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1 Introduction

As concerns rise over terrorism, and in particular an at-
tack via biological or chemical means, biosurveillance
has grown in scale as a public health endeavor. To this
point, the focus of methodological research intended
to support biosurveillance has been almost exclusively
aberration detection (some examples from a large col-
lection of literature include [2, 5]). Indeed, the primary
purpose of a biosurveillance system is to provide early
warning of a potential bioterrorist attack, or perhaps
some other public health event that may require further
monitoring or response.

Aberration detection has generally followed two
parallel tracks. For systems that collect only volume
data, an alarm is sounded if there is an excess of dis-
ease above what is expected at that point in time [7].
In addition, some systems also have available spatial
data, that is the locations of individual cases of disease
(either exact locations via geocoding, or perhaps ag-
gregated data at some administrative unit such as cen-
sus tract or zip code). Detection of spatial or spatio-
temporal aberrations comprises a distinct subset of the
research literature [2, 3, 5, 8]. There is evidence that if
spatial data is available, its utilization can enhance and
augment the power of detection of temporal methods
[6].

The probability of a bioterrorist attack may be small,
which argues for exploring alternate uses of data col-
lected during biosurveillance. There is fewer work
available in the literature detailing methodology for
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such “dual use” efforts. In this paper, we describe a
novel method of density estimation that fits within a
framework of distance-based aberration detection de-
scribed in other work [1, 3, 4, 6, 9]. We follow an ap-
proach that bears similarities to the image processing
techniques of tomography, and apply this technique to
surveillance data collected for the purposes of biosur-
veillance. We propose that such an application can in-
crease understanding of local patterns of disease, thus
proving useful regardless of the probability of an event
of bioterrorism.

2 Distance-based methods

As noted above, previous work has detailed an ap-
proach to analysis of spatial data which can be broadly
classified as “distance-based”, that is an analysis of
spatial patterns based on the (Euclidean) distances be-
tween observations or from a fixed point. TheM -
statistic of Bonetti and Pagano [1] is one example of
such a distance-based approach, and this methodology
has been successfully incorporated into the context of
biosurveillance. The appeal of distance-based meth-
ods is the reduction in dimensionality; what can be a
difficult problem in two or more dimensions may be
more easily solved and well-studied in one dimension
(where the bulk of classical univariate statistical theory
is available).

We extend the aberration detection capabilities of
a surveillance system via density estimation within a
distance-based framework. Ordinary density estima-
tors of spatial observations, e.g. kernel density esti-
mators (KDEs), suffer from some limitations, partic-
ularly in two dimensions. The underlying (baseline)
spatial distribution may be highly heterogeneous, re-
quiring a normalization of the observed density; the
number of observations may be small; and the optimal
choice for kernel function may be difficult to antici-
pate. For an application to surveillance data, density
estimates should be robust to small sample sizes and
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underlying heterogeneity.
Consider a regionR in the plane and underlying

densityf(x, y) which we would like to estimate for all
points(x, y) ∈ R. For a given set of observed points
(x1, y1) . . . (xn, yn), we seek to estimate the observed
density normalized byf(x, y). Let C be a circle en-
closingR and fix N > 3; we setN equally spaced
points around the circumference ofC. Denote these
points bys1 . . . sN .

For each pointsi, we construct a one-dimensional
density estimate γi(d) of the observed points
(x1, y1) . . . (xn, yn) while controlling for the underly-
ing densityf as follows. For a given distanced∗, fix a
constantk such that0 < 1

k < 1 and leth be the small-
est constant such that the annulusA bounded by radii
(d∗ − h

2 ) and(d∗ + h
2 ) has the property
∫

A

fdµ =
1
k

where dµ is the ordinary Lebesgue measure on the
Euclidean plane. Then the normalized density estimate
from si at distanced∗ is a simple function of the pro-
portion of observed points that fall within the annulus
A:

γi(d∗) =
√

n ·
([ 1

n

n∑

i=1

1((xi, yi) ∈ A)
]
− 1

k

)

where1(·) denotes the ordinary indicator function. We
rescale by

√
n since asymptoticallyγi(d) ∼ N(0, σ2)

as n → ∞ under the hypothesis that the observed
points are distributed according tof .

Having computedγi for each of the pointss1 . . . sN ,
we assemble a two-dimensional density estimateΓ by
averaging theγi for each pointX ∈ R at the appropri-
ate distance:

Γ(X) =
1
N

N∑

i=1

γi(d(X, si))

whered(X, si) is the ordinary Euclidean distance from
X to each pointsi. As a linear combination of nor-
mally distributed random variables, we haveΓ(X) is
normally distributed for a fixed pointX with mean
zero, under the hypothesis that(x1, y1) . . . (xn, yn) ∼
f .

We note that the method of estimation outlined
above is mathematically similar to that of tomographic
imaging, where indirect observations (expressed as line
integrals of the underlying density) are assembled into
an image of the original density via the inverse of the
Radon transform. We forego the use of the Radon
transform here because we have access to the direct
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Figure 1: Density estimate adjusted for underlying
population heterogeneity on Cape Cod. Shown here
are respiratory cases during a flu outbreak (top) and one
year later when flu season was not as severe. Red indi-
cates high density (relative to underlying population),
dark blue indicates low density.

observations. However, our approach shares a math-
ematical lineage with the (more difficult) problem of
tomography.

For practical purposes the level sets ofΓ can be con-
verted to a fixed color scale, thus displaying the esti-
mated density acrossR in sensible colors such as red
for high densities and blue for low densities.

3 Application to syndromic data

The method described above was applied to emergency
department data from the Cape Cod region of Massa-
chusetts, collected by the Institute for Health Metrics
from three Cape Cod hospitals. The data consist of spa-
tial locations of patients arriving for emergency care (as
determined by geocoding the patient billing address,
coordinates slightly altered to protect anonymity), to-
gether with the syndrome group of the patient com-
plaints (using ESSENCE-II syndrome groupings for
ICD-9 codes). Data were available on a daily basis for
nearly five years between 1994 and 1999.

In order to better understand patterns of disease in
the Cape Cod region, we used the estimation proce-
dure described above to map incident disease cases on
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a daily basis. We used a 7-day moving average so as to
avoid weekly effects. To estimate the underlying den-
sity at baseline, we used all cases from one month prior
to the days of interest to estimatef . Each (overlapping)
7-day period was then mapped and displayed on a fixed
color scale.

Results of the mapping (Figure 1) show that at the
height of a major flu outbreak, when respiratory case
load was much higher than expected, the spatial distri-
bution of cases follow the baseline spatial distribution
closely. In the following year, the flu season was not as
severe but the spatial distribution deviated from base-
line. Constructing many of these images and viewing
them consecutively, as a movie, helps to illustrate the
dynamic patterns of respiratory disease as they evolve
throughout flu season and at other times of the year.

We conclude that these methods of density estima-
tion while controlling for an underlying heterogeneous
population can be effective tools in a syndromic sur-
veillance setting. Further investigation into methods
appropriate for syndromic data may yield further in-
sights into the spatial and spatio-temporal patterns of
disease in this setting.
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