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Abstract. We implement the commands mstat and mtest to perform inference
based on the M statistic, a statistic that can be used to compare the interpoint
distance distribution across groups of observations.

The analyses are based on the study of the interpoint distances between n points
in a k-dimensional setting to produce a one-dimensional real-valued test statistic.
The locations are distributed in a region of the plane, and when we consider all
(Z) interpoint distances the dependencies among them are difficult to express an-
alytically, but their distribution is informative and the M statistic can be built to
summarize one aspect of this information.

The two commands can be used on a wide class of datasets to test the null
hypothesis that two groups have the same (spatial) distribution. mstat and mtest
return the exact M test statistic. Moreover, mtest executes a Monte Carlo type
permutation test, returning the empirical p-value together with its confidence in-
terval. This is the command to be used in most situations, since the convergence
of M to its asymptotic Chi-square distribution is slow.

Both commands can be used to obtain graphical output of the empirical density
function of the interpoint distance distributions in the two groups and/or the two-
dimensional map of the n observations in the plane.

The descriptions of the commands are accompanied by examples of applications
with real and simulated data. We run the test on the Alt and Vach gravesite
dataset, rejecting the null hypothesis in contradiction to other published analyses.
We also show how to adapt the techniques to discrete datasets with more than one
unit in each location. Finally, we report an extensive application on breast cancer
data in Massachusetts in which we show the compatibility of the M commands
with Pisati’s spmap package.
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1 Introduction

The mstat and mtest commands are designed to implement inference based on the M
statistic, a statistic that can be used to investigate the distribution of distances (inter-
point distance distribution or IDD) between two observations and forms the building
block of analyses that compare the IDD across groups of multivariate observations.

The M statistic is the result of a series of papers, starting with Bonetti and Pagano
(2005) (2). The analyses are based on the study of the interpoint distances between n
points in a k-dimensional setting to produce a one-dimensional, real-valued test statistic
similar to Pearson’s Chi-Squared goodness of fit statistic, that allows the comparison
of such distributions across groups or to a null distribution. Thus the starting point,
or data, for analysis is the n x n (symmetric) matrix of distances between the points,
D,,. This matrix can be replaced by any matrix containing a measure of similarity or
dissimilarity between the points; the statistic does not exploit the triangle inequalities,
for example, exhibited by a distance matrix, but for the sake of definiteness, we continue
to focus on Euclidean distances on the plane. This is not necessary for the validity of the
method: the data can consist of multivariate observations having high dimensionality,
and the interpoint distance can take many different forms.

When we have the probability distribution of n points in a region of the plane, a
complete description of the distribution of the pairwise distances between these points
cannot be derived analytically, except for simple cases. The dependencies among these
distances are very difficult to express analytically, but yet the distribution of the (g)
dependent distances is informative, and the M statistic is built to capitalize on this

information.

Inference is based on the empirical cumulative density function (ECDF) of the (%)
dependent distances. In (2)) the authors show that the ECDF of all pairwise distances
evaluated at a finite number of values along the distance axis has an asymptotic multi-
variate normal distribution. This result is used to test whether the points in the sample
follow the same (spatial) distribution as the underlying population. Manjourides()
extends this result to the two samples case, that is to situations in which one wants to
test wether or not two groups follow the same spatial distribution.

Inference based on M can be the building block for a wide class of empirical studies,
from biosurveillance to economics, because of its power to detect situations where in
some areas (clusters) the occurrence of an observed phenomenon is significantly higher
or lower than in others. In particular, the method has been used in public health disease
surveillance not only because of its power characteristics, but also because of its ability
to analyze spatial data without the need to directly know the actual locations being
investigated but referring instead to their interpoint distance onlyﬂ The M statistic
has been shown to be effective at detecting exogenous clusters when compared with
other statistics designed for the same purpose.

1. This advantage is of course even more important when one analyzes (very) high dimensional data,
whose distribution may be impossible to state.
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In what follows we briefly summarize the theoretical results in (2) and (4). We then
describe the new commands to be used to implement the M statistic method with Stata.
The description is augmented with examples of applications in which we show how the
method can be adapted to different datasets with very simple manipulations. Moreover,
we show how the datasets compatible with the M statistic commands present all the
elements required by Pisati’s spmap package (7)), thus enabling us to obtain informative
graphical outputs to support the hypothesis testing procedures.

