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A B S T R A C T

The discovery of biomarkers that predict treatment effectiveness has great potential for improving
medical care, particularly in oncology. These biomarkers are increasingly reported on a continuous
scale, allowing investigators to explore how treatment efficacy varies as the biomarker values
continuously increase, as opposed to using arbitrary categories of expression levels resulting in a
loss of information. In the age of biomarkers as continuous predictors (eg, expression level
percentage rather than positive v negative), alternatives to such dichotomized analyses are
needed. The purpose of this article is to provide an overview of an intuitive statistical approach—
the subpopulation treatment effect pattern plot (STEPP)—for evaluating treatment-effect hetero-
geneity when a biomarker is measured on a continuous scale. STEPP graphically explores the
patterns of treatment effect across overlapping intervals of the biomarker values. As an example,
STEPP methodology is used to explore patterns of treatment effect for varying levels of the
biomarker Ki-67 in the BIG (Breast International Group) 1-98 randomized clinical trial comparing
letrozole with tamoxifen as adjuvant therapy for postmenopausal women with hormone receptor–
positive breast cancer. STEPP analyses showed patients with higher Ki-67 values who were
assigned to receive tamoxifen had the poorest prognosis and may benefit most from letrozole.

J Clin Oncol 28:4539-4544. © 2010 by American Society of Clinical Oncology

INTRODUCTION

The discovery of biomarkers that predict treat-
ment effectiveness has great potential for improving
medical care, particularly in oncology.1 Recent im-
provements in technology allow for the efficient as-
certainment of multiple biomarkers and support the
collection of quantitative information on a continu-
ous scale. For example, in breast cancer clinical trials,
the results of steroid hormone–receptor assays are
increasingly reported on a continuous scale, allow-
ing investigators to explore how treatment efficacy
varies as estrogen receptor (ER) expression values
continuously increase, as opposed to using arbitrary
categories of expression levels.

Typical analytic approaches in cancer clinical
trials evaluate treatment-effect modification, also
called interaction or treatment-effect heterogeneity,
by first defining (often arbitrary) patient subgroups
based on biomarker expression level. Treatment
comparisons are then performed within each sub-
group, and the results are assessed for heterogeneity.
Regression methods (eg, proportional hazards re-
gression2 and cumulative incidence regression3) are
also typically used to evaluate whether biomarker
status is associated with treatment efficacy.

The approach of categorizing biomarker ex-
pression may fail to fully identify the worth of the
biomarker as a predictor of treatment efficacy, be-
cause categorization results in a loss of information.4

If the biomarker is measured on a continuous scale,
the analytic approach employed should ideally make
use of all available information with a minimum
number of assumptions. In addition, the method of
analysis should have the capability of detecting a
wide range of patterns of biomarker effect.

This article provides an overview of the sub-
population treatment effect pattern plot (STEPP)5-7

method for exploring treatment-effect heterogene-
ity as biomarker expression varies along a contin-
uum. STEPP methodology is designed for and has
been applied to data derived from comparative
clinical trials.8-15 STEPP estimates—and displays
graphically—the treatment effect along the contin-
uous biomarker scale using overlapping patient sub-
groups. In standard STEPP analysis, the treatment
effect is given by the absolute difference between the
treatment group and control group survival curves
at a specified time point (eg, 5-year survival rate). To
expand the capability of STEPP, we include two
other useful measures of treatment efficacy: hazard
ratios and cumulative incidence estimates. The use
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of hazard ratios obviates the need to specify a time point for treatment
comparison. Cumulative incidence methods allow STEPP to be used
when competing causes of failure are relevant (eg, when analyzing
local failure and treating other failure types as competing risks). The
primary advantage of STEPP over other methods is that STEPP can
detect nonlinear patterns of treatment-effect heterogeneity while
making few or no distributional or parametric assumptions. We illus-
trate STEPP with an analysis of the BIG (Breast International Group)
1-98 clinical trial,12,16-18 which compared adjuvant letrozole with ta-
moxifen in the treatment of postmenopausal women with hormone
receptor–positive breast cancer.

