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Abstract: In this paper the approach to pattern thery developed by Ulf Grenander is used to
construct models of randomly deformable templates. A probability measure on the deformations is
constructed through an effort function, which induces a statistical model on the observed objects.
The invariance of such model with respect to similarities is discussed. Two ezamples are given in
order to clarify the relevance of the theme and the technical difficulties.

1 Introduction

In this paper some of the ideas proposed by Ulf Grenander (1976) in his foundations of
pattern theory are developed in order to set up a statistical theory of deformable templates.
Grenander’s is to model the variabilty of a class of objects or shapes through a probability
distribution. This allows to check the adequacy of the model by Monte—Carlo sampling and
to assess parameter values by estimation from real data.

Randomly deformable templates are random objects which are generated by applying a
random deformation to a reference object (the template or prototype), embodying their
main desired features. Models of this kind have been recently used in image processing by
:Chow, Grenander and Keenan (1991) :and :Amit, :Grenander and Piccioni (1991) .

It is often desirable that family of probability laws on objects should be invariant with respect
to some natural transformations of the object space, e.g. the group of shape invariance
(translations, rotations and uniform changes of scale), see Kendall (1989). For this reason
the theory of invariant statistical models should have a more relevant impact on pattern
recognition models. v

In the development of deformable template models the developments in the field of conti-
nuum mechanics have been a source of ideas (see Kass, Witkin and Terzopoulos, 1987). :In
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the deterministic setting a cost :function (which we call effort, conformally to the already
mentioned work of Grenander (1976) and Pavel (1989)) is minimized on the object space.
Usually such a cost function is the sum of a data-fitting term and a regularity or template—
fitting term, which reminds to statisticians the additive decomposition of the logarithm of
the posterior density as a sum of the log-likelihood and the logarithm of the prior density
in the Bayes’ formula. Under suitable assumption this can be made precise clarifying the
relation between the principles of least effort and maximum likelihood.

In the paper we focus on the simple problem of classification without degradation due to
noise, that is assigning an observed object to one of a finite class of pre-specified possible
templates. This can be of interest in practical situations like the detection of abnormalities
in biological shapes (see also Grenander and Manbeck, 1992).

The organization of the paper is as follows. The next two sections contain the theoretical
part. The remaining section will be devoted to two particular examples: the first (pattern
of n points on the circle) is an instance in which the compactness assumptions underlying
our approach hold true, whereas in the second (convex sets in the plane) they fail and only
the special nature :of the selected deformations, that is a Gaussian model on a commutative
group, still allows to :analyze :the problem in a similar fashion.

2 Invariant classification problems

Let & be the class of observed objects and © the class of reference ones, ﬁr,m idea being that
observed objects are produced by some reference object ¥ € © according to a probability Py
on a o-algebra of subsets of X.

Let S be a group acting measurably on X and on ©, with the property that
Pys'=Py, VI€O, VYses. (1)

Then we say that the statistical model {P;,¥ € ©} is S-invariant. We refer to S in general
as the group of similarities, so that the S—invariance of the model means in practice that if
the observed object coming from the reference ¥ is transformed by a similarity, its probability
distribution is the same as if it comes from the “similar” reference object 5.

The easiest way to construct such invariant models is when there is a o—finite measure A on
X which is S-invariant, that is As™' = A Vs € S. In this case, if we assign Py through its
density w.r.t. to A, that is ’

Po(4) = [ plal9)A(dz) @

then the invariance is obtained provided

p(zld) = p(sz|sd) VseS. (3)

The construction of \ for our class of models will be dealt with in the next section. However,
for this to be possible, we assume from now on that X is a locally compact Hausdorff
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topological space, on which the compact topological group S acts topologically. For technical
details about topological groups the reader is referred to Lenz (1990).