2 Background

The M statistic is built to describe the (spatial) distribution of n observations using
the (’2’) interpoint distances between these units. The distribution of these distances is
not one-to-one onto, because the underlying spatial distribution is invariant to rotations
and translations, but yet can be used to detect deviations from expected behavior. The
M statistic measures differences in the distribution of the interpoint distances between
cases and a null hypothesis distribution (one sample M), or between cases and a control

group (two samples M).

The M statistic is constructed by considering all the (72’) interpoint distances between
the observed cases. To check for goodness-of-fit, the data is discretized into a k x 1
vector of the cumulative frequency distribution of the observed distances in k classes
(bins, henceforth), and the vector is compared to the corresponding k x 1 vector expected
under the null hypothesis. For a vector d = (dy, ..., dy) of cutoff points along the distance
axis, let F,, (d) = (F,, (d1), ..., Fy, (dr)) be the vector of the empirical density functions
in each bin:

1

Fo(de) = -x > 1(d(Xi, X;) < dy) , =1,k ,
(2) i<j

where d (+,-) : R? x R? — R is the (Euclidean) distance function and 1 (-) the indicator

function. The comparison between F,, (d) and the null hypothesis distribution, say
F (d), is based on the quadratic form

M = (F, (d) - F(d))" S~ (F,(d) - F(d)) ,

where S~ is a generalized inverse of the estimated variance-covariance matrix of F,, (d).

This statistic can be described as a Mahalanobis distance (thus the M) between the
observed and the expected distribution of the distances discretized to the k bins. Under
the null hypothesis if all the distances were independent M would be the usual Pearson’s
Chi Square test statistic. However, the (g) distances are not independent. Bonetti and
Pagano (2) prove that F,, (d) weakly converges to a multivariate normal distribution as

n — oco. More specifically, they show that under the null hypothesis F,, (d) = F (d),
Vi (F, (d) — F (d)) -5 N, (0,%) as n — oo,

where 3 is the variance-covariance matrix of F,, (d). In particular, for two cutoff points
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d, and dp, the corresponding covariance term in X is

Oap =4E [1{d(X1,X2) < dy,d(X1,X3) < dp}]—P (d(X1,X2) <dy) P(d(X1,X3) <dyp).

The asymptotic distribution of M can thus be obtained: the quadratic form con-
verges to a x2 with degrees of freedom equal to the rank of X7, that is the number
of bins kﬂ Empirical experience shows, however, that the convergence of M to the X%
is slow. For this reason, it is often preferable to use empirical testing routines, such as
Monte Carlo permutation tests.

The choice of the number of bins to be used in computing M has a direct impact on
the power of the test, and we refer to (9) for a detailed analysis of this issue.

M can be used to detect a broad range of deviations from a given underlying spatial
distribution and, as we mentioned above, the method has been adapted to a two samples
setting to test for differences between the (spatial) distributions of two groups.

3 Two samples M statistic, mstat and mtest commands

In this section we describe the mstat and mtest commands implementing the M statistic
method in the two samples setting to test

Hy :  the two groups have the same (spatial) distribution ;

Hy, : the two groups do not have the same (spatial) distribution.

The two samples data are lists of couplets ((X1,G1), (X2, G2), ..., (Xn, Gn)) where
X is the location of observation ¢ and G; is a group indicator variable taking the two
values,
G — { 1, if subject i is in Group 1
*7 1 0, ifsubject i isin Group 2.

Let n; and ny be the number of subjects in Group 1 and 2, respectively, so that
n = ni + na. Let also F,; (d) be the ECDF computed using the subjects in Group j

only (j = 1,2), with the corresponding vector notation f‘n]. (d) following intuitively.

