cases numbered {15, 23, 24, 30}, {4,
5, 7, 25, 26, 27, 28, 29}, {1, 2, 3, 6, 8, 21}, and {9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22}.
Once we have calculated the p-values for the nodes, we once again, combine the non-significant branches to simplify the

dendrogram.We use a Bonferroni p-value cut-off of 0.05/(n− 1) = 0.00172, where n is the number of nodes, to determine
significance, and we display the resulting dendrogram in Fig. 4(a).
We then turn our attention to examining the locations of the non-affected graves, the controls. If the hypothesis of familial

burials is correct, we would expect to see many small clusters, similar in size, to the clusters of the cases. We perform the
same analysis on the controls thatwe applied to the cases and the resultant dendrogram is presented in Fig. 4(b). As expected,
we see evidence of many small clusters within the spatial distribution of the non-affected graves.

Application to microarray data. We apply our technique to three microarray datasets. The first two are for clustering patient
samples and the third is for clustering genes. The advantage of the technique becomes more apparent as the size of the
dataset grows larger, but we concentrate on clustering samples rather than genes for illustration due to space constraints.
We first consider RNA data studied in Spira et al. (2004), which was used to demonstrate how cigarette smoking status
affects the human airway epithelial cell transcriptome based on gene expression levels. Among the 72 patients, there are
34 patients identified as ‘current smokers’ and 23 identified as ‘never smokers’. The remaining 15 subjects are identified as
‘former smokers’, which we do not include in our classification, for the sake of clarity. Those patients numbered {1–34} are
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(a) Dendrogram from Fig. 3(b) after modification by combining the non-significant (p ≥ 0.001724) branches.

(b) Dendrogram from the controls after modification by combining the non-significant
(p ≥ 0.000446) branches.

Fig. 4. A continuation of the spatial dataset application.

‘current smokers’ and those numbered {35–57} are ‘never smokers’. From the more than 8000 genes, we select 848 genes,
highly correlated to smoking status, for classification purposes. There are still more dimensions than objects, however, and
we use the trace criterion for the permutation test. The result is plotted in Fig. 5(a). After some normalizations to the data,
the hierarchical clustering gives a good result, with clearly defined clustering between never smokers and current smokers.
In Fig. 5(b), we use the cut-off p-value of .05/(n− 1) = 0.000893 (Bonferroni correction) to eliminate the nodes that are

not significant. This pruning of the dendrogram provides a much simpler and more informative view of the data.
In Fig. 6(a), we apply the same technique to a dataset on embryonal tumors of the central nervous system (Pomeroy

et al., 2002). This dataset consists of several types of heterogeneous tumors about which little is known, including
medulloblastomas, malignant gliomas, renal/extrarenal rhabdoid tumors, supratenotorial primitive neuroectodermal
tumors, as well as normal cerebella. A main conclusion of the paper is molecular profiles from those of other embryonal cns
tumors (Pomeroy et al., 2002). For normalization of the data, we have tried to follow the steps described in the supplemental
information of the article, with the additional step of using variance filter to reduce the number of genes to 100. Different
numbers of genes gave similar results.
There are more disease categories here than in the epithelial data, but the significance-adjusted dendrogram appears

to capture the important part of the dendrogram very well. As was the case in Pomeroy et al. (2002), pnet samples are
dispersed amongdifferent clusters;ncer (normal) samples are separated from the rest at the top branch;most other samples
are clustered with those of the same type. The modified dendrogram presents a clear and concise description for easier
interpretation.
For both the epithelial and the cns tumor data, using the trace criterion appears to inflate the p-values slightly, causing

more branching in the tree. In the second case, for example, it results in an additional subdivision of themd branch. In both
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(a) Epithelial cell data from (Spira et al., 2004). Patients {1–34} are current smokers and patients {35–57} are never smokers.
Hierarchical clustering with the Euclidean distance and average linkage was used. The p-values are based on the tr(W) criterion.

(b) Modification of Fig. 5(a): the non-significant nodes at the p = 0.000893 level were eliminated.

Fig. 5. Microarray data.

cases, the Bonferroni corrected p-value of 0.05 appears to give a clear result. For Fig. 5(a), Fig. 6, we used 10000 permutations
at each node.
We can also apply the permutation test with genes as objects and samples (experiments) as variables, although the size

of the dendrogrammakes it harder to examine the details in that case. In Fig. 7, we cluster the genes using the compendium
data of S. cerevisiae experiments (Eisen et al., 1998). We eliminate those genes with too many missing values and carry out
the missing value imputation using k nearest neighbors for the rest. Because the dimension of W is equal to the number
of experiments, the computational cost for clustering genes is low; however, we selected only the 500 genes with the
largest variations due to the space available for visualization. For clustering genes, the W matrix is not singular, unless
the experiments are nearly identical. Fig. 7(a) and (b) show the clustering result before and after the modification by the
permutation test, again using 10000 samples and p-value cut-off of 0.05/(n−1). As before, the simpler structure facilitates
the examination and interpretation of the co-expressed genes. Further work would involve annotation of the main clusters
identified using Gene Ontology and other annotation databases.

