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Chapter 4

The Distribution of
Interpoint Distances

Marco Bonetti,∗ Laura Forsberg,∗ Al Ozonoff,∗

and Marcello Pagano∗

4.1 Introduction
Health surveillance systems are designed to collect data continuously, analyze them, and
report the results in order to prevent and control diseases. Such a system that concentrates
on patients presenting at an emergency department of a hospital or group of hospitals, with
certain syndromes associated with biological weapons, could prove useful as an early warning
system of a bioterrorist attack. If on any particular day or sequence of days, the number
exceeds a predetermined amount, an alarm may be raised. Since the number of patients
arriving at a hospital may be modelled as a random process, this alarm threshold may be set
according to the usual hypothesis testing paradigm which is concerned with the two errors:
raising false alarms, and missing the raising of a warranted alarm.

Typically, the number of patients arriving at a hospital is influenced by such covariates
as the season of the year, and the day of the week (see [1] and references therein, for example)
and these are indeed important in order to place any set of numbers in their proper context,
but in this chapter we focus on additional aspects of the data and assume a simple model for
the arrival of patients. Consider the model where the number of patients is a Poisson random
variable with mean λ, and suppose this represents the number of individuals we expect on
any given day. To further simplify matters, suppose we wish to set up a system that raises the
alarm if there are too many individuals observed on any particular day. So, if λ is sufficiently
large to accurately use the normal approximation, one might raise the alarm if more than
λ + 1.645

√
λ patients arrive on any particular day. A one-sided alarm system like this runs

a 5% false-positive rate. The associated power curve is easy to calculate.
Such a system would seem optimal in possible early detection of a disturbance that im-

pacts uniformly across the whole area under surveillance. Alternatively, if the disturbance is
due to a single emitting source (such as happened in the anthrax catastrophe in Sverdlovsk [2])
or a number of such sources, so that the disturbance to the system is geographically localized
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(for example, a triangular plume downwind from the offending source, as in Sverdlovsk)
then this geographical information, if available (such as in the addresses of the patients),
should prove useful. Similarly, if the disturbance to the system is some contagious agent,
then one would again expect some geographic clustering amongst the patients. Both these
instances argue for a surveillance system that not only looks at the number of patients, but
simultaneously looks at the location of where the patients were afflicted. Such systems are
the motivation for this study, and we present some initial thoughts on the subject in this
chapter.

We look at the distribution of distances between individuals as a summary of infor-
mation on patient locations. In the cases we have investigated, we have found that this
distribution does not seem to be affected by time or even season, so that it can form the basis
for normalcy. Unfortunately this distribution is not easy to characterize because it differs
for every different geographic distribution, and intuition is often foiled when attempting to
estimate this function. We first look at some simple examples that make this point. Subse-
quently, we look at the empirical distribution of a statistic to measure the deviations from
normalcy of such a distribution.

Consider the locations X1, X2, . . . , of patients arriving at random and indexed by
the order in which they arrive. Denote by D(Xi, Xj ) the geographical distance between
individuals at Xi and Xj . Consider too the distribution function F(d) = Pr(D(Xi, Xj ) ≤ d)

for nonnegative d , and assume that F is independent of i and j and is constant over time.
Suppose that we have a long history of steady state behavior of a hospital admission system
so that we may estimate F by its empirical counterpart with confidence and act as if F is
known, and equal to this estimate.

Now consider a disturbance to the system that may be reflected in the locations from
which the patients come. For example, a point of toxic emissions might infect a neighbor-
hood and result in a large increase of patients coming to the hospital from that particular
neighborhood. We may phrase the problem by asking whether the distance distribution asso-
ciated with the latest group of patients is given by F . We show in [3] how to test hypotheses
about the distribution of distances with power to detect unusual clustering amongst patients.

In our current context, suppose we check on a daily basis not only whether there are too
many patients, but also whether there is unusual clustering amongst the patients. Consider one
particular day and denote by n the number of patients arriving on that day. Denote by Fn the
empirical cumulative distribution function (ecdf) based on the n patients; i.e. if the patients
are located at X1, . . . , Xn and their interpoint distances are D(Xi, Xj ), i, j = 1, . . . , N ,
then

Fn(d) = 1

n2

n∑
i=1

n∑
j=1

I (D(Xi, Xj ) ≤ d) ∀d ≥ 0. (4.1)

Define a statistic Tn to measure the distance between F and Fn – below we consider a
number of these statistics. In order to test the hypothesis that X1, . . . , Xn is a random sample
from the steady-state distribution of patients arriving at the hospital, we need the null joint
distribution of the couplet, (n, Tn). The rest of this chapter considers the interpoint distance
distribution and how it can be used to detect deviations from the steady-state distribution.

4.2 The interpoint distance distribution
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4.2.1 The Continuous Case

Consider a point process such that the observations can appear anywhere inside some bounded
region, S. Let the distribution P of points in S be absolutely continuous, and define a
non-negative function d of pairs of observations in this region. Henceforth we generically
refer to such a function as a distance, even though in subsequent developments we do not
make use of the triangle inequality a distance function must satisfy. The cdf F(·) of the
interpoint distance D between two independent points selected according to P , is then
F(d) = E1(d(X1, X2) ≤ d), where 1(·) is the indicator function and E denotes expectation
with respect to the P × P distribution; thus, on average, F(d) is the proportion of distances
less than or equal to d .