Both commands, mstat and mtest, compute M for the two samples case:
—~ ~ ~ T ~ ~
M= (B, () = Foy (@) 87 (P, () = B, () (1)

where d is a vector of cutoff points d = (dy, ds, ..., dy,) at which the ECDFs F,,, (-) and
F,., () are evaluated, and S~ is the Moore-Penrose generalized inverse of the estimated

variance-covariance matrix 3 of the vector (f‘m (d) — f‘m (d))

2. Note that the midpoint algorithm used to define dy, ..., dj, (see next Section) is such that F (dx) < 1,
so that we are actually defining (k + 1) bins with the last being [dg, 00).
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The cutoffs dy, da, ..., di, at which we evaluate the differences ﬁnl (de) fﬁm (de) , L=
.,k are the midpoints of k equiprobable bins: from the pooled sample we partition
the range of d (X;, X») in k intervals I,, = [%1,m,%2.m) SO to have approximately

1
21 (Xi, X;) eIm):E,szl,...,k; (2)
1<J
the elements of d are then d, = (xg c—x10) , L=1,. k.

Both algorithms start by computing the pooled sample distance matrix D,, with
general entry D, [i,j] = d(X;, X;) and generate the vector d; these two tasks are
executed by the subcommands eucldist and dbins, respectively.

The ECDFs for the two groups are then f‘nl (d) = (ﬁm (dq) ,F\m (d2) ..., ﬁnl (dk))
and F,, (d) = (ﬁn (1), ﬁm (d2) s oy Py (dh) ) with

F\ = n1 Zl XMX <d€)GiGj 5 621,,]{}
z<]
and
E,, (dg) = @] 21 (X3, X;) < d)) (1 —G)(1—Gy), £=1,....F
z<]

The subcommand Fhat evaluates the ECDF of the interpoint distances for a user-
given vector of cutoff points d, and the subcommand _ diff returns the k£ x 1 vector

(ﬁm (d) - F, (d)).

The variance-covariance matrix of (ﬁm (d) - F,, (d)), 3, is estimated under the

null hypothesis: the general entry derived in () is

~

COU ( ni (da) - Frbz (da) ; ﬁnl (db) - ﬁng (db) |H0) =
n 4
Aa Y L T 1dX“X Sdmd Xi,X Sd Hy).
fab (anLQ) (g) i;j,k ( ( J) ( k) b| 0)

The subcommand Smat returns the k x k matrix S, and it is based on the following
algorithm:

1. For each cutoff value dy, generate an n X n indicator matrix Z,, whose general
entry is Zy[i, j] = 1 (d (X;, X;) < do)f°}

3. This requires Mata to generate k matrices, each of which results from executing n? inequalities.
This long loop is the main reason why the user can experience a long execution time when n is
large.




6 M statistic

2. For each pair (a,b) , a,b=1,...,k , take the matrix product Z, - Z; and sum all
the elements of the resulting n x n matrix.

3. Divide the resulting value by A = 2(%) +n (n — 1) (n — 2), that is the same as we
were dividing by (g) while adjusting for all the repeated values that should not
be considered in the summation: calling 1,, the n x 1 unity vector we have

1'/n, ) (Ia Ib) ° 1n o Zi<j,k 1 (d (X’HXJ) S dagd(Xi,X]g) S db)

A (3)

4. Compute the k x k general entries as o, =4 ( L ) %1; (Zy - Iyp) - 1,,.

ning

Once S has been obtained as just described, S~ is the corresponding Moore-Penrose
generalized inverse (Mata function pinv() ).

Command mstat computes the value of the test statistic M , and, if required (option
chi2), returns the p-value of the asymptotic Chi-square testﬂ

mtest executes mstat. It runs then a Monte Carlo-type test to come up with an em-
pirical p-value: the values of the binary variable G are randomly permuted a user-defined
number of times N P; each time the empirical M statistic is computed, generating a
vector (M, M, ..., Myp). Under the null hypothesis M should not be significantly
larger than these values: the empirical p-value is computed as

L .
value = 1(MS>M) .
p-value NPSZ:; >

3.1 Example: Alt and Vach data

We show an application of mitest taken from Section 1.5 of (d). The author uses the
Alt and Vach data (reduced dataset from (8)) to examine the spatial distribution of
corpses found in a medieval grave site in Neresheim, Baden-Wurttemberg, Germany.
The problem of interest was a kinship analysis to determine if members of the same
family are buried close together. The discrimination between the two groups is based
on a dental defect that was found in 30 out of 143 corpses in the grave site area. As
pointed out in (4)), spatial methods such as the Wilcoxon rank-sum test, the Kelsall and
Diggle test, or the K-function test (SaTScan), provide little or weak evidence against
the null hypothesis of no difference between the two spatial distributions.

