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Abstract: A measure of the dependence of a multivariate response variable upon a cate-
gorical variable is introduced. Its characteristics are explored via simulations by referring
to a specific mixture association model. Inferential aspects are investigated using a per-
mutation test approach. We present preliminary results. Wepropose an extension to the
case of several categorical explanatory variables.
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1 Introduction

Kapp and Tibshirani (2007) introduce the IGP (In Group Proportion) measure within the
context of validating clusters. LetPT be a partition ofN observations on a multivariate
variableY into K clusters. Here,T denotes the (training) data set. Suppose that new
observations onY are available in a second datasetD. It is of interest to assign them
to one of the previously determined clusters; the IGP has been introduced to evaluate
the adequacy of the chosen assignment procedure. (The classification procedure may be
defined in different ways).
Let CT (i) indicate the cluster to which thei-th observation inD is assigned, withi =
1, . . . ,ND andND indicating the size ofD. Denote byPD the resulting partition ofD.
The (overall) IGP is defined as the proportion of cases inD that are classified to the
same group as their nearest neighbor. More precisely, letNN(i) ∈ D indicate the nearest
neighbor of thei–th observation inD, and letCT (NN(i)) denote the cluster to which
NN(i) is assigned. The IGP is thereforeIGP(PD) = 1

ND
∑ND

i=11[CT (NN(i)) = CT (i)].
We propose to use the IGP index to measure the extent of the association between one
set of response variables,Y , and one explanatory variableX1, both observed on asingle
dataset of sizeN, yielding for each observation the values(Yi,X1,i). We start by consider-
ing the case of one categorical nominal variableX1. Note that the (K1) levels ofX1 define
a partition of theN observations. LetW1,i = 1(X1,i = X1,NN(i)) be the indicator of the event
“observationi and its nearest neighborNN(i) share the same value ofX1.” Then the IGP
index in this context is defined asIGPY (X1) = 1

N ∑N
i=1W1,i. If the responsesY are related

to X1, thenX1 should provide a good partition also with respect toY , thus yielding a high
value ofIGPY (X1).
Note that this can be viewed as a sort of nonparametric ANOVA problem on possibly
multivariate responses. Below we explore the main features of this IGP-based approach
through simulations based on a specific multivariate association model, with particular
attention to the inferential aspects of the approach. We then propose an extension of this
IGP measure to the case of several categorical explanatory variablesX1, . . . ,XK.



Figure 1: Estimated E[IGPY (X1)] (left) and power (right).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

π

E
st

im
at

ed
 E

[IG
P

]

var(V)=1
var(V)=5
var(V)=10
var(V)=20
var(V)=50

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

π

E
st

im
at

ed
 P

ow
er

var(V)=1
var(V)=5
var(V)=10
var(V)=20
var(V)=50

2 IGP: A small simulation study and inferential aspects

Consider the association model betweenX1 andY such thatY is a mixture of two dis-
tributions fV and fZ with mixing parameterπ ∈ [0,1]. Also, V andZ are distributed as
two mixtures, each of three components( fV

1 , fV
2 , fV

3 ) and( f Z
1 , f Z

2 , f Z
3 ) respectively, with

mixing vectors(αV
1 ,αV

2 ,αV
3 ) and(αZ

1 ,αZ
2 ,αZ

3 ), and all bivariate normals with different
means and with variance-covariance matrices equal toσ2

V I2 and toσ2
Z I2. V and Z are

taken to be independent. The categorical explanatory variable X1 is defined as the mix-
ture component from whichV is generated. Notice that this induces three groups whose
within dispersion is related to the standard deviationσV . Thus,Y is related toX1 if the
association parameterπ assumes values close to 1. Ifπ assumes low values,Y does not
depend uponX1 (throughV ) but, rather, uponZ. In particular, the valueπ = 0 in this
model corresponds to the null hypothesis ofno association.
We conducted a small simulation study to explore the relationship betweenπ and the IPG.
For fixed values ofσ2