As an example in which the spatial distribution is analytically known, consider the
case of a mixture of K bivariate normal distributions fi on the plane, i.e. let

fi (x) = N2

((
µ1i

µ2i

)
, σ 2I2

)
= N2(µi, σ

2I2).

It is easy to show that in this case the interpoint distance Y = d(X1, X2) between two points
randomly generated from f (x) = ∑K

i=1 πifi(x) is distributed as the square root of a mixture
of chi square densities. If each individual has probability πi of belonging to each of the
distributions fi , then the density fY 2(·) can be written as fY 2(·) = ∑K

i=1

∑K
j=1 g(i, j)πiπj ,

whereg(i, j) is the density function of theχ2(2, 1
4σ 2 ((µ1i

−µ1j
)2+(µ2i

−µ2j
)2))distribution.

With an extension of the usual definition of empirical distribution for random sam-
ples we define the ecdf Fn(.) of the interpoint distances associated with a random sample
X1, . . . , Xn as defined in Equation 4.1, above.

As an illustration, Figure 4.1 below shows the smoothed interpoint distance density
function estimated on all the

(
n

2

)
dependent distances obtained from n = 100 points generated

from such a mixture of 3 bivariate normal distributions (top histogram), and the density
function estimated on the 10,000 distances computed from 10,000 independent pairs of points
from that same distribution (lower-left graph). The histogram and smooth density estimates
illustrate the closeness of the interpoint distance distribution of the dependent distances to
the empirical distribution of the interpoint distance between two randomly chosen points,
and the closeness of the latter density function to the theoretical density fD(·) . The ecdf
(see Equation 4.1) of the dependent interpoint distances among n points in the plane thus is
a well-defined and behaved summary of a configuration of observations.

The definition, and use, of the interpoint distribution function given above does not
require that the point process be stationary, but if it is, a number of theoretical results follow.
On the plane, [10] reports the distribution of the interpoint distances for randomly distributed
points on the unit square and on the unit circle (results originally due to [11]). The latter
distribution can be shown to be equal to

fD(d) = 4 d

π

{
cos−1 d

2
− d

2

√
1 − d2

4

}
, d ∈ [0, 2].

Bartlett in [10] suggests computing a chi-square test to measure the deviation between the
observed and the expected frequencies over a grid. He also recognizes that distributional
problems arise because the observed distances do not constitute a sample of independent
observations.

For fixed d, Fn(d) is a V-statistic (see for example [17, p. 172]). The scaled distribution
of Fn(d) computed at a finite set of values, d1, . . . , dm, converges to a multivariate normal
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Figure 4.1. An example of a realization of 100 points, top left, of a point process.
The histogram from 10,000 dependent distances is given in the top right, and independent
distances in the bottom left. The bottom right shows the comparison of these two smoothed
estimates.

distribution as n → ∞. Also, the quantity
√

n(Fn(d) − F(d)), considered as a stochastic
process indexed by d, converges weakly to a Gaussian process ([16], [3]). The use of
this result, however, requires knowledge of the underlying spatial distribution, since the
covariance function of the associated Gaussian process GP(d) is equal to

cov (GP (d1), GP (d2)) = E [1(d(X1, X2) ≤ d1)1(d(X1, X3) ≤ d2)] − F(d1)F (d2).

If that is available, then the sampling distribution of the empirical interpoint distance distri-
bution function can be obtained. Otherwise, it can be estimated via resampling methods or
via simulation methods, as we do below. In lower dimensional settings one could estimate
the intensity function via kernel methods, in which case as an alternative to the methods
discussed here it is also possible to compare intensity functions ([14]).

4.2.2 The Discrete Case

Often continuous data is not available, so consider the case of a fixed population distribution
with population centers l1, . . . , lk wherein live N1, . . . , Nk , individuals, respectively. For
example, these may be the centers of census tracts or, on a smaller scale, houses. Let
N be the total population size (N = ∑k

i=1 Ni). Let the random variable D represent the
distance between two individuals chosen at random (with replacement) from this population.
Formally, let pi = Ni/N, i = 1, . . . k and p = (p1, . . . , pk), and let N → ∞. Let dij

be the distance between locations li and lj . The random variable D then takes on the value
dij with probability pipj . The distribution function of this non-negative random variable is



Chapter04
2003/6/30
page 93

�

�

�

�

�

�

�

�

Marco Bonetti, Laura Forsberg, Al Ozonoff, and Marcello Pagano 93

thus,

F(d) = F(d; p) =
k∑

i=1

k∑
j=1

pipj 1(dij ≤ d). (4.2)

Consider a random sample n1, . . . , nk of individuals distributed over the same geo-
graphic region, and let n = ∑k

i=1 ni . Consider all the
(
n

2

)
distances between the individuals

in the sample, and compute the function Fn(d) = F(d; p̂), where p̂ = (p̂1, . . . , p̂k) and
for i = 1, . . . , k, p̂i = ni/n. These definitions of F(d; p) and F(d; p̂) are the discrete
analogues, and are equivalent to those of F(d) and Fn(d) given above for the continuous
case.