4. Because the convergence of (ﬁnl (d) — IATn2 (d)) to a k-variate N (0,X) is slow, the asymptotic

Chi-square test is to be used only with n significantly large, and in that case the command mtest
will require a long execution time.
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When one runs mtest on the data, however, a p-value smaller than 0.05 is obtained
(1000 permutations). The heuristic analysis of the kernel densities of the interpoint
distances and the scatter plot of the two groups helps our understanding.

Below is the output from running the command. The observed M is 79.64, consistent
with the result obtained in (4)). The Monte Carlo permutation test with 1000 iterations
returns a p-value of 0.023, and the 95% "exact" binomial confidence interval for this
p-value is [0.015,0.034].

As shown in Figure 1 a peculiar characteristic of this data is the shape of the area
of interest. In Figure 2 we report the Kernel densities of the interpoint distances within
the two groups.

M statistic

Monte Carlo permutation results

HO: The two groups have the same spatial distribution
Number of bins = 20

Number of permutations = 1000

23 1000 0.0230 0.0047 .0146346 .0343123

note: ¢ = #{M>=M(obs)?}
note: exact binomial confindece interval with respect to p=c/n

Spatial distribution of the corpses in the Alt and Vach dataset
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Figure 1: Scatter plot obtained by calling option
scatter and the related graphic options.
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Alt and Vach data IDD

density
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Figure 2: Kernel densities obtained by calling
option density and the related graphic options.

3.2 Dealing with discrete datasets

In many applications spatial data are aggregated in a discrete number of locations, say
l1,l2, .., I, (typically ZIP codes, census tracts, etc.). The extended analysis of the
discrete case in Reference (2)) shows that M can be applied to this framework.

To implement the M statistic method in this discrete setting with Stata, the data
need to be adapted to the standard requirements for mstat or mtest. A typical discrete
dataset has the form

((l17 n1,17 n2,1) RS (lm; nl,m7 n2,m))

where [; = (x5, ys) are the coordinates of location s, and n1 4, ng s represent the numbers
of individuals in location s belonging to groups 1 and 2, respectively. This specification
is indeed the most general, as it includes the case of all observations having different
coordinates.

To execute the M commands on these data we need to have a dataset of the form
introduced above:
((X1,G1)y ey (X0, G))

We propose two procedures: one for the a small number of individuals, and one for
a large number of individuals.
Small to moderate number of individuals

With discrete data, the total number of individuals is N = Z;”:l ns , where ny, =
n1,s + Na,s. To execute the M commands we need to expand the dataset so to have NV




Tebaldi, Bonetti, Pagano

9

observations, each of them including the corresponding coordinates and group dummy

variable.

In the following example we illustrate the procedure on a simulated dataset with the

two groups aggregated in 12 locations:

list _all
+ _______________________________
| X Y n2 ni
[
1. | .3734917 .366027 10 7
2. | .2792006 .8637221 4 10
3. | .8315064 .5910658 8 3
4. | .9711422 .6305301 13 11
5. | .7767971 .175099 18 9
[
6. | .643114 .1090542 3 7
7. | .3833295 .6420991 16 10
8. | .0057233 .5137199 5 7
9. | .8772233 .8745837 20 3
10. | .6526399 .25 8 8
|
11. | .2033027 .4896181 12 7
12. | .6363281 .8478178 2 8

. */ generate two observations for each location and the Group variable

. expand 2 , gen(G)

(12 observations created)

. x/ expand Group 1 observations
. expand nl if G==

(78 observations created)

. */ expand Group 2 observations
. expand n2 if G==0

(107 observations created)

. *x/ execute mstat

. mstat , x(X) y(¥) g(G) chi2

M statistic
Number of bins = 20
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Large Number of Individuals

Suppose that the number of individuals distributed in the m locations is very large,
and that we want to use the M commands mstat or mtest. We propose the following
algorithm:

1. Consider the variables n;,. and ns. in relative terms, i.e. construct for each loca-
tion the proportions

Nni,s n2 s

\:7’(, = ,521,...,
Pi,s N, D2,s N,

m;

where N1 =Y7"  ny s and No = >0 ng .

