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ABSTRACT. We illustrate the use of parametric transitional models to the analysis of time sequences.
After recalling an earlier application to medical research, we describe thepreliminary results of an
implementation to individuals’ life sequences in demography. This modelingapproach is useful when
the underlying structure of the data-generating process can be envisioned with enough precision, and it
allows for the description of rather complicated patterns of observed data, such as the phenomenon of
masking of one event by another event, anticipation effects, censoringand in general possibly nonig-
norably missing data. Covariate effects are included through regression components in the models, and
inference is performed by standard asymptotic likelihood theory. The analyses are based on motivating
datasets from a breast cancer clinical trial and from the Dutch Fertility andFamily Surveys (FFS).

1 INTRODUCTION

We discuss two applications of parametric transitional models to time sequences. The ap-
proach does not pose particular theoretical problems, and its flexibility allows for the descrip-
tion of rather complicated underlying processes that may give rise to interesting observed data
structures. We illustrate an earlier application motivated by clinical research in oncology and
a novel one based on a dataset collected for demographic research.

The general setting is that of a categorical outcome observed over time. The approach
consists of working out a complete parametric data model which may provide a reasonable
description of the stochastic data generating mechanism. This underlying model may then be
extended to handle missing data either directly or through the description of truncation effects
due to selection mechanisms of individuals in the dataset, masking effects among different
kinds of events, or censoring, as well as structural effectssuch as “anticipation” effects (see
below), as well as covariate effects via regression components. (For a specific application to
a situation of nonignorably missing data patterns as definedin Little and Rubin (1997) in
ordinal categorical data collected over time see for example Coleet al. (2005)).

The observed data likelihood may then be (carefully) maximized, and the usual tech-
niques utilized for model selection and for point and interval estimation. Given the parametric
structure of the model, additional quantities may be easilycalculated either analytically or by
generating sequences from the fitted model. Goodness of fit may be assessed by comparing
the distribution of some observed quantities with those generated by the fitted model.

Below we describe two applications. In the interest of space, in particular for the first one
we refer to the corresponding reference for details and for alist of references.



2 BINARY OUTCOME SUBJECT TO MASKING BETWEEN EVENTS

The first implementation is motivated by the oncology clinical trial setting, and it can be de-
scribed as the estimation of time to event distributions in presence of a non-distinguishable
competing event and censoring. The objective is the clinically relevant description of the
process by which menses discontinue and resume (a binary outcome over time) after the ad-
ministration of potentially ovarian function suppressingadjuvant treatment for the disease.
This process is complicated by the fact that natural menopause also occurs in the patient pop-
ulation, and that treatment-induced amenorrhea (TIA) is not distinguishable from menopause
unless menses are observed to resume after treatment completion. Also complicating the pro-
cess is the partial observation due to censoring, and the fact that only pre-menopausal patients
were allowed to enter the clinical trial, that randomized patients to the following four arms:
LH-RH analogue (goserelin) x 24 months (A), CMF chemotherapy x 6 months (B), CMF x
6 months followed by LH-RH analogue x 18 months (C), and No adjuvant treatment (D).
In Szwarcet al. (2006) the authors develop a parametric model for this problem. The model
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Figure 1. Illustration of data-generating process.

distinguishes between the two kinds of cessation, incorporating the important age effect and
allowing for the (scientifically plausible) possibility that treatment induce an anticipation of
natural menopause. We illustrate the complete-data generating process in Figure 2. Quantities
shown are: C=time to censoring;A1=time to treatment-induced amenorrhea (both measured
from entry into the study);A2=time to recovery of menses, measured from end of treatment
(T xend; only for patients who experienced TIA); Z=Age of patient atentry; M=Age at natu-
ral menopause (so that M-Z is the time from entry to natural menopause). The question mark
indicates the possible anticipation effect on M-Z by treatment (modeled deterministically via
shrinkage ofM −Z by a constantk < 1). The model uses cure-rate submodels both forA1

andA2 (see for example Penget al. (1998)) since both TIA and recovery are not experienced
by all patients. Due to the masking of the two kinds of amenorrhea (treatment-induced and
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Figure 2. The six possible observed data configurations.

natural) and to the effect of censoring, the observable datais (X1,X2,X3,C), whereX1 is the
first cessation observed between entry andT Xend, X2 is the time fromT xend to resumption
of menses, andX3 is the time fromX2 to the final cessation. The observed data may take one
of 7 possible forms, shown in Figure 2. These must be considered separately in the observed
data likelihood.

