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ABSTRACT. We illustrate the use of parametric transitional models to the analysis of tiuersees.
After recalling an earlier application to medical research, we describgréieninary results of an
implementation to individuals’ life sequences in demography. This modalpgoach is useful when
the underlying structure of the data-generating process can be eedsigin enough precision, and it
allows for the description of rather complicated patterns of observed slath as the phenomenon of
masking of one event by another event, anticipation effects, censamishgn general possibly nonig-
norably missing data. Covariate effects are included through regnessioponents in the models, and
inference is performed by standard asymptotic likelihood theory. Talyses are based on motivating
datasets from a breast cancer clinical trial and from the Dutch FertilitfFandly Surveys (FFS).

1 INTRODUCTION

We discuss two applications of parametric transitional et®do time sequences. The ap-
proach does not pose particular theoretical problems tatfigxibility allows for the descrip-
tion of rather complicated underlying processes that meg gse to interesting observed data
structures. We illustrate an earlier application motiddtg clinical research in oncology and
a novel one based on a dataset collected for demographarcése

The general setting is that of a categorical outcome obdesver time. The approach
consists of working out a complete parametric data modethvhiay provide a reasonable
description of the stochastic data generating mechanibia.uhderlying model may then be
extended to handle missing data either directly or throhgliescription of truncation effects
due to selection mechanisms of individuals in the datasasking effects among different
kinds of events, or censoring, as well as structural effegth as “anticipation” effects (see
below), as well as covariate effects via regression compenéor a specific application to
a situation of nonignorably missing data patterns as definddttle and Rubin (1997) in
ordinal categorical data collected over time see for exar@ulleet al. (2005)).

The observed data likelihood may then be (carefully) mazédj and the usual tech-
niques utilized for model selection and for point and in&astimation. Given the parametric
structure of the model, additional quantities may be ea&silgulated either analytically or by
generating sequences from the fitted model. Goodness of itbmassessed by comparing
the distribution of some observed quantities with thoseegatied by the fitted model.

Below we describe two applications. In the interest of spewcparticular for the first one
we refer to the corresponding reference for details and fist af references.



2 BINARY OUTCOME SUBJECT TO MASKING BETWEEN EVENTS

The first implementation is motivated by the oncology cliitial setting, and it can be de-
scribed as the estimation of time to event distributionsrespnce of a non-distinguishable
competing event and censoring. The objective is the clilyicalevant description of the
process by which menses discontinue and resume (a binargroatover time) after the ad-
ministration of potentially ovarian function suppressemjuvant treatment for the disease.
This process is complicated by the fact that natural mersgalso occurs in the patient pop-
ulation, and that treatment-induced amenorrhea (TIA) tgligtinguishable from menopause
unless menses are observed to resume after treatment ¢cimmphdso complicating the pro-
cess is the partial observation due to censoring, and théhfatconly pre-menopausal patients
were allowed to enter the clinical trial, that randomizetigras to the following four arms:
LH-RH analogue (goserelin) x 24 months (A), CMF chemothgrap months (B), CMF x

6 months followed by LH-RH analogue x 18 months (C), and Narealjt treatment (D).
In Szwarcet al. (2006) the authors develop a parametric model for this prablThe model
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Figure 1. lllustration of data-generating process.

distinguishes between the two kinds of cessation, incatpay the important age effect and
allowing for the (scientifically plausible) possibilitydhtreatment induce an anticipation of
natural menopause. We illustrate the complete-data gimgocess in Figure 2. Quantities
shown are: C=time to censoring;=time to treatment-induced amenorrhea (both measured
from entry into the study)”A,=time to recovery of menses, measured from end of treatment
(Txend; only for patients who experienced TIA); Z=Age of patieneatry; M=Age at natu-

ral menopause (so that M-Z is the time from entry to naturalopause). The question mark
indicates the possible anticipation effect on M-Z by treati{modeled deterministically via
shrinkage ofM — Z by a constank < 1). The model uses cure-rate submodels bothAfor
andA; (see for example Perggal. (1998)) since both TIA and recovery are not experienced
by all patients. Due to the masking of the two kinds of amemear(treatment-induced and
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Figure 2. The six possible observed data configurations.

natural) and to the effect of censoring, the observable iddi& , Xp, X3,C), whereX; is the
first cessation observed between entry @xend, X; is the time fromT xend to resumption

of menses, anifz is the time fromX; to the final cessation. The observed data may take one
of 7 possible forms, shown in Figure 2. These must be cormidegparately in the observed
data likelihood.