2. Transform these proportions in integer terms, i.e. multiply by & > 100 (for in-
stance 500 or 1000, but much smaller than N) and round them to the closest
integer. The larger the factor by which the proportions p; s and py s are multi-
plied, the less information is lost due to rounding.

3. Expand the data, generating for each location I, (for each group) as many obser-
vations as the integer values derived above.

4. Execute mstat or mtest on these data.

The procedure transforms the discrete dataset into a dataset compatible with the M
command composed of 2k observations, k in each group, preserving the proportions p; s
and ps s across the different locations. Because the M statistic is based on the ECDFs
of the interpoint distances and the relative frequencies in each bin are invariant to these
manipulations, so is the value of M. Note that the test is based on equal sized groups,
and with 2k significantly smaller than N the power will be lower. Indeed, for very large
N7 and N, one would realistically almost always reject the null, as the null is essentially
never true in real life settings. Hence it is of interest to observe whether for feasible
values of k one does indeed "already" reject the null.

To implement the algorithm the user can refer to the following example in which we
created data with sharp differences across the two groups:

| .3734917 .366027 320 22 |
| .2792006 .8637221 1067 250 |
| .8315064 .5910658 150 27 |
| .9711422 .6305301 870 26 |
| 7767971 .175099 1050 100 |

O W N
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6. | .643114 .1090542 900 340 |
7. | .3833295 .6420991 810 250 |
8. | .0057233 .5137199 630 120 |
9. | .8772233 .8745837 1200 31 |
10. | .6526399 .25 1800 400 |
[ -————— |
11. | .2033027 .4896181 240 20 |
12. | .6363281 .84738178 700 130 |
e +
. total n2 ni
Total estimation Number of obs = 12
| Total Std. Err. [95% Conf. Intervall]
n2 | 9737 1588.352 6241.06 13232.94
nl | 1716 466.8214 688.5331 2743.467

. x/ generate proportions and round them (k=100)

. gen ps2 = round(n2/9737%100)

. gen psl = round(nl/1716%100)

. x/ generate two observations for each location and the Group variable
. expand 2 , gen(G)

(12 observations created)

. */ expand Group 1 observations

. expand psl if G==

(90 observations created)

. x/ expand Group 2 observations

. expand ps2 if G==0

(86 observations created)

. */ execute mtest

. mtest , x(X) y(¥) g(G) den

M statistic

Monte Carlo permutation results

HO: The two groups have the same spatial distribution
Number of bins = 20

Number of permutations = 100

2 100 0.0200 0.0140 .0024313 .0703839

note: ¢ = #{M>=M(obs)}
note: exact binomial confindece interval with respect to p=c/n
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IDD Kernel Densities

4 ) .6
interpoint distance

Figure 5: Kernel densities for Group 0 and 1 in the large sample

density: Group 0 ————- density: Group ]l

setting with discrete data.

4 Application: Breast Cancer Data in Massachusetts

In this section we report on an application of mtest in which we also show the compat-
ibility of the data format required by our new commands with the format required by
Pisati’s spmap package. We use two datasets:

a) A dataset resulting from the composition of Breast Cancer Data extracted from (5]
with Census Tracts coordinates for the State of Massachusetts;

b) Scott Merryman’s US county map coordinates for Pisati’s package.

a) In search of an easily available dataset, we consider 348 locations in the State
of Massachusetts for which detailed cancer data are available. For each location the
Massachusetts Cancer Registry reports the counts of the observed and the expected
cases, the latter being "a calculated number based on the city/town’s population dis-
tribution (by sex and among eighteen age groups) for the time period 2002-2006, and
the corresponding statewide average annual age-specific incidence rates"(B). We focus
here on breast cancer among females only, a cancer site (and gender) suspected of be-
ing clustered in specific areas of the State (see for instance http://www.mbcc.org/ or
http://www.womensenews.org/story/health/020712/ researchers-probe-cape-cods-breast-
cancer-rate).




