Clustering-based measurement of dependence
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Abstract: A measure of the dependence of a multivariate responsebl@ugon a cate-
gorical variable is introduced. Its characteristics ang@l@ed via simulations by referring
to a specific mixture association model. Inferential aspact investigated using a per-
mutation test approach. We present preliminary resultspkpose an extension to the
case of several categorical explanatory variables.
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1 Introduction

Kapp and Tibshirani (2007) introduce the IGP (In Group Prapn) measure within the
context of validating clusters. L&} be a partition ofN observations on a multivariate
variableY into K clusters. HereT denotes the (training) data set. Suppose that new
observations ofy are available in a second dataget It is of interest to assign them
to one of the previously determined clusters; the IGP has lteoduced to evaluate
the adequacy of the chosen assignment procedure. (Théicktgsn procedure may be
defined in different ways).

Let Cr(i) indicate the cluster to which thieth observation irD is assigned, with =
1,...,Np andNp indicating the size oD. Denote by the resulting partition obD.

The (overall) IGP is defined as the proportion of case®ithat are classified to the
same group as their nearest neighbor. More precisel¥NEt) € D indicate the nearest
neighbor of thei—th observation irD, and letCr(NN(i)) denote the cluster to which
NN(i) is assigned. The IGP is therefd@®P(Py) = N—lD zi'\':f’l 1[Cr(NN(i)) = Cr (i)].

We propose to use the IGP index to measure the extent of theiassn between one
set of response variableg, and one explanatory variab}q, both observed on single
dataset of siz&, yielding for each observation the valugs X, ;). We start by consider-
ing the case of one categorical nominal varia¥je Note that thel{,) levels ofX; define
a partition of theN observations. Léth i = 1(X1i = X1 nnyi)) Pe the indicator of the event
“observation and its nearest neighbdiN(i) share the same value ¥f.” Then the IGP
index in this context is defined &R (X1) = & YN ;W4 ;. If the response¥ are related
to X1, thenX; should provide a good partition also with respecYtdhus yielding a high
value ofIGRy (X1).

Note that this can be viewed as a sort of nonparametric ANOKgblem on possibly
multivariate responses. Below we explore the main featurdsi®©IGP-based approach
through simulations based on a specific multivariate aaioai model, with particular
attention to the inferential aspects of the approach. We pinepose an extension of this
IGP measure to the case of several categorical explanaaoigiesX, ..., Xk.



Figure 1: Estimated E[IGR,(X1)] (left) and power (right).

1.0

1.0

— var(V)=1 — var(V)=1 ,”
- - var(V)=5 - - var(V)=5
g - | -+ var(V)=10 g - | -+ var(V)=10
- = var(V)=20 - = var(V)=20
— - var(V)=50

— - var(V)=50

0.6
Il
0.6
Il

0.4

Estimated E[IGP]
0.4

Estimated Power

0.2

0.0
0.0

2 |1GP: A small ssmulation study and inferential aspects

Consider the association model betwegnandY such thaty is a mixture of two dis-
tributions fy and fz with mixing parametert € [0,1]. Also,V andZ are distributed as
two mixtures, each of three componenfy, fY, f¥) and(fZ, f£, f%) respectively, with
mixing vectors(ay,ay,ay) and (af,a%,a%), and all bivariate normals with different
means and with variance-covariance matrices equaﬁl@ and to azzlz. V andZ are
taken to be independent. The categorical explanatoryhblark is defined as the mix-
ture component from whick is generated. Notice that this induces three groups whose
within dispersion is related to the standard deviatign Thus,Y is related toX; if the
association parameterassumes values close to 1.rifassumes low value¥, does not
depend uporX; (throughV) but, rather, uporZ. In particular, the valuegr = 0 in this
model corresponds to the null hypothesisiofassociation.

We conducted a small simulation study to explore the retatiip betweemrand the IPG.
For fixed values ob&, 022 we repeatedly generated samples of $izom the model
above, and estimated the expected value of the IGP measaréhevsimulated samples.
We used 1000 simulated datasets of size 100 for each valme A$ an illustration, the
left panel in Figure 1 shows the monotonicity that was obseéracross the simulations
(results refer to the cas;ez2 = 5; similar patterns were observed for different values)sTh
behavior suggests thEGP may be considered a reasonable measure of dependence.
However, a confounding effect exists in general betweeocason (as measured by)
and the strength of the structureYn For example, ifr= 1 butY has weak structure
(equivalently, ifY coincides withV but the variancer& is very large) then the groups
induced byV will not retain information on the dispersion 0f. This situation will
practically coincide with the case of no association, eveughmr= 1. This behavior
appears to be a general characteristic of this problem, lamald be kept in mind when
interpreting the index. In other words, the ability of theF@ measure the level of asso-
ciation depends upon the fact that there is some structifdarbegin with. IfY has no
structure, so that th¥;-groups can essentially be viewed as a random selectiontfrem
observations’ labels, theamy measure of association will be useless. Consistently with
this observation, when théstructure is highly dispersed the IGP index does not reach it
theoretical maximum value of one and, moreover, it showsvasknsitivity to the strength



of association (i.e., it increases very slowlyragicreases). Under the nuII hypothesis of
no association7§= 0 in our model) it can be shown thB{l GR/(X1)] = zk 1 pZ, where

Pk is the probability thalX; takes itsk —th level. This value can be computed exactly
for the simulated model above from the theoretical parame@é. For example, for the
parameter values that were used one findsEjlEBR, (X1)] = .375 undeig. (This null
value can be noted in the left panel of Figure 1). On actual,dhe quantitfe [| GR (X1)]
underHg can be estimated from the observed counts irkilggoups induced b;.