STEPP METHOD

STEPP Basics
STEPP methodology5-7 examines interaction between treatment

and covariate by estimating the treatment effect within overlapping
subpopulations of patients, where the subpopulations correspond to
values of the covariate along its continuum. The overlapping sub-
populations are constructed as follows: Patients are ordered from
lowest to highest value of the covariate. The investigator chooses two
quantities: r1 and r2, where r1 is the largest number of patients in
common (or overlapping) among consecutive subpopulations, and r2

is the number of patients in each subpopulation (r2 ! r1). The first
subpopulation consists of the r2 patients with the lowest covariate
values. The next subpopulation is formed by removing r2 minus r1

patients with the lowest covariate values from the current sub-
population and replacing them with the next r2 minus r1 patients in
the ordered list. This process continues until all patients have been
included in at least one subpopulation. Note that patients can
contribute to several subpopulations. This approach is called sliding-
window STEPP.5-7

After the overlapping subpopulations are identified, the treat-
ment effect is estimated within each subpopulation using a standard
approach, such as the Kaplan-Meier19 product limit method, with the
treatment effect represented by the absolute difference between two
survival curves at a particular time point. STEPP analysis results are
then shown graphically. STEPP analysis can be performed using the R
software package (R Foundation for Statistical Computing, Vienna,
Austria; https://sites.google.com/site/stepprpackage).

STEPP Extensions
STEPP can be implemented using hazard ratios to describe the

treatment effect. The hazard ratio can be obtained from observed
minus expected (O-E) numbers of events in a fashion similar to that
used to compute the log-rank statistic for comparing survival curves. If
O-E represents the log-rank statistic, and V represents its variance, an
estimate of the hazard ratio can be obtained by exponentiation of
[(O-E)/V].20 This estimate requires no assumptions about the under-
lying distribution of survival times.21 It also obviates the need to
specify a time point for comparing survival curves.

Treatment effects on disease-specific end points can also be esti-
mated using methodology for competing risk analysis.3,22-24 Focusing
on disease-specific events in the competing risk setting provides the
most direct connection between the biomarker and its relationship to
treatment and outcome.25 Therefore, we introduce STEPP for com-
paring treatment groups with respect to disease-specific cumulative

incidence estimated using the standard method for competing risk
analysis.

Statistical significance in a STEPP analysis is calculated using a
permutation test.7 A two-sided P value less than .05 indicates signifi-
cant treatment-effect heterogeneity.

APPLICATION: KI-67 AND LETROZOLE EFFECTIVENESS IN
BREAST CANCER

A well-known predictor of breast cancer prognosis is the tumor pro-
liferation fraction,26 which is associated with the degree of effective-
ness of chemotherapy. Ki-67, a nuclear protein present in cycling cells,
is an indicator of tumor proliferation.27 High Ki-67 labeling index
(LI) is associated with a strong response to preoperative chemo-
therapy.28,29 During preoperative endocrine therapy, decline in this
biomarker is linked to pathologic tumor response.30

The prognostic and predictive value of Ki-67 LI were evaluated in
the BIG 1-98 study,9 an international, double-blind phase III clinical
trial of 8,010 postmenopausal women with early stage invasive breast
cancer, who were randomly assigned to one of four adjuvant endo-
crine therapy arms: letrozole, tamoxifen, or sequences of these agents
(letrozole to tamoxifen, tamoxifen to letrozole).9 The primary trial
end point was disease-free survival (DFS), defined as the length of time
from randomization to the first event of invasive recurrence in local,
regional, or distant sites; a new invasive breast cancer in the contralat-
eral breast; any second nonbreast malignancy; or death as a result of
any cause. Previous trial reports that compared the two monotherapy
arms demonstrated significant DFS improvement in patients initially
assigned to letrozole compared with tamoxifen.16,18

Analysis of Absolute Treatment Effects
STEPP analysis of 4-year DFS was used to explore the patterns of

treatment effectiveness across the continuum of Ki-67 LI percentages
(Ki-67 LI range, 0% to 90%). Of the 4,922 patients who were ran-
domly assigned to receive 5 years of monotherapy with either letrozole
or tamoxifen, 2,685 patients had tumors with centrally confirmed ER
expression and tumor material available for Ki-67 LI determination in
the central laboratory, as described by Viale et al.9 The database was
the same one used by Viale et al, with a median follow-up of 51
months. The 4-year time point was selected to coincide with the time
point used in previous analyses of BIG 1-98 data.