4. Discussion

We have introduced a method to annotate dendrograms with a statistic that supplies additional information on the
significance of each node. The length of the branches supplies some information already, but it is not a reliable measure.
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(a) Central nervous system embryonal tumor data from (Pomeroy et al., 2002) Again, hierarchical clustering with the Euclidean
distance and average linkage was used and the p-values were computed based on 10000 iterations using the product of the
singular values.

(b) Modification of Fig. 6(a): the non-significant nodes at the p = 0.05/(n− 1) level were eliminated. MD: medulloblastoma;
MGlio, malignant glioma; Ncer, normal cerebella; Rhab, renal/extrarenal rhabdoid tumors; pnet, supratenotorial primitive
neuroectodermal tumor. The samples cluster along tissue types in most cases, except for pnet.

Fig. 6. Application of the permutation test to cns embryonal tumor data.

It is clear from the examples we provide that the p-values may have little to do with the branch lengths. When the
number of remaining objects in a branch is small, the p-value should be interpreted with some caution since the number of
permutations possiblemay be small; however, this is not a problembecause the lowbranches are likely to be non-significant
and we are generally interested in branches higher up.
Motivated by techniques from multivariate statistics, we work with the within-cluster variance matrix as a summary

measurement fromwhich we deduce ‘‘goodness’’ of clusters, using determinant for non-singular matrices, or its equivalent
in the singular case by the use of singular values.We could imagine using one of the statistics directly as a global optimization
function in producing clusters at the beginning, rather than using it as a post-hoc evaluation tool. However, finding a globally
optimal solution requires searching in an exponentially large space and is a computationally intractable problem unless the
number of objects is very small.
Because of how dendrograms are created, when one performs the permutation test described, one expects to find

significance. Rejecting the null hypothesis of no clustering should be expected, but failing to reject it is surprising and of
interest.
Mostmethods for finding some type of significancemeasure for a dendrogram require a reference distribution or amodel

from which random datasets are generated. These are then compared to the original data through some statistic, or by
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(a) Hierarchical clustering of the genes in a set of S. cerevisiae experiments (Eisen et al., 1998), using the same
parameters as before. P-values from the permutation tests and gene names were deleted due to space limitations.

(b) Modification of Fig. 7(a): based on the permutation tests, the non-significant nodes at the p = 0.05/(n− 1)
level were eliminated.

Fig. 7. Permutation test applied to genes in S. cerevisiae experiments.

seeking repeated occurrences of same elements in a cluster. The simplest method, for instance, may be to sample from
a uniform distribution for each variable, from the range of that variable found in the original data. A more sophisticated
but computationally heavy variation is to sample uniformly from the convex hull computed from the data. Advantages
of using such uniform reference distributions are not clear, however, particularly in high dimensional situations. Other
null distributions include randomizing the dissimilarity matrix (Ling, 1973) and adding normally distributed errors to the
data (Bittner et al., 2000; Zhang and Zhao, 2000; McShane et al., 2002). Perturbing the data with noise can be reasonable
when one has a good idea of errors associated with each variable. For gene expression, however, the quantities that are
needed are gene-specific variances, which cannot be obtained except in relatively large studies with enough replicates.
We have seen that we can create a new dendrogram by merging branches when the p-values are less than some cut-off

value. The original dendrogram with a bifurcation at each node is replaced with a ‘‘smoother’’ one in which many similar
elements may be joined at a single node. The cut-off p-value is a parameter that can be set according to the desired level of
detail in the dendrogram, and aswe see in our examples, this procedure can summarize the structure of the data in a concise
and informative way. The null distribution that we adopt by switching the membership labels is simple and intuitive, and
does not require making any unnecessary distributional assumptions.
While annotation of the dendrogram can provide additional information, its usefulness is related to the effectiveness

of the clustering algorithm. The p-values can give some indication as to the relative compactness of clusters obtained, but
not what the correct clustering should be. Weakness of the algorithm, such as visually appealing but inherently suboptimal
leaf arrangement in hierarchical clustering, cannot be overcome with the annotation. It also should be stressed that the
p-valueswe compute at each node are conditional on the clustering at the previous level. If the clustering fails to captures the
structure correctly at the top of the dendrogram, for example, inferences on the structure of the data using the subsequent
p-values should be interpreted in relation to the first splitting and its corresponding p-value.
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