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8.1 INTRODUCTION

The emergence of new infectious diseases and the threat of biological attacks
have lead to a growing interest in methods of surveillance, including the accom-
panying statistical methods, for the early detection of an outbreak. Statistically,
what we would like to do is detect the time point at which there is an increase in
the number of infected individuals, an increase that may also be accompanied
by a change in the spatial distribution of these patients, either, or both, of which
might indicate an outbreak of some sort – a disturbance of normalcy. The time
element is critical in that a less than timely detection would make the methods
essentially useless.

The timeliness is an extra consideration that possibly distinguishes the newer
surveillance methods from those in the older literature. The older ones are
often related to such issues as the detection of cancer clusters (see, for example,
Alexander and Boyle, 1996), and sometimes use data that was collected over a
period of years prior to analysis which, parenthetically, makes the existence of
a cluster questionable. This is not meant as a criticism of the classical methods
as the time element is inherent in those methods, too.

When considering spatial methods for cluster detection, no method seems to
be uniformly better than all others, so it is beneficial to review a number of these
methods. Several reviews of statistical methods for the detection of spatial anom-
alies have been written (see, for example, Kulldorff, 1998; Elliott et al., 2000;
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Lawson, 2001; Brookmeier and Stroup, 2004, Chapter 7). Most of the statistical
methods that have been described for the detection of spatial anomalies can be
grouped into two general categories: quadrat methods and distance methods.
Quadrat methods divide the geographical region into smaller areas termed quad-
rats and compare the incidence of events within the quadrat to the incidence in
the remaining study region. The spatial scan statistic is perhaps the most widely
known and used of these methods (Kulldorff, 1997). Distance-based methods,
on the other hand, consider some measure of distance between events. Usually
Euclidean distance is used as the measure of distance between individuals, but
typically any measure of dissimilarity or similarity between events can be util-
ized. We focus on these distance-based methods in this chapter, and discuss two
methods of more modern interest: the maximized excess events test (MEET) and
the M statistic, with particular emphasis given to the latter method. We present
the motivation for using distance-based methods in Section 8.2. In Section 8.3,
we give a review of the MEET statistic and the M statistic, and their utility in
public health surveillance. Section 8.4 introduces a data example to illustrate
the implementation of the MEET and M statistic to detect spatial clusters of
disease. Our focus of attention is a bivariate statistic, which simultaneously
monitors case volume and the spatial distribution of the cases. This bivariate
statistic is introduced to improve the power to detect suspicious patterns in the
data stream. In Section 8.5, we describe and illustrate a method for determining
the location of a cluster, or other spatial aberrations, once the M statistic has
indicated that such an anomaly exists.

8.2 MOTIVATION

Distance-based methods consider the distribution of the pairwise interpoint
distances between all the individuals in the study region. Under the null hypo-
thesis this distribution remains stable. As time progresses, we need to be on the
alert for a disturbance in the distribution. This alternative distribution should
be sensitive to the detection of disturbances in how individuals are located, espe-
cially if individuals are clustered. These disturbances are those we would expect
during an outbreak of a contagious disease or an outbreak resulting from one or
more point source emissions of some bioterrorist agent. This places the problem
in the classical hypothesis testing paradigm, and to pursue this thinking further,
we seek methods that will have power against alternatives that reflect clustering
of individuals. One obvious characterization of clustering is to consider pockets
of individuals who consequently will have smaller average distances between
themselves than they would in the null case. But this is not the only alternative
one can envision; others may impact the second moment of the distribution of
distances, for example.

One method considers a test of the mean of the interpoint distance distribution
(Whittemore et al., 1987). The statistic, usually called the � statistic, is equal to a
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weighted average of the observed distances, and thus tests for shifts in the mean
of the interpoint distance distribution. Subsequent work has shown that this
method is not very powerful at detecting clusters (Bonetti and Pagano, 2004a).
The reason for the lack of power is that the mean is not an efficient summary of
the null distribution, typically because the null distribution of distances is not
normal. Furthermore, dependencies in the distances can often lead to complex
deviations from the null distribution that may not necessarily lead to a shift in
the overall mean. Figure 8.1 illustrates such a scenario arising from real data.
Here the densities clearly differ from one another, but the mean does not lead
to a powerful statistical test for detecting such a deviation.