To construct the overlapping subpopulations for the STEPP
analysis, we set r2 " 150 patients as the size of each subpopulation, and
we set r1 " 50 as the number of patients included within consecutive
overlapping subpopulations. Figure 1A summarizes the 4-year DFS
percentage for letrozole versus tamoxifen as Ki-67 LI increases. The
figure suggests that higher Ki-67 was associated with lower 4-year DFS
percentages, especially for tamoxifen. Subpopulations with high Ki-67
LI had the greatest magnitude of treatment difference, indicating
benefit for letrozole compared with tamoxifen. Figure 1B shows the
difference in 4-year DFS percentages (letrozole minus tamoxifen; dif-
ferences ! zero favor letrozole) and 95% point-wise CIs. For patients
with the highest Ki-67 LI levels (ie, those in the subpopulation with
median Ki-67 LI equal to 47%), the estimated absolute difference in
4-year DFS was nearly 35% in favor of letrozole. Thus, STEPP analysis
provided evidence of heterogeneous treatment effects related to the
value of Ki-67 LI (P " .03 for interaction; Fig 1B).

Lazar et al

4540 © 2010 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

from 128.218.167.50
Information downloaded from jco.ascopubs.org and provided by at UCSF KALAMANOVITZ LIB CKM on November 18, 2010

Copyright © 2010 American Society of Clinical Oncology. All rights reserved.



Analysis of Relative Treatment Effects
We also used STEPP to explore patterns of relative treatment

effectiveness based on hazard ratios across patient subpopulations.
For high Ki-67 LI percentages, the estimated hazard ratio of a DFS
event was lower for patients receiving letrozole than for those receiving
tamoxifen (Fig 1C; a hazard ratio # one indicates that letrozole was
better than tamoxifen). For the subpopulation with the highest Ki-67
LI, the hazard ratio of a DFS event for patients in the letrozole group
was less than half that for patients in the tamoxifen group. STEPP
analysis results were suggestive of heterogeneous relative treatment
effects, although this was not statistically significant (P " .09 for
interaction; Fig 1C).

As an alternative to the STEPP approach, we used Cox propor-
tional hazards modeling to evaluate a treatment by covariate interac-
tion effect on DFS. Three models were considered to evaluate different
forms of the covariate. First, we used the median cutoff from Ki-67 LI
distribution, where levels of the biomarker covariate Ki-67 LI were
dichotomized as high (! 10%) or low (! 10%). The treatment by
covariate interaction was not statistically significant (P " .11). We
then used quartiles of the Ki-67 LI distribution to define patient
subgroups as follows: high (19% to 90%), medium high (11% to
18%), low medium (6% to 10%), and low (0% to 5% [reference
category]). The interaction test did not provide statistically significant
results (P " .10). Finally, we used Ki-67 LI percentage as a continuous
covariate in the Cox model. In this case, the treatment by Ki-67 LI
interaction was borderline statistically significant (P " .05). Overall,
although these analyses all suggested the presence of treatment-effect
heterogeneity in terms of hazard ratios, no statistically significant
heterogeneity was detected.

Competing Risk Analysis: Absolute Treatment Effects
STEPP analysis in the competing risk setting is illustrated in

Figure 2. The end point was 4-year cumulative incidence of breast
cancer relapse (in local, regional, or distant sites) in the presence of
competing risks of second (nonbreast) primaries or death before
breast cancer relapse. The cumulative incidence of breast cancer re-
lapse increased with increasing Ki-67 values for both treatment groups
(Fig 2A). The treatment curves separate for subpopulations with me-
dian Ki-67 LI values of 15% or more (Fig 2A), and the magnitude of
this difference in favor of letrozole peaked for high Ki-67 LI (Fig 2B).
STEPP analysis provided evidence of heterogeneous treatment effects
related to the value of Ki-67 LI percentages (P " .02 for interaction;
Fig 2B).

Competing Risk Analysis: Relative Treatment Effects
The estimated hazard ratio for a breast cancer relapse event

tended to be less than 1.0, suggesting an overall advantage for letrozole
relative to tamoxifen. However, no significant treatment-effect heter-
ogeneity was found as Ki-67 LI ranged from low to high (P " .35 for
interaction; Fig 2C). These findings were consistent with those from a
competing risk regression analysis, which we also applied to the data,
defining patient subgroups based on Ki-67 LI expression (two groups
using median cutoff and four groups using quartiles).