After performing model selection and fitting the final modethe data, other quantities
of interest may be studied. For example, in this setting éhse relevant to study the age-
adjusted survival distributioRr(S> s| Age at entry= z) of the random variabl&=time

of the (last) menses interruption that wilbt be followed by a resumption (see Figure 3).
This variable may be relevant in the choice of the treatnasnit, indicates the moment when
the permanent interruption of the patient occurs. Goodoédi techniques included the
comparison of the pre-entry distribution of age at menopaith known historic data as well
as comparison of the model-based distribution of obseevgbhntities with the frequency

distributions observed in the data. Interestingly, the ehadnfirmed the clinical researchers’
hypothesis of an anticipation effect of CMF treatment oruretmenopause.
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Figure 3. Survival function of time to last menses cessatiohfollowed by resumption, for the three
arms (left to right) goserelin only, CMF only, and CMBoserelin.



3 LIFE SEQUENCES IN DEMOGRAPHY

The description of life courses, and in particular traositto adulthood, has attracted in-
creasing interest in the demographics literature. A nunob@nethods have been proposed
to study trajectories of events, mainly with two goals: ¢)find common patterns among a
set of sequences; and (ii) to describe how they are geneilatéus work we deal with the
second objective by proposing a model that generates seesi@hose properties resemble
those of the original data. (See for example McVicar and AlikexDanes (2002)).

The motivating data for our analysis originate from the Rgueand Fertility Surveys (FFS)
conducted between 1988 and 1999 in 25 countries by the Ndtftatistical Offices (see
Scheonmaeckers and Lodewijckx (1999)). In particular, tudysthe transition to adulthood
in the Dutch data. The retrospective histories of 1897 woatssut childbearing and union
formation were collected on a monthly time scale. Of the4&,Women belong to the 1953-
1958 birth cohort and 982 belong to the 1958-1962 birth colfiormation on respondent’s
family status between the age of 18 and 30 were collectedjngao a trajectory of 144
consecutive states. Figure 4 shows three sample trajestori
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Figure 4. Three examples of possible observed life sequences (see text figfthzgions of the states
U, M, S, and C).

We model the whole process that generates the paths with hication of (discrete)
time-to-event distribution and transition probabilitidhese parametric models are allowed
to depend on covariates through generalized logit modetse$timate the transition proba-
bilities and the duration distributions between subsettransitions, as well as compute the
probability that a given individual experiences a certaamsition for each combination of
characteristics.

Consider an individual who has visited a totalrof 1 states, not all necessarily dif-
ferent (i.e. who has experiencedstate transitions), witls the baseline state. L§S, k =
0,1,...,r} indicate the states that the individual experiences, irotder in which they have
been visited, andTy,k =1,...,r + 1} be the corresponding times spent in the 1 states.
Let Z denote a vector of covariates. These covariates can iniplénioe time-varying (and
indeed in the motivating application this is the case), buginplify notation here we simply
indicate them aZ. We assume the following:

1. T follows a geometric distribution with parametethat depends on covariates through

the logit link: p = (exp(BZ))(1+exp(BZ)) 2.

2. The probability of transitioning from staigto statejy at thek-th transition, condition-
ally on the covariate vectdt, is the quantityP, j x = Pr(Sc = ix|S«1 = jk.Z), where



ik, jk € {1,...,3} andk = 1,...,K, with K representing the maximum number of possible
transitions,J the total number of states, aiik = 0 Vi, Vk. These transition probabili-
ties are modelled through generalized logits (see for elaigresti (1990)). Using the
Jth category as a reference, the logits can be parametrizBg;as= (exp(yi,j Z))(1+
zhe{(lﬁ_,_’J,l),(iw}(exp(yikhZ)))*l with jx € {(1,...,J—1) —i}. For the last state one has

Pk = (14 Sheqa,..3-1)—Gig} (BXRAYihZ))) .