If one is interested in the distribution of the distances between individuals, and does
not wish to make assumptions or inference about the value of the sample size, n, one may
condition on it, and then use the distribution of the distances obtained by choosing samples
of size n at locations li with probabilities pi , i = 1, . . . , k as the null distribution (see [13]).
Then the null hypothesis of random sampling from the population distribution corresponds to
the null hypothesis that the ni are a multinomial sample with probabilities p = (p1, . . . , pk).
Since the p̂i are strongly consistent estimators of the pi (as n → ∞), then for any fixed real
d , F(d; p̂) is a strongly consistent estimator of F(d; p). Some measure of the difference
between F(d; p̂) and F(d; p) can thus be used as a gauge of the null hypothesis of spatial
randomness.

Note that in this discrete setting (as opposed to the continuous case) one can expect the
underlying population distribution to be known. For a fixed value d the empirical cdf F(d; p̂)

has
√

n-convergence to E(d(X1, X2) ≤ d). Moreover, there is convergence to a multivariate
normal distribution when one computes the cdf at the finite set of values d1, d2, . . . , dm, and
the covariance structure of the limiting distribution can be expressed analytically ([3]).

4.2.3 Two discrete examples of interpoint distance distribution

Example 1: Two points

Let n individuals be assigned to either location A = (0, 0) or to location B = (1, 0) with
probabilities pA and pB = 1 − pA, respectively. Denote by nA and nB the number of
individuals assigned to the two locations. The matrix of the n2 interpoint distances between
individuals thus contains only the two values zero and one. In particular, a total of n2

A + n2
B

zero distances are observed, and a total of 2 nA nB distances equal to one. The relative
frequency distribution of the interpoint distances is thus defined by the two proportions
P0 = (n2

A + n2
B)/n2 and P1 = 2 nA nB/n2. The expected values of P0 and P1 are equal to

EP0 = En2
A + En2

B

n2
= (n pA (1 − pA) + n2 p2

A) + (n pB (1 − pB) + n2 p2
B)

n2

= 2pApB

n
+ p2

A + p2
B

EP1 = 2E(nAnB)

n2
= 2E(nA(n − nA))

n2
= 2(nE(nA) − E(n2

A))

n2

= 2pApB − 2pApB

n
,

since nA and nB are binomial random variables. Note how the expected value of P1 fol-
lows immediately from that of P0, as P1 = 1 − P0. As n tend to infinity the expected
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values converge to the distribution of the interpoint distance D = D(X1, X2) between two
independent points X1 and X2, i.e., to the two probabilities P(D = 0) = p2

A + p2
B and

P(D = 1) = 2pApB .
The terms of the variance-covariance matrix of (P0, P1) for fixed n are equal to

var(P0) = 1

n4
var(n2

A + n2
B) = 1

n4
(En4

A + En4
B + En2

An2
B − (En2

A + En2
B)2)

var(P1) = var(1 − P0) = var(P0)

cov(P0, P1) = E(P0 P1) − E(P0)E(P1) = E(P0(1 − P0)) − E(P0)E(1 − P0) = −var(P0)

From differentiation of the moment generating function of the binomial ψX(t) =
(pA exp(tA) + pB exp(tB))n one obtains all necessary moments, and after some algebra the
result

var(P0) = −4pA

n3

(
6p3

A − 10np3
A + 4n2p3

A − 12p2
A − 12npA + 7pA − 1

+20np2
A − 8n2p2

A + 2n − n2 + 5n2pA

)
var(P1) = var(P0)

cov(P0, P1) = −var(P0)

Note how the last two expressions also follow immediately from the fact that P1 =
1 − P0. Thus we can focus on P0 alone. For pA = pB = 1/2 the expected value of P0 is
equal to (1 + 1/n)/2, which tends to 1/2 as n → ∞. Also, the expression for the variance
of P0 becomes

var(P0) = 1

2

n − 1

n3
.

Thus var(
√

nP0) → 0 as n → ∞. Rescaling by n instead of
√

n yields that

var (n P0) → 1

2
as n → ∞.

In fact, this happens if and only if pA = 1/2, since in the expression of var(P0) one needs
the condition 4 p3

A − 8 p2
A + 5 pA − 1 = 0 to be satisfied, and 1/2 is the only solution in

(0, 1). As a final remark, note how 1/2 is not the variance of the binomial random variable
with probability of succes (i.e., of falling into the value D = 0) equal to 1/2.

From the familiar results about U -statistics one might expect that
√

nP0 has a non-
degenerate asymptotic distribution, while from the expressions above it is clear that this does
not happen. In fact, one would need to normalize P0 by multiplication by n and not by

√
n to

converge to non-zero variances. The reason why this happens is worth discussing in detail.
Below we refer for simplicity to one-dimensional U statistics, but with minor changes the
same considerations apply to V -statistics such as the ones considered here.