Now let us examine the following classification problem. Having observed some object z € &
decide whether it cornes from one of the exclusive classes ©;, i =0,...,k, where ©;N Q;=¢
fori # j, and g U ... U Op = O. If each of the ©,’s is invariant under each s € &,
the classification problem is said to be invariant. When & = 1 this is the classical testing
hypotheses problem, O and O; being the null and the alternative hypothesis, respectively.
The simplest situation is when both & and O, are made by a single equivalence class in
©/8, which we call from now on a template. Formally this means that for ¢ = 0,1 and
Jd €0, 9 € O; thereexists s € S such that ¥’ = 9.

When dealing with an invariant classification problem it is reasonable to restrict our con-
siderations to invariant classification rules. A classification rule is a mapping ¢ from X to
{0,..., k) specifying for each observed object the class of templates from which it is believed
to come from. It is invariant whenever ¢(z) = ¢(sz), Vs € S. The main property of invariant
classification rules is that

Py(c(z) = i) = Ps(c(sz) = i) = Pus(c(z) = 1) (4)

hence the statistical properties of such rules are invariant over each template. In particular
for testing problems of hypothesis made by a single template, the features of each rule are
given by the two probabilities Py,(A) and Py, (4), A being the critical region (c¢(z) = 1)
and 9o and U being arbitrary reference objects belonging to ©¢ and Gy, respectively. It is
obvious that any classification rule which is based on the values of invariant statistics (i.e
T(z) = T(sz), Vs € §) will be invariant.

In particular we mention the maximum likelihood classifier

Ti(z) = sup p(z|¥) (5)
€9,

and the Bayes classifier
T/() = [(elodov(do) (6)
14

where 9; € ©; and v is a left invariant measure on §.

3 Deformations and effort functions

In this section we discuss in an abstract setting an approach to the construction of invariant
statistical models for pattern recognition problems. For our source of ideas the reader is
again referred to Grenander (1976) and Pavel (1989). In practice the effectiveness of the
construction will depend on the different choices which have to be made.

The first and more delicate one is to set up the deformations of the reference objects. These
are transformations of @ into X, which can be thought as explanations of the way a reference
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object is appearing in a different form. For mathematical convenience we require deforma-
tions to be a locally compact topological group acting topologically on X This implicitly
assumes © C X. Also, a right invariant Haar measure y exists on D and it is unique up
to a factor. Unfortunately often we expect that admissible deformations will vary with the
reference object. The final example will show it. This is actually the main problem with
this kind of approach.

Our purpose is to construct a probability measure on the group D of deformations and, by
evaluating a deformation on a reference object ¥, to get the induced probability measure
{Ps} describing the observed object as coming from the reference 9.

Before moving further let us relate S with D. There is no need to assume that Sisa
subgroup of D as done by Pavel: the less restrictive requirement is that the transformation
s(d) = s7'ds on X still belongs to D for any s € §, d € D. In order to give a meaning
to this we need to ensure that different defermations act differently at least on one object.
Moreover we need to ensure that the action of S so defined on D is measurable and the Haar
measure g is invariant w.r.t. such an action.

Now the effort function can be introduced. This is a real valued continuous mapping E of
D. We do not impose any property of E, except its S-invariance

E(d)=E(s'ds) Vs€S (M
and that for some 8 >0
Zp = [ exp(~PE(E)u(d6) < +oo ®)
which allows to define the probability measure .
ns(4) = 2" [ exp(~BE(6))u(d6) ©)

By the assumptions made so far 75 is S~invariant
75(A) = mp(sTTAs) Vs€S. (10)

It is clear that, being 4 a sort of uniform measure on D, E controls the probability around
each deformation, which increases as the effort decreases. Moreover as 8 increases such a
behaviour is emphasized. The value of 8 must thus be selected depending on of the variability
which is allowed for the observed objects around the reference ones: hence in general  will
very with ¥, even if it must be constant over similarity classes to keep the model invariant.
In the sequel 3 is keep fixed for notational simplicity.

