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1 Introduction

Traditional cluster detection techniques have relied on
a number of statistical methods, either to detect devia-
tions from complete spatial randomness or to differen-
tiate between spatial distributions of two or more popu-
lations. In most cases the data are presumed to include
a set of spatial coordinates, and typically in biostatis-
tical applications the data are coordinates suitably pro-
jected into Euclidean spaceR2.

We first restrict our attention to the following sit-
uation: there is an underlying population distribution,
which we will call thenull distribution. We then con-
sider a subpopulation, perhaps a group of cancer pa-
tients, and ask whether the spatial distribution of the
subpopulation exhibits spatial deviation (e.g. cluster-
ing) from the null. There are a multitude of statistics
designed to test the hypothesis that the two distribu-
tions differ; examples can be found throughout the lit-
erature (e.g. [1, 2, 3, 4, 6]).

Our choice of a test statistic in this setting uses the
distribution of interpoint distances. The approach is
outlined below (Section2) as well as in [2].

In this paper we consider an extension of these tech-
niques when confronted with a data set that includes
two or more spatial locations per observation. In this
case, one needs a suitable generalization of the ordi-
nary test statistics that will efficiently utilize the multi-
ple spatial information. The strength of this approach is
to allow detection of more complex or subtle potential
differences between the null population and the sub-
population of interest.

The multiple address problem can arise in a number
of biostatistical settings, for example an environmen-
tal study where part of the data collection includes not
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only residence but also place of employment. We have
been investigating the application of this cluster detec-
tion methodology to the problem ofbiosurveillance, or
routine collection and monitoring of health data in or-
der to detect unusual patterns of disease. In this con-
text, multiple addresses might arise as residential and
work address, or some other spatial location such as a
school.

We begin this paper with a discussion of the ap-
proach of interpoint distances as a method for detect-
ing spatial clustering. The extension of this approach
to multiple addresses follows, and we conclude with
results of a simulation study and discussion.

2 Distribution of interpoint dis-
tances and theM -statistic

We summarize the approach and relevant details of the
test statisticM discussed in [2] for distinguishing be-
tween the spatial distributions of two populations. By
the distribution of interpoint distances we mean the
collection of all possible pairwise distances calculated
from a collection of points, considered as a distribu-
tion curve. For any population distribution, there is
a well-defined distribution of distancesF associated
with that population. The distance distribution̂F cal-
culated from a random sample, drawn from the under-
lying population, is a consistent estimator ofF in the
sense that

√
n (F̂(·)−F(·)) converges weakly to a zero

mean Gaussian process [2]. An unusual pattern of dis-
ease may cause a distortion in the distribution of dis-
tances. Measuring the deviation of the observed inter-
point distance distribution from that which we expect
forms the foundational concept of theM -statistic.

In practice the test statistic is calculated in two steps.
First, consider the null distribution by calculating all
possible (or a sufficiently large sample of) pairwise
distances between individuals in the underlying pop-
ulation. We summarize the distribution by binning the
distances intok bins. This yields ak-dimensional vec-
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tor describing the distribution of interpoint distances
for the underlying population. Repeated calculations of
this sort via a resampling or bootstrap procedure pro-
vides an estimate of the variance-covariance matrix for
the bin counts.

Then for any other subpopulation, we can calcu-
late the pairwise distances between individuals in this
group, bin the distances accordingly, and compare the
observed distribution to the null. The actual statistic
M is a Mahalanobis-like distance: a quadratic form
inversely weighted by the variance-covariance matrix.
For observed countso, expected countse, and esti-
mated covariance matrixS, we calculate:

M = (o− e)′ S− (o− e)

We can make inferences on the difference between the
distribution of the subpopulation as it compares to the
null by empirical methods, or in special cases by using
the asymptotic distribution of the test statistic (which is
known from the theory of U-statistics).

Naturally, the distribution of interpoint distances is
highly dependent on the particular metric used. Since
most often our data consist of points in Euclidean 2-
space, the intuitive metric to use is the standard Eu-
clidean metric onR2. However there is noa priori
reason to choose this metric over any other measure of
distance or dissimilarity.

3 Multiple addresses

For ease of language, we refer to the situation where
a data set contains two or more spatial locations per
observation as that of “multiple addresses”. The pro-
totypical example of such a data set is motivated by a
syndromic surveillance system under development at
Children’s Hospital in Boston by Mandl, et al. [5]
Real-time collection of geocoded patient data is ana-
lyzed for potential clusters of disease outbreak. The
residential location of each patient is part of the data
set. The research group is attempting to incorporate
the school that each patient attends (or an equivalent
second address such as a work address) into the data
set, and develop analytic methods for analyzing such
data.

The most straightforward analysis of multiple ad-
dress data would involve testing each address inde-
pendently, and applying some correction to the alpha
level of each test to account for the multiple testing
problem, for example a Bonferonni adjustment. Al-
though this approach allows for more than one model
of clustering (i.e. clustering in any of the multiple ad-
dresses), the multiple testing correction may greatly re-

duce power. Indeed, because the addresses are (possi-
bly highly) correlated, the test statistics on each address
are not independent. Finally, this approach will have
greatest power to detect a cluster where spatial clus-
tering occurs solely in one particular address. There
may be reduced power in situations where the pattern
of clustering is more complex across a mixture of ad-
dresses.

Another approach is to consider a pair of observa-
tions, and to choose an appropriate metric onR2 ×
· · · × R2 and calculate the interpoint distance between
these two observations. TheM -statistic could then be
calculated as before. This offers the advantage of re-
ducing the dimensionality of the problem to one where
we can apply the standard univariate methods. How-
ever without any advance knowledge of the underly-
ing pattern of disease, the particular method chosen to
measure distance may not be especially sensitive to a
potential cluster. Worse still, there might be a signifi-
cant penalty associated with specifying a metric that is
inappropriate for certain situations.