DISCUSSION

Technologic advancements provide the ability to measure an increas-
ing number of biomarkers on a continuous scale. Modern large-scale
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Fig 1. Subpopulation treatment effect pattern plot analysis of the treatment
effect of letrozole v tamoxifen as measured by (A) 4-year disease-free survival
(DFS), (B) difference in 4-year DFS (letrozole minus tamoxifen; ! zero
suggested letrozole better; otherwise, tamoxifen better), and (C) hazard ratio
(letrozole v tamoxifen; # one suggested letrozole better; otherwise, tamox-
ifen better) with corresponding 95% point-wise CIs (dashed blue lines). The
x-axes indicate median percentage of Ki-67 labeling index (LI) for patients in
each of the overlapping subpopulations. Each subpopulation contains approx-
imately 150 (r2) patients and approximately 50 (r1) overlapping patients. Solid
black lines indicate overall treatment effect, and dotted black lines indicate no
effect. P values are from interaction test.
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cancer clinical trials include the quantitative assessment of selected
biomarkers thought to be associated with clinical outcome and treat-
ment effectiveness. This approach is meant to aid in the identification
of subgroups of patients most likely to benefit from a particular treat-
ment modality. Improved analytic techniques are needed to assess
potentially complex associations between biomarker expression level
and treatment effect. These associations may not follow a linear pat-
tern or may not be detected with standard approaches, such as those
that categorize patients according to biomarker level (eg, those based
on quartiles).4 In this article, we provide an overview of STEPP meth-
odology for evaluating treatment-effect heterogeneity over the range
of values for a continuous covariate, and we illustrate the approach in
a breast cancer clinical trial.

Using STEPP analyses, we explored the patterns of treatment-
effect heterogeneity for a breast cancer biomarker—Ki-67—in post-
menopausal women enrolled onto the BIG 1-98 study. The treatment
effectiveness patterns suggested that patients with higher Ki-67 LI
percentages who were assigned to receive tamoxifen had poorer prog-
nosis, and these patients may benefit most from letrozole treatment
compared with tamoxifen. This benefit may be explained by the re-
duced residual circulating estrogen levels in patients receiving an aro-
matase inhibitor such as letrozole. Elevated levels of residual estrogen
combined with high levels of growth factor receptors may be respon-
sible for worsening prognosis for women receiving tamoxifen because
of the activated membrane ER.31 Despite the biologic plausibility of
the observed results, examining the role of Ki-67 LI as a predictive
factor was not an analysis specified in the BIG 1-98 protocol written in
1998, and thus the results should be interpreted cautiously.

In general, retrospective subgroup analyses are associated with
many well-documented problems.4,32-34 However, as stated by Laga-
kos,33 “avoiding any presentation of subgroup analyses because of
their history of being overinterpreted is a steep price to pay for a
problem that can be remedied by more responsible analysis and re-
porting.” Recent guidelines34 have been proposed to reduce the risk of
overinterpretation of results from subgroup analysis. Such guidelines
are appropriate to apply to STEPP analysis as well.

One limitation of STEPP is the need to specify the number of
patients per subpopulation (r2) and the number to be exchanged to
form subsequent subpopulations (r2 minus r1). The estimation of
interaction effects will vary for different r1 and r2. Therefore, we rec-
ommend using a variety of r1 and r2 values to assess the stability of the
results. This approach in our BIG 1-98 example helped us identify the
subgroups driving the significant P value, which we consistently found
to be the patients with the highest Ki-67 LI percentages. Finally, we
recommend evaluating a variety of time points, such as 3- and 4-year
DFS. In the BIG 1-98 example, the results were consistent across
different time points (2-, 3-, or 4-year DFS).