Tebaldi, Bonetti, Pagano 13

To simplify the analysis, we consider the variable

bserved, — ted
rely = 2200V DO s =1,...,348,

v/expected,

a standardized difference between observed and expected numbers of cases.

The variable rel is approximately normally distributed with zero mean. This is
confirmed by our inspection of the data if we ignore the geographical positioning. The
null hypothesis implies that there are no clusters in the spatial distribution of breast
cancer in the female population in Massachusetts. Thus there should be no difference
between the distribution of locations with rel>0 and locations with rel<(. This sign
test is equivalent to testing that the groups have the same spatial distribution, with the
group dummy variable being

Gs=1(rels >0) , s=1,...,348.

Once G is generated, and matching each location with the corresponding census tract
coordinates, we have a dataset featuring the structure required by the M commands.

b) We can also use the dataset together with Pisati’s spmap package (Scott Mer-
ryman’s polygons data(6])) to map the distribution of G. We report here the do-file to
execute the test on the data. Instead of calling option scatter, we use spmap to super-
impose variable G on the map of Massachusetts together with the locations of the 31
EPA Superfund sites in the Stat

M statistic

Monte Carlo permutation results

HO: The two groups have the same spatial distribution
Number of bins = 20

Number of permutations = 1000

38.56281 | 2 1000 0.0020 0.0014 .0002423 .0072058

note: ¢ = #{M>=M(obs)}
note: exact binomial confindece interval with respect to p=c/n

5. This third dataset is created by associating each of the sites with the corresponding coordinates in
the Census Tracts Dataset.
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IDD of standardized relative incidence for breast cancer in MA

[—— sty dscep  ————- dersity: o>eq |

Figure 6: Kernel densities. Units in Group 1 are locations with
observed cases exceeding the expected.

Massachusetts Breast Cancer Data & Superfund Sites

: g DN

Figure 7: Map of Massachusetts with the black (empty) dots corresponding to locations with
observed cases (not) exceeding the expected. The circles around some of the locations
indicate the presence of an EPA superfund site.
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Our results based on M (reported p-value= 0.002 with confidence interval [0.0002, 0.007])
indicate that there are indeed areas of Massachusetts in which the incidence of breast
cancer is consistently and significantly above the expected number.

5 mstat and mtest: syntax, options and returned results

The syntax for the two commands is the following:
mstat , x(varname) y(varname) g(varname) [options graphic options]

mtest , x(varname) y(varname) g(varname) [options graphic options]

where x(varname) y(varname) g(varname) are three required options indicating
the x-coordinates, the y-coordinates and the group dummy variable, respectively. The
other command-specific options are

Options for mstat

bins (#) choose the number of bins to be used
chi2 returns the upper tail p-value of the asymptotic chi2 distribution
scatter plot the spatial distribution of the two groups

density plot the Kernel density for the interpoint distances

Options for mtest

bins (#) choose the number of bins to be used

iter(#) choose the number of Monte Carlo permutations in the test
level(#) choose the level for the p-value confidence interval to be reported
scatter plot the spatial distribution of the two groups

density plot the Kernel density for the interpoint distances

Notice that option bins (#) selects, in both cases, the number of bins. This choice
affects the power of the test, and the way in which it does that can change depending
on the dataset being tested. The default value is bins(20). For a detailed analysis of
the implications of changing the number of bins we refer to Forsberg et al. (9).
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Option iter(#), instead, does not affect the power of the test but, by setting the
number of Monte Carlo permutations to be executed, it determines the accuracy of the
empirical p-value. The default value is iter(100).

Option level (#) set the confidence level at which the "exact" binomial confidence
interval of the Monte Carlo p-value is constructed. The default is level(95).