This phenomenon is due to the fact that one of the requirements for the usual asymptotic
normality results of U -statistics is not satisfied whenever pA = pB . In fact, consider the
m-order U statistic

Un = 1

n(m)

∑
h(Xi1 , . . . , Xim)

with (symmetric) kernel h(X1, . . . , Xm) (such that E[h2] < ∞). The summation is taken
over all n(m) = n(n − 1) · · · (n − m + 1) m-tuples (i1, . . . , im) of distinct elements from
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{1, . . . , n}. It is well known ([17] p.162) that if one defines the auxiliary functionshd(x1, . . . , xd) =
E[h(x1, . . . , xd, Xd+1, . . . , Xm)] and the parameters ζ0 = 0 and, for 1 ≤ d ≤ m, ζd =
var(hd(X1, . . . , Xd)), then the variance of Un can be expressed as

var(Un) =
(

n

m

)−1 m∑
d=1

(
m

d

)(
n − m

m − d

)
ζd

= m2ζ1

n
+ O(n−2).

In our case above we have m = 2, h(X1, X2) = 1(d(X1, X2) = d), for d = 0. (A symmetric
argument with d = 1 would be used for X1). Then one has

ζ1 = var(h1(X1)) = var(E[h(x1, X2)]) =
= var(P (d(x1, X2) = d))

and

P(d(x1, X2) = 0) =
{

pA x1 = (0, 0)

pB x1 = (1, 0)
,

so that pA = pB = 1/2 ⇒ ζ1 = 0. In fact, here this is indeed a necessary and sufficient
condition for the convergence in probability of

√
nP0 to P(D = 0) = 1/2.

For a connection with related problems in genetics we refer the reader to [18].
This example is a degenerate one in the sense that one deals with only one (binomial)

random variable. We now present another example that is constructed on four points and
allows for the interpoint distance to take on four different values.

Example 2: Four points

Consider the situation of each of n individuals being assigned to one of the four points
A = (0, 2), B = (1, 2), C = (2, 0), and D = (0, 0). The interpoint distance be-
tween two individuals can take on one of the four values {0, 1, 2,

√
5}. If one calls Dij

the interpoint distances Dij between individuals i and j , one can then define the quantities
Xd = ∑n

i=1

∑n
j=1 1(Dij = d)/n2, i.e. the proportion of interpoint distances equal to d . In

particular,

P0 = 1

n2

(
n2

A + n2
B + n2

C + n2
D

)
P1 = 2

n2
(nA nB + nC nD)

P2 = 2

n2
(nA nD + nB nC)

P√
5 = 2

n2
(nA nC + nB nD) ,

where nA, nB , nC , and nD are the numbers of individuals at the four location, which we
assume are assigned according to the multinomial distribution with parameters n and p =
(pA, pB, pC, pD) for the four locations. Similarly to what was done in Example 1 one can
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derive the expressions for the expected values and for the variance-covariance matrix of the
vector P = [P0, P1, P2, P

√
5]. The expressions for the expected values are as follows:

EP0 = (n p2
A + pA − p2

A + n p2
B + pB − p2

B + n p2
C + pC − p2

C + n p2
D + pD − p2

D)/n

EP1 = 2(pA pB + pD pC)
n − 1

n

EP2 = 2(pA pD + pB pC)
n − 1

n

EP√
5 = 2(pA pC + pB pD)

n − 1

n

The expression of the variance-covariance matrix for general p is quite messy.
As n → ∞ the expected value of P converges to the vector of probabilities P(D = d),

where D is the distance between two individuals placed at random, i.e.,

P(D = 0) = p2
A + p2

B + p2
C + p2

D

P (D = 1) = 2(pA pB + pC pD)

P (D = 2) = 2(pA pD + pB pC)

P (D = √
5) = 2(pA pC + pB pD).

For the special case of p = [.25, .25, .25, .25] the expected value E(P) becomes

E


P0

P1

P2

P√
5

 = 1

4


1 + 1/n

1 − 1/n

1 − 1/n

1 − 1/n

 ,

and the variance-covariance matrix takes the simple form

1

8

(
1

n2
− 1

n3

) 
3 −1 −1 −1

−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 .

Here, too, as n → ∞ a phenomenon similar to that observed in Example 1 above occurs,
namely the fact that var(

√
nP) → c with c = [.25, .25, .25, .25]′, and that var(nP) →

[0, 0, 0, 0]′.

4.2.4 Test statistics

It is easier and more informative to visualize the differences between these two cdfs Fn(d)

and F(d) if we define the scaled first difference function f (d). This is defined as a vector
fn(d) = (fn(d1), . . . , fn(dm)) of values

fn(d) = 1

ε
[Fn(d + ε/2) − Fn(d − ε/2)]

computed at the values d1, . . . , dm such that dj − dj−1 = ε for j = 1, . . . , m and m

some positive integer. We set d1 = ε/2, and for definiteness we define fn(d1) = Fn(ε)/ε
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so that it includes the origin. The population equivalent of fn(d) is the vector f (d) =
(f (d1), . . . , f (dm)) computed as fn(d) and at the same values d1, . . . , dm, but replacing
Fn(·) by F(·). (The constant ε may be any size and can be made as small as the accuracy
with which the distances are measured.)

Because of its linear relationship with Fn(·), the first difference function fn(d) has√
n-convergence to the expected value, E(1(d − ε/2 < d(X1, X2) ≤ d + ε/2), and that

for a fixed d , n1/2f (d; p̂) has an asymptotically normal distribution. The joint asymptotic
distribution for multiple values of d also follows immediately.