The final step for the construction of the statistical model is to compute the probability
measure P; = mpey', where eg(d) = d(¥) is continuous, hence measurable. Since 74 has
density w.r.t. x, Ps has a density w.r.t. pej'. Assume finally that D acts transitively on
X, that is for each ¥,z € X there exists a deformation such that d(J) = z. Then A = pej’
does not really depend on v, since pe;’ = fiqez; and

fa(A) = p(Ad™") = p(A) v (11)
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since y is right-invariant. The density p(z|J) of Py w.r.t. Ais then the conditional expecta-
tion
25 E(e P E@d(9) = 2) (12)

which can be seen to obey (3) by virtue of our assumptions. If, for each 9 € 0, z € X there

exists a unique mm.wav% € D which sends ¥ into z, depending measurably on z, then

p(el?) = 25" exp(—PE (e (z)) (13)

which means that the probability of producing the observed object z from the reference 9 is
locally controlled by the effort of the deformation needed to accomplish the job. The easiest
situation to think about is when X is itself a topological group so that D = X acting through
the group operation.

The design of deformations must usually be preceeded by a description of objects in term

of more convenient mathematical representers which are invariant at least under a smaller
closed normal subgroup A of S. A description W : X — X’ has the property that

W(z)=W() & In € N,z = na'

Thus A’ can be made homeomorphic to X /A and will serve as a new object space, whereas
the new reference objects become the elements of 9’ = @/ A By the normality of AV, the
equivalence classes of S

[s] = {n1snz : ny,ny € N}

became a compact group &’ = S/A by inheritin g the group structure of S.

Finally let us try to make a comparison between the maximum likelihood and the Bayes
classifiers (5) and (6), respectively. If we restrict our consideration to invariant classification
rules we are actually considering only the projection of the observed object X on the quotient
space X' /S call p such a projection. By invariance the law of p(X) depends on 9 only through

p(9).
Since X has density p(z]9) w.r.t the S—invariant reference measure A, p(X) has density

E(p(X19)|p(X))

w.r.t. to the image of A under p. Being A S-invariant it is possible to show (Eaton, 1989)
that such a conditional expectation is equal to the Bayes classifier

[ ploztivido)

which is trivially seen to depend on 9 only through its equivalence class, since by (3) and
the invariance of v, for t € &

\ﬁmqa_%vi&i = \ﬁQLQ&_E:EQV = \.RQH_%V:EQV.

- At least when the number of classes k = 2 and both the classes are constituted by a single
template, the reduction to invariant rules converts the problem into the testing of two point
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hypotheses in ©/S. Hence, by the Neyman-Pearson lemma, the optimal tests should be

based on the statistic
To(z) _ [p(oeldy)u(do) "
To(z)  Jp(oz|do)v(do)
where ¥ and ¥ are arbitrary representers of the two templates and p(z[d) is given by (12).
At least in this case, the classifier (6) is preferable to (5). It is worth to note that the choice
of the threshold corresponding to a given significance level, for discriminating between the
two templates can be done through Monte~Carlo simulations.

- Under suitable conditions the above results can be generalized to the case in which S is only

locally compact, see Eaton (1989).

4 Two examples of application

Ezample 1. Pattern of points on the circle. We imagine to observe a pattern of n points on
the unit circle. For problems of this kind in biological science see Batschelet (1981). We do
not distinguish between patterns which are rotated of an arbitrary angle or reflected along a
diameter of the circle. Moreover, even if we number the points for convenience, permutation
of the order does not affect the pattern.

Mathematically, this means that X = (§?)" and the group of similarities is made by § =

P xS x{~1,1}, where P, is the group of permutations of n elements. The group operation
on §is

(7,9,7) - (7,9,5) = (%, 30 + J(mod2r), 37) (15)

and the action of S on X is
(M0, )21, - -y 20)i = jTagy + I(mod2r) . (16)

It is clear that S is a compact group and the Haar measure is the product of uniform measures
on P,, S and {—1,1}, respectively.