V , σ2
Z we repeatedly generated samples of sizeN from the model

above, and estimated the expected value of the IGP measure over the simulated samples.
We used 1000 simulated datasets of size 100 for each value ofπ. As an illustration, the
left panel in Figure 1 shows the monotonicity that was observed across the simulations
(results refer to the caseσ2

Z = 5; similar patterns were observed for different values). This
behavior suggests thatIGP may be considered a reasonable measure of dependence.
However, a confounding effect exists in general between association (as measured byπ)
and the strength of the structure inY . For example, ifπ = 1 butY has weak structure
(equivalently, ifY coincides withV but the varianceσ2

V is very large) then the groups
induced byV will not retain information on the dispersion ofY . This situation will
practically coincide with the case of no association, even thoughπ = 1. This behavior
appears to be a general characteristic of this problem, and should be kept in mind when
interpreting the index. In other words, the ability of the IGP to measure the level of asso-
ciation depends upon the fact that there is some structure inY to begin with. IfY has no
structure, so that theX1-groups can essentially be viewed as a random selection fromthe
observations’ labels, thenany measure of association will be useless. Consistently with
this observation, when theY structure is highly dispersed the IGP index does not reach its
theoretical maximum value of one and, moreover, it shows a low sensitivity to the strength



of association (i.e., it increases very slowly asπ increases). Under the null hypothesis of
no association (π = 0 in our model) it can be shown thatE[IGPY (X1)] = ∑K1

k=1 p2
k, where

pk is the probability thatX1 takes itsk− th level. This value can be computed exactly
for the simulated model above from the theoretical parameters αV

k . For example, for the
parameter values that were used one finds thatE[IGPY (X1)] = .375 underH0. (This null
value can be noted in the left panel of Figure 1). On actual data, the quantityE[IGPY (X1)]
underH0 can be estimated from the observed counts in theK groups induced byX1.
To testH0 one can use a permutation distribution approach, i.e. extract random permu-
tations from the set of theN X-group labels associated to theY -observations. For each
permutation of the labels the IGP is computed, and the p-value forIGPY (X1) is obtained as
the proportion of IGP values that are more extreme (larger) than the observedIGPY (X1).
A small p-value (less than a fixed levelα) indicates rejection ofH0 in favor of the alterna-
tive hypothesis of association. To evaluate the power of this procedure one can simulate
many datasets, and for each determine whether the permutation test would rejectH0 at
a chosen alpha level. Thus one can easily estimate the power of the test to rejectH0 for
different values ofσ2

V andσ2
Z , for various alternative values ofπ. Note that the rejection

probability that one obtains with this procedure is averaged over all the possible group
label counts that could be observed when distributingN observations overK groups. In
other words, in our model the average is taken over a multinomial distribution having pa-
rameters(N,(α1

V ,α2
V ,α3

V )). In Figure 1 (right panel) the estimated powers of permutation
tests are reported for the case whenα = 0.1 for various combinations of values ofπ and
σ2

V (results refer to the caseσ2
Z = 5; similar patterns were observed for different values).

It is worth noting that the power appears to be increasing with π but its maximum value
depends upon the dispersion withinY . This phenomenon is consistent with the discussion
above on the confounding effect ofπ and the variance ofY .

3 Multiple IGP indices

Now, consider the case ofK variablesX j, j = 1, . . . ,K measured on theN individuals,
so that we have theN covariate vectors(X1,i, . . .XK,i), i = 1, . . .N. Call W j,i = 1(X j,i =
X j,NN(i)) the indicator of the event “i and its nearest neighborNN(i) share the same value
of variableX j,” and W j,i = 1(X j,i 6= X j,NN(i)) = 1−W j,i. Consider a subset of theK
covariates: without loss of generality, to simplify notation let these covariates be the first
h of theK covariates, i.e. the covariate vector(X1, . . . ,Xh), 1≤ h ≤ K. We define the IGP
measure for(X1, . . . ,Xh) as the quantity