Several test statistics can be defined to measure the distance between F̂n(·) and F(·),
and thus allow the testing for deviations from the null spatial distribution. The asymptotic
normality noted above suggests the use of the following statistic to measure the distance
between the two vectors f (d) and fn(d):

M(fn(d), f (d)) = (fn(d) − f (d))tS−(fn(d) − f (d)) (4.3)

where S− is the (Moore-Penrose) generalized inverse of the sample covariance estimator
computed on the samples. Note that the parameter ε needs to be set for M to be defined.
The asymptotic distribution of NM can be shown to be chi-squared [3].

Note that we have defined the statistic in terms of the “densities’’, f (d) and fn(d), but
that we could equally well define the M statistic directly in terms of the cdfs computed at the
same values d1, . . . , dm. The two forms with, of course, appropriate definitional changes in
the covariance matrix, yield identical results.

The cutoffs at which the interpoint distance distribution is evaluated can also be chosen
so that between each two subsequent cutoffs one has, say, 10% of the probability mass. Such
a choice can be expected to be more robust at the extremes.

Figure 4.2 shows the QQ plots for the null distribution of the M statistic for varying
numbers of points versus a chi-squared random variable. The QQ plots are based upon 1000
realizations of the M statistic with points randomly distributed in the unit circle in the plane.
The degrees of freedom used were the number of bins minus one. When N is 10, one of
the bins is always empty, due to the smaller number of distances in this case, so we used
eight degrees of freedom for the chi-squared distribution. These show that, except for the
extreme right tails, the asymptotic results given above provide a good approximation to the
distribution of M , even for small values of N .

Note that if one uses equal probability histogram, then the ecdf is such that the area of
the empirical histogram of the frequency distribution of the interpoint distances converges to
0.1 within each bin. However, it is not true in general that the centered and scaled histogram
converges in distribution to a multinomial distribution. The two discrete examples that follow
illustrate this, and show that in situations of symmetry the rate of convergence of Fn(d) to
FD(d) may not be the one that one would expect.

4.3 Cluster Detection
To study the power properties of various detection statistics we designed a simple study with
points generated at random on a unit circle in the plane. The number of points generated
were determined by a Poisson distribution with mean 25. This represents the steady state.
Outbreaks were then superimposed on this null distribution in the form of clusters of various
sizes and locations. The power calculations are based on 1,000 repetitions.

We first looked at detection based solely on observing clusters based on the interpoint
distances. One can compare the distributions using the classical Kolmogorov-Smirnov test
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Figure 4.2. QQ Plots of the null distribution of the M statistic versus the chi-
squared distribution when points are randomly distributed in the unit circle, based on 1, 000
realizations of the statistic.

statistic or the Wilcoxon test statistic (see, for example, [5]). The Kolmogorov-Smirnov test
considers the largest difference between the two sample cdfs. The Wilcoxon test is rank-
based and considers ranking within a combined sample of the two populations. The statistic
is given by

W =
N∑

j=1

Sj

where the Sj are the ranks for one of the samples and N is the total number of distances in the
combined sample. Because of the dependencies in the distances between patients, we cannot
rely on published tables to determine the p-values of the tests. So we turned to simulations
to derive empirical null-distributions of the statistics (see [4]). In our example we used 1000
samples to generate this distribution and determine a cutoff value corresponding to a Type I
error rate of 0.05.

The tests that utilized the Wilcoxon and Kolmogorov-Smirnov statistics give very
similar results for the problem at hand. Both tests are quite sensitive to the location of the
cluster. In our example, we see that the power for detecting a cluster declines as the cluster
moves farther from the origin. Figure 4.3 illustrates the results for the Wilcoxon test. These
tests are sensitive to cluster location because of the impact the location has on the sample
cdf. When a cluster is placed at the center of the circle the number of very small distances
increases, but as the cluster moves to a more extreme location on the circle, the number
of larger distances also increases. As a result, the alternative cdf becomes bimodal, and as
neither of these tests has large power against such a bimodal distribution, they fail to detect
such clustering.
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Figure 4.3. Powers for the Wilcoxon Test with varying locations of the cluster.
Cluster size = 5, radius = 0.001, location = 0.8.

To address this lack of power, we choose to discretize the cdfs by placing the sorted
interpoint distances into ten equiprobable bins. These bins are determined by the empirical
distribution of distances of the null distribution. Subsequently, we can compare the numbers
falling in each bin. To this end consider the M statistic as defined in equation 4.3, above.
When using the M statistic in this example, we see an increase in the power to detect a
cluster, regardless of its location on the circle (Figure 4.4), in contrast to the other two test
statistics previously considered.

The Wilcoxon statistic seems to fail in the case where the cluster is at an extremity on
the circle because the sum of the ranks for the two groups appear similar. This is because
the statistic for the group with the cluster will tend to be composed of the ranks of the lower
and higher points in the combined sample while the other group will be mainly composed of
the intermediate ranks (the bi-modality effect). Therefore the overall sums of the ranks will
be very similar.