To circumvent the necessity of choosing such a met-
ric, we instead propose to consider the distribution of
distances in each address jointly. A binning procedure
to aggregate the joint distance distribution into a single
vector (defined overR) then allows us to proceed as
before with the calculation of theM -statistic.

4 Simulations

Our simulations were designed to assess the perfor-
mance of the 2-dimensionalM -statistic as it compares
to the 1-dimensional (ordinary)M . We use a simplistic
model to generate data and simulate disease outbreaks.
Consider the unit circle as a study area, with a large
population of individuals whose residential addresses
are distributed uniformly. Across the study area are a
number of “schools” (what we think of as our second
address), also distributed uniformly. Each individual is
assigned to a school according to a pre-specified prob-
ability function that is conditional on the proximity of
the school location to the individual location. With an
appropriate choice of this probability function, we can
exhibit a high degree of spatial correlation between the
population’s home and school addresses.

Figure 1 illustrates the type of data simulated. The
smaller points indicate residential addresses in the pop-
ulation. A small sample from three sub-populations
(corresponding to individuals attending each of three
different schools) has been color-coded and plotted.
The figure illustrates the high degree of correlation be-
tween residential and school address.
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Figure 1: Simulated data with both home and school
addresses. Smaller points are individuals; large out-
lined points are school locations. Addresses exhibit a
high degree of correlation.

After establishing the null distribution of theM -
statistic (as described above) in both the 1-dimensional
and 2-dimensional versions, we examine the power to
detect different types of clusters. The difference in
power is meant to demonstrate the benefits or draw-
backs of utilizing more than one address in cluster de-
tection.

We would expect the 1-dimensionalM -statistic that
utilizes only the home address to outperform the 2-
dimensionalM when detecting local clusters. The dif-
ference in the power to detect these clusters may be
seen as the penalty one must pay for incorporating an
additional address when the pattern of disease follows
the home address.

To simulate a cluster, we first took a random sam-
ple of 300 individuals as background case load. Then,
a variable number of these individuals were replaced
with “cluster cases” that were selected according to
some criteria depending on the type of cluster. For ex-
ample, in one scenario all of the cluster cases attend
the same school irrespective of the home address; we
call this a “school cluster”. Likewise, if all of the clus-
ter cases are in one localized (residential) location ir-
respective of school address, we call this a “local clus-
ter”.

Simulations varied the cluster size from 5 cases to
50 cases, superimposed on the background case distri-
bution for a total of 300 cases. We estimated the power
using 1000 simulated clusters, in both a local cluster
and school cluster model, using the 1-dimensionalM -
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Figure 2: Power to detect a local cluster, for the1- and
2-dimensionalM -statistics. The2-dimensional statis-
tic shows a slight loss of sensitivity.

statistic and the2-dimensionalM . Since the Bonfer-
roni adjustment is conservative, we calculated power
for the 1-dimensionalM using an alpha level of both
.05 and.025, and the2-dimensionalM with an alpha
level of .05.

Results of the power calculations are summarized
in the Figures 2 and 3. Figure 2 shows the power
curves for the1- and2-dimensional statistics as they
performed on local clusters; Figure 3 shows the same
curves for school clusters.

5 Discussion

Figure 2 makes clear that there is a cost in power to
detect when utilizing the second address for local clus-
ters. We expect the1-dimensional statistic to outper-
form in this scenario, and it does so even with a Bonfer-
onni adjustment. The greatest difference is seen when
the signal strength is weakest; as the cluster size grows,
the 2-dimensional statistic detects clusters with high
power despite its lower sensitivity.

Figure 3 demonstrates the benefit in considering
both addresses, since the2-dimensional statistic out-
performs when the clustering model is in the school ad-
dress. From the standpoint of the1-dimensional statis-
tic this is a misspecified alternative, thus the power to
detect is quite low for the1-dimensional statistic de-
spite the high correlation in addresses. Since the ad-
dresses are correlated we might use one address as a
proxy for the other; this provides evidence that the loss
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Figure 3: Power to detect a school cluster, for the1-
and 2-dimensionalM -statistics. The1-dimensional
statistic suffers from a misspecified alternative.

of power is significant in this case.

Many questions have been left unexplored in this
simulation study, for example the gains and losses in
sensitivity of each statistic as we vary parameters in the
simulation model. Those parameters include the un-
derlying population distribution (which is taken to be
homogeneous here for simplicity); the degree of cor-
relation between addresses; and the effects of miss-
ing data in one or both addresses. All of these is-
sues seem highly relevant to a working implementa-
tion of a multiple address system. There are certainly
other candidates for a statistic that incorporates multi-
ple addresses, and the performance of these candidates
should be investigated as well.

The availability and utility of more than one address
in a biosurveillance setting will depend on the particu-
lars of the situation. Based on these and other ongoing
simulations, the evidence suggests that in cases where a
system must be robust to more than one pattern of clus-
tering, utilization of all available information is impor-
tant to maintaining an adequate level of detection. On
the other hand if multiple address collection places a
heavy burden on the system, or if there is no reason to
believe that there is more than one model for disease
outbreak, maintaining the highest power for this single
alternative seems wise and one address only is prob-
ably most appropriate. Nonetheless, further research
into the methodology and characteristics of multiple
address systems should provide a valuable foundation
for more sophisticated future surveillance systems.
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