After performing model selection and fitting the final model to the data, other quantities
of interest may be studied. For example, in this setting it seems relevant to study the age-
adjusted survival distributionPr(S > s | Age at entry= z) of the random variableS=time
of the (last) menses interruption that willnot be followed by a resumption (see Figure 3).
This variable may be relevant in the choice of the treatment,as it indicates the moment when
the permanent interruption of the patient occurs. Goodnessof fit techniques included the
comparison of the pre-entry distribution of age at menopause with known historic data as well
as comparison of the model-based distribution of observable quantities with the frequency
distributions observed in the data. Interestingly, the model confirmed the clinical researchers’
hypothesis of an anticipation effect of CMF treatment on natural menopause.
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Figure 3. Survival function of time to last menses cessationnot followed by resumption, for the three
arms (left to right) goserelin only, CMF only, and CMF+goserelin.



3 LIFE SEQUENCES IN DEMOGRAPHY

The description of life courses, and in particular transition to adulthood, has attracted in-
creasing interest in the demographics literature. A numberof methods have been proposed
to study trajectories of events, mainly with two goals: (i) to find common patterns among a
set of sequences; and (ii) to describe how they are generated. In this work we deal with the
second objective by proposing a model that generates sequences whose properties resemble
those of the original data. (See for example McVicar and Anyadike-Danes (2002)).

The motivating data for our analysis originate from the Family and Fertility Surveys (FFS)
conducted between 1988 and 1999 in 25 countries by the National Statistical Offices (see
Scheonmaeckers and Lodewijckx (1999)). In particular, we study the transition to adulthood
in the Dutch data. The retrospective histories of 1897 womenabout childbearing and union
formation were collected on a monthly time scale. Of these, 915 women belong to the 1953-
1958 birth cohort and 982 belong to the 1958-1962 birth cohort. Information on respondent’s
family status between the age of 18 and 30 were collected, leading to a trajectory of 144
consecutive states. Figure 4 shows three sample trajectories.
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Figure 4. Three examples of possible observed life sequences (see text for thedefinitions of the states
U, M, S, and C).

We model the whole process that generates the paths with a combination of (discrete)
time-to-event distribution and transition probabilities. These parametric models are allowed
to depend on covariates through generalized logit models. We estimate the transition proba-
bilities and the duration distributions between subsequent transitions, as well as compute the
probability that a given individual experiences a certain transition for each combination of
characteristics.

Consider an individual who has visited a total ofr + 1 states, not all necessarily dif-
ferent (i.e. who has experiencedr state transitions), withS0 the baseline state. Let{Sk,k =
0,1, . . . ,r} indicate the states that the individual experiences, in theorder in which they have
been visited, and{Tk,k = 1, . . . ,r + 1} be the corresponding times spent in ther + 1 states.
Let Z denote a vector of covariates. These covariates can in principle be time-varying (and
indeed in the motivating application this is the case), but to simplify notation here we simply
indicate them asZ. We assume the following:
1. Tk follows a geometric distribution with parameterp that depends on covariates through

the logit link: p = (exp(βZ))(1+exp(βZ))−1.
2. The probability of transitioning from stateik to statejk at thek-th transition, condition-

ally on the covariate vectorZ, is the quantityPik jkk = Pr(Sk = ik|Sk−1 = jk,Z), where



ik, jk ∈ {1, ...,J} andk = 1, ...,K, with K representing the maximum number of possible
transitions,J the total number of states, andPiik = 0 ∀i, ∀k. These transition probabili-
ties are modelled through generalized logits (see for example Agresti (1990)). Using the
Jth category as a reference, the logits can be parametrized asPik jkk = (exp(γik jk Z))(1+

∑h∈{(1,...,J−1)−(ik)}(exp(γikhZ)))−1 with jk ∈ {(1, ...,J−1)− i}. For the last state one has
PikJk = (1+∑h∈{(1,...,J−1)−(ik)}(exp(γikhZ)))−1.