The Kolmogorov-Smirnov statistic only considers the maximal difference between the
cdfs. This summary ignores substantial information about the overall behavior of the groups
in relation to one another. When a cluster is added to an extreme location on the circle,
the difference between the two cdfs is divided between differences that occur in the smaller
distances and the larger distances. Therefore the maximal difference does not appear to be
so extreme and only captures one of the aberrations created by this case. The M statistic
does not suffer from either of these shortcomings as illustrated above.

In what follows we consider some of the properties of the M statistic in order to better
understand its distributional properties so as to enhance our capabilities for inference.



Chapter04
2003/6/30
page 100

�

�

�

�

�

�

�

�

100 Chapter 4. The Distribution of Interpoint Distances

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Points

P
ow

er

Figure 4.4. Power of the M statistic to detect a cluster. Cluster size = 5, radius
= 0.001, and various locations indicated by r in the legend; r varies from 0.0 to 0.8.

4.3.1 Bivariate Power Calculations

We have seen the effectiveness of the M statistic at detecting clusters generated on a unit
circle. As described previously, our aim is to be able to combine this test with a test of a
Poisson process in order to more accurately and rapidly detect aberrations in a system that
considers the number of events occurring as well as the spatial clustering of those events.

Clearly, the number of cases of a disease are the determinant of whether an outbreak
has occurred or not. When there is value in early detection of an outbreak, other useful
information can be incorporated to facilitate more rapid detection. So the task at hand is to
simultaneously consider the number of cases and the location of these cases. Combining
these two streams of information should improve our ability to detect outbreaks.

A very simple first step analysis is to consider that N , the number of cases, follows a
Poisson distribution with parameter λ. Then one can superimpose an outbreak on this.

We know that asymptotically, conditional on n, as n → ∞, that nM is distributed
as a chi-squared variable [3], whose parameters are independent of n. This motivates us to
think of n and nM as independent. This, in turn, suggests a bivariate rejection region such
as shown in Figure 4.5 where the two pieces of information are combined so that the overall
Type I error rate is 0.05. This compromise region protects against either too many cases or
too much clustering individually, or in concert.

We continue with the example previously described, but now additionally assume that
the number of sample points follow a Poisson distribution with a mean of 25. Table 4.1
gives a summary of the bivariate powers when the poisson and M statistic are combined,
and contrasts these to the situation when we only use the M statistic. One can see that this
method of combining the two statistics is not optimal. Indeed, an optimal boundary may
depend on where the cluster is placed. But as a compromise boundary we see that the power
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Figure 4.5. Critical region for the bivariate test, a combination of a region where
n is too large, where M is too large, and where both are too large, simultaneously. The
probabilities of lying in each region under the null hypothesis are shown.

is not too influenced by the location of the cluster.

4.3.2 Use of Nearest Neighbors Distances

Traditional methods for using distances to detect clustering have involved the nearest neigh-
bor (see [6], for example). The M statistic above uses all distances, so the question naturally
arises as to whether one loses any information by only looking at the closest neighbor. We
report on a small study that looked at the power of detecting a cluster based on looking
at the k-nearest neighbors. This tends to simplify the problem and minimize the amount
of dependencies in the data, but it suffers from other weaknesses. Table 4.2 illustrates the
results from doing this with our usual problem. Here the cluster is of size five, located at
radius 0.5 and of radius 0.001. We see that there is no advantage to using near neighbor data,
in fact it might compromise power, depending on the size of the cluster. Since we would not
anticipate knowing the size of the cluster at the time of testing, this method does seem to be
optimal.

Therefore, for this simple case, we have a method of detecting spatial and quantitative
aberrations in a system. By utilizing the M Statistic to detect clustering and combining it with
information gained from the Poisson distribution, one can powerfully detect an outbreak. It is
possible to extend this technique for use in more complicated situations, such as in populations
where the cases are not expected to occur uniformly over the area of consideration. One also
might consider the case where multiple addresses are used, as will be described later or the
case when exact addresses are not available.
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Table 4.1. Power to detect clusters at various locations in the unit circle when the
clusters are superimposed on a Poisson (mean 25) number of points. The columns headed
M statistic are the powers when considering the M statistic alone. The columns headed
Joint are the powers when using the bivariate statistic.

Cluster Location Cluster size 5 Cluster size 8

Poisson power = 0.24 Poisson power = 0.45

M statistic Joint M statistic Joint

0.0 0.7798 0.6156 0.9254 0.9107

0.2 0.5877 0.5680 0.8861 0.9497

0.5 0.4974 0.5602 0.8554 0.9071

0.8 0.4731 0.5021 0.8504 0.9054

alpha 0.05 0.0474 0.05 0.0474

Table 4.2. Bivariate power calculations when using nearest neighbors.

Number of Power
near neighbors

1 0.2054
2 0.2078
3 0.5031
4 0.4774
5 0.6645
6 0.5834
7 0.6279
8 0.6226
9 0.5387

All 0.5602

4.3.3 Discretization of Addresses

Often the only data that a medical institution will release are zipcodes of the patient. The
following simulates such a situation by discretizing the points generated on a uniform circle
into sectors. Two methods for doing this are described below.
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Figure 4.6. The two graphs show the regions broken down into separate sectors.
Anyone within a particular sector is reported as coming from the point displayed within that
sector.