For both commands, when the graphic output is generated by calling option scatter
or density, the following graphic options are available:

Options when scatter is specified

scolorO(colorstyle) set the color for the marker of group 0.
scolori(colorstyle) set the color for the marker of group 1.
smarkerO(marker symbol) set the symbol for the marker of group 0.

smarkerl (marker symbol) set the symbol for the marker of group 1.
ssize0O(marker size) set the size for the marker of group 0.

ssizel(marker size) set the size for the marker of group 1.

slabelO(string) input the label for group 0 in the legend, default: "Group 0".
slabell(string) input the label for group 1 in the legend, default: "Group 1".

stitle(string) specifies the title for the scatter, default: "Spatial Distribution of
the two groups".

sytitle(string) specifies the title for the y axis, default is the name of the variable
in option y(y-coord).

sxtitle(string) specifies the title for the x axis, default is the name of the variable
in option x(x-coord).

Options when density is specified

dcolorO(colorstyle) set the color for the line of the density of group 0.
dcolori(colorstyle) set the color for the line of the density of group 1.

dpatternO(line pattern style) set the pattern style for the line of the density
of group 0.

dpatternl(line pattern style) set the pattern style for the line of the density
of group 1.

dwidthO(line width style) set the width for the line of the density of group 0.
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dwidthl(line width style) set the width for the line of the density of group 1.
dlabelO(string) input the label for group 0 in the legend, default: "Group 0".
dlabell(string) input the label for group 1 in the legend, default: "Group 1".

dtitle(string) specifies the title for the Kernel density, default: "IDD Kernel
Densities".

Saved results

mstat saves the following in r():

Scalars

r(M) observed M statistic

r(p) chi-squared p-value (if option chi2 is specified)
Matrices

r(difF) difference between the ECDFs in the two groups
r(Sinv) generalized inverse of the covariance matrix of r(difF)
r(d) cutoffs of the equiprobable bins

mtest saves the following in r():

Scalars

r(N) sample size

Matrices

r (M) observed M statistic

r(c) count when M>=M{(obs) is true

r(p) observed empirical p-value

r(se) standard error of empirical p-value

r(ci) exact binomial confidence interval of observed p-value
r(reps) number of nonmissing results

r(d) cutoffs of the equiprobable bins

r(Sinv) generalized inverse of the covariance matrix




18 M statistic

6 Conclusions

mstat and mtest allow Stata users to use powerful tests for detecting differences between
the spatial distribution of two groups. So far the M test has been used (in its one
sample version) for excluding the presence of clusters in the population, in particular
in epidemiological studies. The one sample version of the test requires the user to
have knowledge of the null distribution, i.e. the interpoint distance distribution that is
compared to the observed one, or at least the density in each bin. Since often this is not
available, except when we work with census data (e.g. (2))), in several applications the
null distribution is either simulated or estimated. In the latter case, that is when we
have a dataset being used to estimate the underlying null distribution, the one sample
M test is almost equivalent to a two samples M test where the groups correspond to the
two datasets, the only difference being that in the two samples case when computing
the matrix S we take into consideration the variability in both groups. The loop for
the construction of this matrix S is the core of both commands, with the rest of the
algorithm being based on a sequence of existing Stata commands.

The two commands presented here deal with datasets in the two-dimensional Euclid-
ean space only. Since the M statistics method does not depend on this fact, the method
works with any kind of dissimilarity measure. An extension of the commands could
allow the user to test differences in the interpoint distance distribution in k-dimensional
Euclidean spaces and, more generally, with generic dissimilarity measures. Alterna-
tively, one could also develop a shorter version of the command so as to have the user
inputting directly the dissimilarity matrices D (one for each group) thus allowing for
the greatest level of generality. Clearly, all these extensions to higher dimensional set-
tings would prevent the possibility of a simple graphic output to support the numerical
results, as it is the case for mstat and mtest.

The M statistics method may prove valuable in several fields, whenever detecting
situations in which the distribution of certain phenomena in space is not trivial, yet
relevant. Thanks to the latest advancements in bioinformatics, for instance, statistical
studies in genetics can be based on the difference between the distribution of a dissim-
ilarity measure between genetic sequences in two groups. Sociology, demography and
economics are other fields in which detecting differences in the (spatial) distribution of
different groups of individuals is certainly relevant.
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