Each individual’s contribution to the loglikelihood depends on the number of (not necessarily
different) states visited. For a woman who visits(r + 1) states (r transitions) for durations
{tk,k = 1, . . . ,(r + 1)}, the contribution is:l(θ|S,T,Z) = ∑r

k=1[log(Pik jkk|Z)) + log(P(Tk =
tk|Z))] + log(P(Tr+1 > tr+1|Z)) to account for the fact that the last duration is always cen-
sored. Here we calledθ = (β,γ) the full parameter vector. LetOT ∈ {0, ...,K} be the ran-
dom variable that counts the number of observed transitions. The parameterθ can be esti-
mated from the observed data onn women by maximizing the observed data log-likelihood
l(θ|S,T,Z) = ∑n

p=1[1(OTp = 0)l0(θ|Sp,Zp) + ...+ 1(OTp = K)lK(θ|Sp,Tp,Zp)] where for a
womanp who has experiencedr transitions we havelr(θ|Sp,Tp,Zp) = ∑r

h=1[log(Pih jhh|Zp)+
log(P(Th = thp|Zp))]+ log(P(Tr+1 ≥ tr+1)) and l0(θ|Sp,Zp) = log(P(T1 ≥ 144|Zp)) to take
into account the fact that the last duration is always censored (this occurs at time 144 months,
the end of the data collection period).

In order to improve the optimization process (we used the OPTIM function in R) we
provided the function with the vector of the partial derivatives of the log-likelihood with
respect to the parameters. The number of parameters of this model can be very high, but
some of these can be set to 0 to obtain more parsimonious models. Traditional likelihood-
theory-based hypothesis testing can be used to select the “best” model (when estimation is
possible, that is).

In the Dutch FFS dataset the states were: Single (S); Married(M); Unmarried cohabitation
(U); Single with at least one child (SC); Married with at least one child (MC); Unmarried
cohabitation with at least one child (UC). Out of the 1897 women, 4 were excluded from this
analysis because they are the only ones who experienced transition from S to MC, from S
to UC, and from U to MC. The number of observations for the parameter estimates of these
transitions was not sufficient for estimation, and therefore we removed these sequences. (We
forced the corresponding transition probabilities to zeroin the model.) In addition, transitions
from states with children to states without children are notpossible and therefore we also set
these parameters to zero. Parameters of other transitions that never occurred in the data were
also set to zero (i.e. from M to SC, from M to UC, from U to SC, andfrom U to MC).
The marginal counts of all transitions in the observed data are shown in Table 1. Note that
because of the structure of the model, the table refers to transitions conditionally on the fact
that a transition did occur. The most frequent marginal transition from M was MC, from U
was M, from SC was UC, from UC was SC, from UC was MC, and from S women opted
more for U or M. The sparseness of the data did not allow for thefitting of the model on the
various “Children” states. As a consequence, we grouped thelast three states (SC, MC, UC)
into a unique absorbing state “C.”

Some baseline information was available on individual and family characteristics: we in-
cluded in particular the woman’s level of education (1,2,3 if the woman had respectively no
education, from 0 to 3 years of education, more than 3 to 5 years of education after age of



15). In the model we inserted level of education as two dummy variables for levels 2 and 3.
Two indicator variables were included for religion belief (1 if the women believd in any reli-
gion, 0 otherwise) and for parental divorce status (1 if parents of respondent were separated
or divorced). All three covariates were used to model the permanence times and transition
probabilities. Moreover we inserted, among the covariatesthat explain the permanence times
in each state, the (rescaled) age in months of each woman before she entered that state, as
well as the state being visited. Among the covariates that explain the transition probabilities
we also included the age at the time of the transition and the time spent in the state before the
transition. Note that these covariates change at each visited state.

S M U SC MC UC
S 0 920 911 40 0 0
M 32 0 8 0 1140 0
U 178 554 0 0 0 47
SC 0 0 0 0 19 68
MC 0 0 0 67 0 7
UC 0 0 0 16 52 0

Table 1. Number of transition in FFS Dutch data

We applied the model described above to this data, using sequential Wald tests to select a
final parsimonious model (results to be described elsewhere). A simulation study of the model
was performed to ensure accuracy of the coverage probabilities of the asymptotic confidence
intervals of the parameters (data not shown). Goodness of fitwas assessed empirically by
generating data according to the estimated parameters. Such sequences were censored at 144
months as in the original data, and summary statistics of thefrequencies of the transitions
among states were compared overall and within strata definedby the baseline covariates.
Results were reproducing the original data satisfactorily. In addition to this comparison, an
alternative permutation-distribution procedure is beingdeveloped to test for sufficient good-
ness of fit. This procedure will be presented elsewhere and will be applied to this data (work
in progress).
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