Single Circle

The addresses were discretized into eight sectors in this simulation study. The sectors created
are pie-shaped and all cases falling in a given sector are reported as coming from a point
that is central to the sector. All of these points lie a distance of 0.5 from the center and are
equally spaced (the left graph in Figure 4.6). The M statistic and the Poisson, as described
in the previous section, were used to calculate the powers that are shown in Table 4.3. We
considered three different locations of clusters: First we placed a cluster at the origin, then
we centered a cluster on a boundary between two sectors, and finally we placed the cluster
entirely in one sector. The cluster at the center had the potential of being split amongst any
of the sectors. The one on a boundary had its impact split between two sectors. Thus the
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Table 4.3. Bivariate powers for the simple discrete case.

Cluster Center Cluster size 5 Cluster size 8

Poisson power = 0.24 0.45

0.0 0.2721 0.4880
On boundary 0.2449 0.3076

Contained in One Sector 0.2796 0.6842

alpha 0.0435 0.0435

Table 4.4. Bivariate powers for the two-step discrete case.

Cluster Center Cluster Size 5 Cluster Size 8

0.0 0.3101 0.5188
On boundary
Inner Circle 0.3202 0.6582
Outer Circle 0.4140 0.6656

In one Sector
Inner Circle 0.3101 0.6761
Outer Circle 0.2493 0.5482

alpha 0.0483 0.0483

third placement was expected to have the most noticeable impact, as indeed it did.
There is a clear decline in power due to the discretization of the addresses. This may

be partly due to the regular design we used that also greatly diminished the distinct number
of distances. It is unusual that the powers for the cluster placed at the origin, where the points
in the cluster could potentially fall into any one of the eight sectors, would be equivalent to
the case when the cluster is entirely contained within one sector.

Two-Step Discrete

One might also consider a case similar to an urban setting, where the population density is
largest at the center and diminishes as we move away from the center. One way to portray
this is as follows. The circle is divided into two concentric circles, with the radius of the
inner circle being 0.7. Six sectors are created in the inner circle while two are used on the
outer circle (see the right figure in Figure 4.6). We considered five different cluster locations
as described in Table 4.4.

We were drawn to considering what happens when an individual’s address is coarsely
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recorded, such as only getting the zip code; possibly for privacy reasons. One cannot draw
too many general conclusions because of the very special design we used, with possibly too
many regularities. These regularities restrict the number of distinct values the distances can
take and thus the distribution of distances is now quite discrete with some large steps. But
it is instructive to see what a large impact discretizing the data can have. More work needs
to be done in this area.

4.4 The use of multiple distances
Conceptually, the consideration of addresses is appealing because it brings more information
to bear on the problem. The simulations reported above are useful if the formation of the
clusters has some connection to the point at which individuals were infected. Practically,
we can use the individuals’ home addresses to serve as proxies for the points of infection,
admitting, of course, that this may not be the best proxy. Thus if more than one address is
available per individual, such as an individual’s home address and or work address, then it
may prove beneficial to use these multiple addresses. Building on the statistical framework
that we have already developed, we now consider this problem of incorporating multiple
addresses and other data into the distribution of distances.

More formally, suppose for each individual we record a set of data, taken from a sample
space D. We have seen examples where D was discrete (section 2), and where D = R

2 (the
address of the individual, as in sections 2, 3). We now allow D to be a higher-dimensional
space, perhaps the product of several copies of R

2 corresponding to multiple addresses, or
a combination of discrete and continuous data. We will call any map d : D × D → R

a distance function, understanding that this is an abuse of terminology (indeed, we do not
require that our “distance function’’ take only positive values, satisfy the triangle inequality,
or place any other restrictions on d).

In actual practice, the space D will be determined by the available data. The distance
function d should make some attempt to model proximity in the context of the data and the
problem at hand. We give some examples below.

1. Let D = R
2 × R

2. Each component indicates a separate recorded address. Possible
distance functions between two data points include: taking the minimum of the (Eu-
clidean) distance between first address and second address; taking the minimum of all
possible address comparisons; or a weighted average of distance between first address
and second address.

2. Let D = R
2 × R. The first component indicates a recorded address, and the second

component a time of event. An appropriately chosen distance function can measure
various spatial-temporal clustering effects (see [8], [9] and [7] and references therein,
for example). As one example, given two data points (x1, y1, t1) and (x2, y2, t2), set
�x = |x1 − x2|, �y = |y1 − y2|, and d = |t1 − t2| ·

√
(�x)2 + (�y)2. This measures

proximity as a product of spatial and temporal distance.

3. Let D = R
2 × S, where S = {1, 2, . . . , n} is a finite or discrete countable set. Given

two data points (x1, y1, s1) and (x2, y2, s2), set d = √
(�x)2 + (�y)2 + α1 · δ(s1, s2).

Here, the delta function δ(s1, s2) takes the value 1 if s1 = s2, and 0 otherwise. The
parameter α1 is a real constant.

To illustrate the importance of using all of the available information, we ran a series
of power calculations based on the last example above. Our simulated data consists of
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Table 4.5. Power to detect a cluster of size five in the first quadrant when the others
in the sample are uniformly distributed in the unit circle. The contrast is between using
solely the home address, only the school address, or both addresses.