IGPY (X1, . . .Xh) =
1
N

N

∑
i=1

h

∑
j=1

{

∑
ρ∈C j,h

[(

h

∏
u=1

W ρu
u,i W

1−ρu
u,i

)

πρ

]}

,

whereρ = (ρ1, . . . ,ρh)
T is a vector of zeros and ones andC j,h is the set of all vectors that

haveat most j ones and(h− j) zeros.
The problem of properly extending a measure of association to the multiple case is in
general non-trivial, and in particular in our case in which the “dependent” variableWi, j is
a function ofall observations. This is a consequence of the use of the nearestneighbor ap-
proach. Our proposal above is very general, and allows for a possible definition of a partial
index of the subset of variablesXh1+1, . . . ,Xh given thatX1, . . . ,Xh1 (h1 < h) already en-
tered the model asIGP(Xh1+1, . . . ,Xh|X1, . . . ,Xh1) = IGP(X1, . . . ,Xh)− IGP(X1, . . . ,Xh1).
Here, too, inference can be based on permutation distributions techniques.



Note that the weighting functionπρ assigns different weights to the various intersections
of the events indicated byW j,i andW j,i. By selecting different functionsπρ one can con-
struct IGP-type indices that differently measure the degree of similarity in the covariate
space between each observation and its nearest neighbor. Inparticular, the following three
special cases can be identified: (i) TheIntersection model:πρ = 1 for ρ = (1,1,1), zero
otherwise. This IGP index measures the association betweenY and the variable obtained
by combining all categories of theh explanatory variables; (ii) TheUnion model:πρ = 1
for all ρ ∈ C j,h; (iii) The Additive model: πρ = 1

h

(

∑h
u=1ρu

)

, or the proportion of theh
variables such thatX j,i = X j,NN(i).
The intersection model is conservative: it considersi andNN(i) to be similar in the covari-
ate space only if they share the value ofall covariatesX1, . . . ,Xh. At the other end of the
spectrum, the union model considersi andNN(i) to be similar when they take the same
value ofat least one of the variables. The similarity measure used in the additive model
is proportional to the simple matching coefficient. It can beeasily shown that in this case
IGPY (X1, . . .Xh) is the average of the marginal IGP indicesIGPY (X1), . . . , IGPY (Xh). A
consequence of this is that a natural (descriptive) model selection procedure would in-
troduce variables with decreasing marginal IGP (as this guarantees the slowest possible
decrease in the joint IGP) and therefore this choice of the function πρ does not use the
joint information of the variables in the model building process – which is not satisfac-
tory. Regardless of the choice of the weighting function, in the case of only one variable
the general definition given above reduces to a quantity thatis proportional to the original
definition of IGP as given in Kapp and Tibshirani (2007).
Also, note that all the three cases above have specialized the weighting functionπρ to be
a function of the number of variables taking the same value for i and its nearest neighbor:
i.e., the weighting functions are all of the formπρ = π(ρ) = π

(

∑h
u=1ρu

)

. A possibility

that compromises between the ones seen above is the choiceπρ =
[1

h

(

∑h
u=1ρu

)]2
, which

downweights the observations that have few covariate values in common with their nearest
neighbor. A limited simulation study suggests that this choice performs well in selecting
the relevant covariates and in reflecting the degree of dependence betweenY andX .

4 Conclusions

The use of the IGP as a measure of association seems promising. As any other measure
of X/Y–association, the IGP reflects both dependency and the amount of “explainable”
structure inY , and hence rejection of the null hypothesis strongly suggests the existence
of association. This approach only requires theY -distances (or dissimilarities) between all
possible pairs of cases, and the procedure can be applied whatever the dissimilarity mea-
sure: for example, one can consider time series (one for eachcase), sequence data (e.g.
categorical time series or genetic sequences), and other situations whereY is complex but
a dissimilarity measure between two cases can be defined.
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