To testHp one can use a permutation distribution approach, i.e. exteamdom permu-
tations from the set of thisl X-group labels associated to tWeobservations. For each
permutation of the labels the IGP is computed, and the peviald GR, (X3 ) is obtained as
the proportion of IGP values that are more extreme (lardem the observedsR, (X;).

A small p-value (less than a fixed lewe) indicates rejection dfly in favor of the alterna-
tive hypothesis of association. To evaluate the power sfphocedure one can simulate
many datasets, and for each determine whether the perontast would rejecHg at

a chosen alpha level. Thus one can easily estimate the pdwlee test to rejecHy for
different values otxZ and o2, for various alternative values af. Note that the rejection
probability that one obtains with this procedure is avedageer all the possible group
label counts that could be observed when distribubihgbservations oveK groups. In
other words, in our model the average is taken over a multialcfistribution having pa-
rametergN, (al, aZ,ad)). In Figure 1 (right panel) the estimated powers of permottati
tests are reported for the case wieen- 0.1 for various combinations of values ofand

03 (results refer to the casr% = 5; similar patterns were observed for different values).
It is worth noting that the power appears to be increasing wibut its maximum value
depends upon the dispersion withMnThis phenomenon is consistent with the discussion
above on the confounding effect ofand the variance of .

3 Multiple | GP indices

Now, consider the case &f variablesX;, j = 1,...,K measured on thdl individuals,
so that we have thbl covariate vectorgXyj,... Xki), i =1,...N. CallW;; = 1(X;; =

X; nn(iy) the indicator of the eveni ‘and its nearest neighbdiN(i) share the same value
of variable X;,” and Wi = 1(Xj; # Xjnng)) = 1 —Wj,i. Consider a subset of the
covariates: without loss of generality, to simplify notetilet these covariates be the first
h of theK covariates, i.e. the covariate vectd, ..., X,), 1 < h < K. We define the IGP
measure fofXy, ..., X,) as the quantity
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wherep = (p1,...,pn)" is a vector of zeros and ones aBf is the set of all vectors that
haveat most j ones andh— j) zeros.

The problem of properly extending a measure of associaticdhdé multiple case is in
general non-trivial, and in particular in our case in whilsh tdependent” variablé/ ; is

a function ofall observations. This is a consequence of the use of the neaighbor ap-
proach. Our proposal above is very general, and allows fosaiple definition of a partial
index of the subset of variable§, .1, ..., Xy given thatXy,..., X,, (hy < h) already en-
tered the model aGP (X, 11, .., Xn|X1,..., Xn,) = IGP(Xq, ..., Xn) = IGP(Xg,..., Xn,).
Here, too, inference can be based on permutation distisitechniques.



Note that the weighting functiorn, assigns different weights to the various intersections
of the events indicated Bi; ; andW; ;. By selecting different functions, one can con-
struct IGP-type indices that differently measure the degresimilarity in the covariate
space between each observation and its nearest neighiparticular, the following three
special cases can be identified: (i) Timéersection model: 1, = 1 for p = (1,1,1), zero
otherwise. This IGP index measures the association betYeeal the variable obtained
by combining all categories of theexplanatory variables; (ii) Thenion model: 1, = 1
for all p € Cjp; (iii) The Additive model: 13, = £ (3, pu), or the proportion of théa
variables such thaX;; = X nni)-

The intersection model is conservative: it considensdNN(i) to be similar in the covari-
ate space only if they share the valuealifcovariatesXy, ..., X,. At the other end of the
spectrum, the union model conside@ndNN(i) to be similar when they take the same
value ofat least one of the variables. The similarity measure used in the adslithodel

Is proportional to the simple matching coefficient. It carelasily shown that in this case
IGR/(Xy,...X%n) is the average of the marginal IGP indid&3R, (X1),...,IGR/(Xy). A
consequence of this is that a natural (descriptive) modetsen procedure would in-
troduce variables with decreasing marginal IGP (as thisaquaes the slowest possible
decrease in the joint IGP) and therefore this choice of tmetfan 1, does not use the
joint information of the variables in the model building pess — which is not satisfac-
tory. Regardless of the choice of the weighting functionhie ¢ase of only one variable
the general definition given above reduces to a quantityish@bportional to the original
definition of IGP as given in Kapp and Tibshirani (2007).

Also, note that all the three cases above have specializegi¢ighting functiornm, to be

a function of the number of variables taking the same valuedaod its nearest neighbor:
i.e., the weighting functions are all of the formy = m(p) = H(zﬂzlpu). A possibility

that compromises between the ones seen above is the aoieé? (3_; pu)] 2 which
downweights the observations that have few covariate satueommon with their nearest
neighbor. A limited simulation study suggests that thisich@erforms well in selecting
the relevant covariates and in reflecting the degree of dbpere betwee¥ andX.

4 Conclusions

The use of the IGP as a measure of association seems promisrany other measure
of X/Y—-association, the IGP reflects both dependency and the arobtexplainable”
structure inY, and hence rejection of the null hypothesis strongly suggbe existence
of association. This approach only requiresYheistances (or dissimilarities) between all
possible pairs of cases, and the procedure can be appligdweh#he dissimilarity mea-
sure: for example, one can consider time series (one for easd), sequence data (e.g.
categorical time series or genetic sequences), and othatisns wher& is complex but

a dissimilarity measure between two cases can be defined.
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