It is quite natural to try to factor out at least the effect of rotations by putting the origin
into the first point automatically. This means using the descriptions

Wi (S1)" — (§1)rt _ a7

S\TE,..J&LN?nlar..;eulﬁv (18)
from which
Wa)=W(y) e zi=y+9,i=1,...,n
hence (S?)"~! is homeomorphic to ($?)*/N, where A/ is the subgroup of rotations. It is

straightforward to see that A/ is closed and normal and Y/N is homeomorphic to P,_; x
{~1,1} acting on (5)"! by

(m23) (215 oy Znc1)i = f2agsy ‘ (19)
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Next we model deformations on (S*)™! simply by its product group operation, that is
d € (S')"! operates on z € (§?)*! by

d(z); = d; + zi(mod2r) . (20)
The Haar measure x on D is then simply the product of of n times the Lebesgue measure on
the circle, which is clearly invariant under permutation of coordinates and reflections around

7. Hence the reference measure A on D coincides with # and is S-invariant. In order for the
density to satisfy (3) we must impose (7) on the effort, which means:

WA&T, .Q&:IHV = mﬁ&idu.. .q&i:l:v,% € P, -1 AMC
E(dy,....dus) = BEQ2r —dy,... 27 — d,_y). (22)

A possible choice is then

n-1
i@ET..JRmLV = Mnom d; .

i=1

Then (9) is the distribution of n — 1 independent von Mises variables (Batschelet, 1981).

Finally, let us remark that given any description of an observed object (z1,...,2,-1) and a
description of a reference object (¥, ... ,Use1) there is a unique deformation
&A, =z; - Qm AEOQMw; Awwv

sending ¥ into z. By consequence
plzld)aexp(—BE(z - ¥)). (24)

In order to appreciate with a practical example the difference between the various classifiers
let us consider an instance of a classification problem with two hypotheses, with n = 3. Given
a specific pattern of three points we must decide if they are just deformations of a pattern of
three points on the same location, or there is one of them coming from an antipodal position.
By using the description above, the parametric hypotheses are thus

00 = {(0, 0} = AEL
6, = AAD_.\..V,A,\? oi = ,Twnluwv .

Thus, given the observed object (21, 22), the deformation needed for J; to produce it is just
(21, 22), whereas for ¥, and 9 is (21, (22 — m)mod2x) and (zmod2x, z;), respectively. Again
by the symmetry of the effort function z; and z; around = so that 0 < z; < 2, < 7. Then

the three efforts are

E(21,23) = ~(cos 2, + cos z;)
E{zy, 7 = 2) = —(cos 2, + cos(m — z,)
E(r — 2y,20) = —(cos z, + 00821 — z1)) .
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It is clear that
Elzy,7n —2) < E(m— 21, 25)
with the equality holding only when Z1 = z;. By consequence the maximum likehooc

classifier
. muAmANruuvlm?—.alﬁvv = QmAncm?«INuvlncmN»w AMM

is based only on z,. At the contrary the Bayes classifier involves both z; and z,, being
proportional to

mmmmauu.uuvlm?rs.inm: + PEB(21,22) =~ E(m=21,2,)) = gPlcos(m—22)~cos(z,)} + P {log(m=z1)—cos z;} . Awmv

This is in agreement with our former remark about the lack of optimality of the maximum
likelihood (minimum effort) classifier, which ignores part of the available data,

Ezample 2. Conver sets in the plane. The essentials of this example are contained in
Grenander (1976). Suppose we need to classify bounded closed convex sets in the plane up
to shape invariance (translations, rotations and uniform scale changes). In order to avoid
unnecessary technicalities we consider strictly convex sets with (2 boundary. It is clear that
the boundary of such sets can be parametrized by the angle ¥ formed by the exterior normal
to the boundary and the z-axis. Then by

2(¥) = ~csin Y R(y) (27)
9(¥) = ccos YR(1)) (28)

where R(1) is a positive bounded continuous function on S! normalized to become a density.