The type of end point selected will also influence the interpreta-
tion of STEPP analysis results and potentially the impact of the results
on clinical practice.35 For example, an interaction detected between a
covariate and treatment effect measured on the absolute scale (eg,
4-year cumulative incidence of breast cancer relapse) may not be
detected if the treatment effect is measured on the relative scale (eg,
hazard ratio).36 These different relationships were evident in the BIG
1-98 evaluation, especially in the competing risk setting. Ki-67 LI is a
prognostic factor such that even if the relative treatment effects do not
vary widely across Ki-67 LI subpopulations, the absolute effect will be
larger for the cohorts at higher risk for relapse. Regardless of the choice
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Fig 2. Subpopulation treatment effect pattern plot analysis of the treatment
effect of tamoxifen v letrozole as measured by (A) 4-year cumulative
incidence of breast cancer recurrence (BCR), (B) difference in 4-year cumu-
lative incidence of BCR (letrozole minus tamoxifen; # zero suggested
letrozole better; otherwise, tamoxifen better), and (C) hazard ratio (letrozole v
tamoxifen; # one suggested letrozole better; otherwise, tamoxifen better)
with corresponding 95% point-wise CIs (dashed blue lines). The x-axes
indicate median percentage of Ki-67 labeling index (LI) for patients in each of
the overlapping subpopulations. Each subpopulation contains approximately
150 (r2) patients and approximately 50 (r1) overlapping patients. Solid black
lines indicate overall treatment effect, and dotted black lines indicate no
effect. P values are from interaction test.
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of end point, it is also relevant to note that tests for interaction are in
general underpowered.

Importantly, STEPP is useful for evaluating treatment-effect het-
erogeneity in both absolute (eg, absolute difference between two sur-
vival curves at a particular time point) and relative terms (eg, hazard
ratio). Relative effects are primarily useful for measuring treatment
effectiveness relative to a control group in a general population of
patients. Absolute effects are clinically useful for treatment decision
making in individual patients, where the absolute benefit must be
weighed against any risks associated with a particular therapy.

Other statistical approaches can be used to evaluate interaction
between treatment and covariate for cancer-related biomarkers. One
approach is multivariable fractional polynomial interaction (MFPI),
which can also produce treatment effect plots.37,38 MFPI relies on
regression modeling via searching through several covariates and
forms of treatment by covariate interactions. This is accomplished
through a proportional hazards model. Another approach combines
STEPP with a smoothing technique known as locally weighted regres-
sion,39 which is useful for studying the association between a biomar-
ker measured on a continuous scale and treatment effectiveness. The
martingale residual plot with locally weighted scatterplot smoothing is
an approach useful for examining the relationship between the end
point and continuous covariate.40 Splines can also be considered,
including regression and smoothing splines.40 Splines as well as the
martingale residual plot may provide alternatives to evaluation of
treatment by covariate interaction.

When testing for heterogeneity of treatment effects, we recom-
mend applying multiple analytic approaches to assess the stability of
results and conclusions. For example, we also applied MFPI method-
ology to the BIG 1-98 study and obtained results similar to those seen
with STEPP (Fig 1C). When different analytic approaches yield incon-
sistent results, the preference of one approach over another will hinge
on the appropriateness of the assumptions made in the analysis. In this
case, we recommend reporting results from all analyses along with a
rationale for preference for a particular approach. Lack of consistency
may be a result of sparseness of data, which would need to be ad-
dressed by enriching the data source or performing additional re-
search and data gathering.

STEPP analysis offers several advantages compared with other
statistical approaches. STEPP does not require predefinition of spe-
cific cutoff points for developing patient subgroups. Treatment-effect
heterogeneity is illustrated graphically, allowing for a convenient ex-

ploratory evaluation. STEPP does not rely on the appropriateness of a
regression model. Estimates derived from STEPP analysis can be pre-
sented with CIs or confidence bands. STEPP provides an overall P
value for testing whether treatment-effect heterogeneity is significant.
STEPP analysis can be based on absolute or relative treatment effects.
Finally, STEPP can be applied in the presence of competing risks. This
advantage is particularly relevant to the study of biomarkers because of
the potential for a biomarker to be most strongly associated with a
particular type of clinical outcome (eg, local recurrence).41

Discovery of potentially important biomarkers is facilitated by
the availability of modern statistical tools for evaluating treatment
covariate interactions, such as STEPP. These statistical approaches
enable clinicians to identify biomarker candidates. The complex roles
biomarkers play in differential treatment effectiveness will be deter-
mined after extensive validation studies, as replication and confirma-
tion are hallmarks of science.
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