Each individual's contribution to the loglikelihood depison the number of (not necessarily
different) states visited. For a woman who vigits+ 1) states K transitions) for durations
{t, k=1,...,(r+ 1)}, the contribution is1(8|ST,Z) = ¥}_1[log(P,j«|Z)) + l0g(P(Tk =
t|Z))] +log(P(Tr+1 > tr1+1|2)) to account for the fact that the last duration is always cen-
sored. Here we callefl = (B,y) the full parameter vector. L&T < {0,...,K} be the ran-
dom variable that counts the number of observed transitibhs paramete® can be esti-
mated from the observed data nimwvomen by maximizing the observed data log-likelihood
1(8]S,T,2) = 33-1[1(OTp = 0)I0(6]Sp, Zp) + .. + L(OTp = K)lk (6Sp, Tp, Zp)] where for a
womanp who has experiencetdtransitions we havk (8|S, Tp, Zp) = S1,_1[109(PR,,j,h|Zp) +
l0g(P(Th = thp|Zp))] +109(P(Tr+1 > tr11)) andlo(8|Sy, Zp) = log(P(T1 > 144Z7,)) to take
into account the fact that the last duration is always ceats(this occurs at time 144 months,
the end of the data collection period).

In order to improve the optimization process (we used the I®Pflinction in R) we
provided the function with the vector of the partial derivas of the log-likelihood with
respect to the parameters. The number of parameters of tidglncan be very high, but
some of these can be set to 0 to obtain more parsimonious mddeditional likelihood-
theory-based hypothesis testing can be used to select &t ‘imodel (when estimation is
possible, that is).

In the Dutch FFS dataset the states were: Single (S); Maivi&dJnmarried cohabitation
(U); Single with at least one child (SC); Married with at lease child (MC); Unmarried
cohabitation with at least one child (UC). Out of the 1897 veond were excluded from this
analysis because they are the only ones who experiencesitivarfrom S to MC, from S
to UC, and from U to MC. The number of observations for the pesi@r estimates of these
transitions was not sufficient for estimation, and therefee removed these sequences. (We
forced the corresponding transition probabilities to Zzerihe model.) In addition, transitions
from states with children to states without children arepassible and therefore we also set
these parameters to zero. Parameters of other transitiahsever occurred in the data were
also set to zero (i.e. from M to SC, from M to UC, from U to SC, dmin U to MC).
The marginal counts of all transitions in the observed detashown in Table 1. Note that
because of the structure of the model, the table referssitians conditionally on the fact
that a transition did occur. The most frequent marginaldition from M was MC, from U
was M, from SC was UC, from UC was SC, from UC was MC, and from e opted
more for U or M. The sparseness of the data did not allow fofittieg of the model on the
various “Children” states. As a consequence, we groupethtiehree states (SC, MC, UC)
into a unique absorbing state “C.”

Some baseline information was available on individual @iy characteristics: we in-
cluded in particular the woman'’s level of education (1,2 & woman had respectively no
education, from 0 to 3 years of education, more than 3 to 5syefheducation after age of



15). In the model we inserted level of education as two dumariables for levels 2 and 3.
Two indicator variables were included for religion beli&fi{ the women believd in any reli-
gion, 0 otherwise) and for parental divorce status (1 if peyef respondent were separated
or divorced). All three covariates were used to model thenp@ence times and transition
probabilities. Moreover we inserted, among the covarititasexplain the permanence times
in each state, the (rescaled) age in months of each womarebstie entered that state, as
well as the state being visited. Among the covariates thalia@x the transition probabilities
we also included the age at the time of the transition andtie $pent in the state before the
transition. Note that these covariates change at eackdisitte.

S M U SC MC UC
S 0 92091140 0 O
M 32 0 8 0 1140 O
U 178554 0 0 0 47
SC 0 0 0O O 19 68
MC 0O O O 67 0 7
uc o0 0 0 16 52 O

Table 1. Number of transition in FFS Dutch data

We applied the model described above to this data, usinges¢igu\Wald tests to select a
final parsimonious model (results to be described elseywh&gmulation study of the model
was performed to ensure accuracy of the coverage probeditt the asymptotic confidence
intervals of the parameters (data not shown). Goodness whftassessed empirically by
generating data according to the estimated parameters.segcences were censored at 144
months as in the original data, and summary statistics ofrdguencies of the transitions
among states were compared overall and within strata defigatie baseline covariates.
Results were reproducing the original data satisfactdrilyaddition to this comparison, an
alternative permutation-distribution procedure is bedegeloped to test for sufficient good-
ness of fit. This procedure will be presented elsewhere alithavapplied to this data (work
in progress).
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