In geometrical terms cR(1)) is the radius ¥ of curvature at ¥, c= 3 | being the length of
the boundary. Hence

"

2(4) = 2(0) — ¢ \c sin AR(A)d) (29)
¥ ;
y(¥) = y(0) + ¢ \o cos AR(A)dA : (30)
from which it is seen that B is common to sets which are obtained from the original one
through translation and uniform scale change. On the other hand any positive normalized
continuous function on S? defines through (29-30), for any choice of (2(0),y(0)) and ¢ > 0
the boundary of a strictly convex set provided

2

\Q SinAR(A)dA = \o: cos AR(A)dA = 0 . (31)
Thus the normalized radius of curvature is a description of the above class in terms of the
set X' of densities in C(S8") which satisfy (29). In computer vision such a description has
been introduced by Slansky and Nahin (1972). Sets with the same description are related
through an element of the group A of translations and uniform scale changes which s a
closed normal subgroup of the shape invariance group S. The action of SIN (rotations) on
X is through a shift of the domain

P(R)(A) = R(A - o(mod2r)), re§'. (32)
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The situation seem to fit our scheme but since A" is not locally compact, there cannot be a
locally compact group D acting transitively on A. This rules out the possibility of applying
the previous theory.

However, if we are willing to forget the positivity constraint on R, the cone D of functions
in C(S") with zero mean and satisfying (31) is a commutative group acting on X through
addition. Moreover given the observed R and the reference Ry, § = R — Ry is the unique
deformation sending the latter into the former. It is cledr that we cannot model deformations
by means of its density w.r.t. an invariant reference measure, since there is no measure with
this feature. However we can define a density at least on a dense set of "regular” objects §
by comparing the ratio of the probability of a ball around § with the probability of a ball
around zero and then taking the limit as the radius decrease to zero. This construction
works for example in the Gaussian case, in which the formal density is exp Almmavv, where
E is the quadratic form associated to the inverse of the covariance operator. For example,
the effort

E®) = [ 18 Pav (33)

has this interpretation for § € H?($?). It formally corresponds to model the additive defor-
mation as a periodic Brownian motion. This is very convenient since the constant, sine and
cosine are eigenfunctions of the covariance operator, hence the constraints (31) and the zero
mean can be taken intc account by simply deleting the corresponding terms in the ortho-

gonal series expansion. For example the periodic Brownian motion without the first three
Fourier terms is written as

w. o«
N M m~! (&m cos mt + 7., sin mt) (34)
m=2

X =

where {&;, 7;} are independent N(0,1) random variables.

The effort (33) is very sensitive to local irregularities of the boundary and give rise to a
process (34) with very irregular sample paths. Grenander (1976) considered series expansion
of this type with a general choice of coefficients c,, replacing m™!, which allow also to control
the smoothness of the sample paths of the process. The corresponding effort Q is then easily
written only in the Fourier domain.

The reader should also have noticed that the choice of additive deformations d is such that
the shift conjugate deformation ¢~'dp by ¢ € (0,27) is nothing but the additive deformation
by ,

d(A) = d((A + ¢)(mod2r)) . (35)
The S-invariance of the effort thus requires the effort to be the same no matter which is the
origin chosen on the circle, which is fulfilled by any random Fourier expansion of the type
considered above.

To summarize in this case from an effort function E we are able to construct an S-invariant
stochastic model for the deformations, having a formal density proportional to exp Almmv.
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The maximum likelihood classifier
exp (~5(B (R~ R) = B(R - o)

and the Bayes one
& exp (—2E(R - o(Ry)) dp
37 exp (S E(R — ¢(Ro)) dy
are then well defined S-invariant statistics, where R is the observed boundary curve and Ry

and R, those of representers of the two templates ©g and Oy, all supposed to be regular
enough.
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