Sample size 10 15 20 25 30 35 40

Address only 0.40 0.21 0.20 0.14 0.13 0.12 0.10

District only 0.51 0.31 0.23 0.19 0.19 0.17 0.14

Address and district 0.71 0.41 0.34 0.23 0.19 0.19 0.18

individuals with address coordinates generated uniformly from the unit circle. Each quadrant
of the circle corresponded to a hypothetical school district, and so each individual was
assigned to a school according to the quadrant containing the individual’s address. Now
D = R

2 × {1, 2, 3, 4}.
We then simulated disease outbreak in the following way. We generated a random

sample of size between 10 and 40. We then reassigned five of these individuals to a broad
region in the first quadrant (uniformly distributed throughout R = {(ρ, θ) | 0.1 ≤ ρ ≤
0.7, 0 ≤ θ ≤ π

2 }). The intention was to simulate an undetected attack at a school; because
the residential addresses of affected children would be widely dispersed, usual methods of
cluster detection may lack sensitivity to this pattern of disease.

The interpoint distances were calculated, first using the Euclidean distance only and
ignoring the school district. We then used a chi-squared test (3 degrees of freedom) on
the expected and actual counts of individuals in each school district, ignoring the address.
Finally, we used both available components of the data, computing the interpoint distances
with a distance function d as described in example 3 above. The univariate test statistic used
on the interpoint distance distributions was the M statistic.

The power to detect these events of 5 individuals in one school district was greatest
when both components of data were utilized. Gain in power was on the order of 25 − 75%.
Table 4.5 below summarizes the power results:

When working with the distribution of interpoint distances, the outcome of any test
statistic will depend on the choice of the distance function d. For statistics such as the
M statistic (section 3) which rely on a binning procedure based on quantiles, there are
equivalence classes of distance functions that leave the statistic invariant. Call two distance
functions d1, d2 : D → R monotonically equivalent if d1 = φ ◦ d2 for some monotonic
(increasing or decreasing) function φ : R → R. Then we have:

Fact: The M statistic is invariant across each equivalence class of monotonically
equivalent distance functions.

Indeed, suppose X1 . . . Xn are observed interpoint distances distributed according to
a cdf FX. Write qi = F−1(i/100) for the quantiles of FX. Suppose φ is a monotonically
increasing (decreasing) function from R to R. Then for any particular observation Xi that lies
between qj and qj+1, monotonicity guarantees that φ(qj ) ≤ φ(Xi) ≤ φ(qj+1) (or reverse
the inequalities for φ decreasing). Then bin the distances Xi into deciles of FX as described
above. This yields the same bin counts as when we bin the distances φ(Xi) and use the
deciles of Fφ(X). Hence the value of M remains unchanged after transformation X �→ φ(X).
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Example: Let D = R
2, and d : D → R the ordinary Euclidean distance. Let

φ1 = 1
x

: R → R and φ2 = exp (1/x)

1+exp (1/x)
: R → [0, 1]. Then for a fixed set of data, the M

statistic will take the same value whether computed using distance function d, d1 = φ1 ◦ d ,
or d2 = φ2 ◦ d .

We find that using the transformation suggested by d2 above is convenient for maintain-
ing a normalized measure of proximity, taking values in [0, 1]. Note that we have inverted
the scale of values, so that proximity close to 1 indicates two individuals that are very similar,
while a value close to 0 indicates to individuals that are dissimilar. Depending on the model,
we may gain some interpretability using this similarity measure. One possible interpretation
might be d2 = the probability that two individuals became infected from the same source of
disease. In practice we would first determine the available data and formulate an appropriate
method of measuring proximity that captures the essence of the problem at hand. Call this
distance function d , and applying φ2 to d gives a proximity or similarity measure that takes
values between 0 and 1.

4.5 Conclusions
We have attempted to show how to use the distribution of the interpoint distance between
two randomly selected observations as a summary of a spatial distribution. It can be used in
biosurveillance if it provides a sufficiently stable constancy in order to define normal behavior
against which deviations can be spotted. That has been our experience. We have observed
the distributions of distances between patients arriving at the Emergency Department with
flu-like symptoms at a children’s hospital in Boston, and they display a remarkable constancy
over time [19].

The distribution can be estimated from the dependent distances between observations
in a random sample generated from an underlying spatial distribution. It can then serve as
the null distribution against which the deviations of future samples can be compared. The
M statistic is an example of a derived statistic that is specifically designed to detect these
deviations.

We show that the combination of the M statistic (or of another statistic based on the
interpoint distance distribution) with a statistical test for the presence of an excessively high
number of cases of some disease in a given time frame (in a day or week, for example) allows
for an increase in the power to detect outbreaks caused by naturally occurring or deliberately
released agents.

Given the many possible routes of infection in the event of an outbreak, the possibility
of extending the concept of interpoint distance to a dissimilarity measure—in particular,
through the use of the multiple addresses usually associated with each individual—allows
for a straightforward generalization of the methods described here. Further extensions also
include the fitting of models for the interpoint distance, also from dependent quantities
obtained from all pairs of observations.

The development of surveillance systems that collect real-time information on health-
related events (such as flu-like symptoms in pediatric emergency room admissions) and that
use detection methods such as the ones introduced here should become a priority both for its
public health and for its national security implications.
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