Dealing with distances between individuals requires some thought since the
usual statistical methods do not apply seamlessly. First, the distances themselves
are not independently distributed. This would seem clear considering that for
every n individuals there are

(
n

2

)
distances. Thus considering the statistical

properties of their joint distribution is not straightforward. Additionally, location
data is often not reported precisely, but rather it is reported in a discretized
manner. For instance, instead of individuals’ home or work addresses we may
only be told the census tract, postal code, or county in which they reside. Thus
the distances can only assume values in a finite grid.

Additionally, the location of spatial aberrations in the study region will impact
the shape that the alternative distribution will assume. For instance, a cluster

Distance

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25

0

2

4

6

8

10

Without cluster
With cluster

Figure 8.1 Distribution of the distances for a data set with no clusters ��̂ = 0�090� �̂ =
0�045� versus a the same data set with clusters superimposed ��̂ = 0�083� �̂ = 0�044�.
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placed in the study region will create a larger than expected number of small
distances. However, the cluster will also create other abnormalities in the distri-
bution, but these will depend upon where the cluster is placed, due to the
addition of the distances between the cluster and other points in the region.
This patterning increases the more clusters we have.

Several methods for analyzing distances have been proposed, although no
one statistic seems to completely handle the complexities that distance data
presents uniformly better than any others. K functions are one method that
has been proposed (Ripley, 1976; Diggle and Chetwynd, 1991) for detecting
spatial abnormalities, especially in the ecological literature (Dobbertin et al.,
2001; Couteron and Kokou, 1997). These functions enjoy nice mathematical
properties, but can be cumbersome to implement for purposes of biosurveillance.
Therefore we will direct our attention to two other methods, the MEET statistic
and the M statistic, with particular emphasis on the latter.

8.3 DISTANCE-BASED STATISTICS FOR SURVEILLANCE

8.3.1 MEET Statistic

Tango (1995) describes a method of cluster detection that assumes that the
data is aggregated into m regions according to some spatial boundaries, for
instance by zip code or county. The statistic considers the difference between
the observed rate of cases in each region and the expected rate, and then
weights these differences by a measure of the distance between the regions.
More explicitly, within the ith region, let yi be the observed number of cases and
ei be the expected number of cases. Define the parameter � such that any pair
of cases that are farther than � apart cannot be considered a cluster. Basically,
� can be thought of as some measure of the spatial extent of a cluster. Consider
the vectors r = 	ri
, where ri = yi/

∑m
i=1 yi, and p = 	pi
, where pi = ei/

∑m
i=1 ei.

Then the estimated events test statistic is given by

C� = �r−p�TA����r−p��

where A��� = 	aij���
. One can consider several forms for the aij���. Clearly,
the choice of the form that A��� assumes will have an impact on the efficacy
of this statistic. However, the magnitude of this effect and the sensitivity of
the statistic to A��� have not been studied systematically. In practice the
exponential threshold model has been used (Tango, 2000), such that aij��� is
defined as

aij��� = exp

{

−4
(

dij

�

)2
}

�
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where dij is the Euclidean distance between regions i and j. The problem with
this method is that it requires specification of the parameter �. Generally this
is not known a priori, and several values of � are tested, leading to multiple
testing problems. In order to circumvent this problem, Tango (2000) developed
the maximized excess events test (MEET). This statistic searches for the value of
� which gives the smallest p-value of the observed value of C�, denoted c�, as
follows,

P = min
�

Pr	C� > c��H0� �
�

This is implemented by allowing � to assume discrete values near zero up
to about half of the size of the study area and performing a line search over
these values of �. Monte Carlo simulation methods are used to obtain the null
distribution of P.

8.3.2 The Interpoint Distribution Function
and the M Statistic

The M statistic uses the interpoint distance distribution and its empirical cumu-
lative distribution function (ecdf) to perform inference. Consider a spatial distri-
bution P�x� defined over a bounded region of the plane. Let the point distribution
over the region be absolutely continuous, so that for two independent and
identically distributed points x1 and x2 in the region, P�x1 = x2� = 0. For any
such point distribution P, if one defines a nonnegative distance (or dissimil-
arity) function d, then the random variable D = d�x1�x2� has some distribution
PD�d�. We call D the interpoint distance between two independent points. The
cdf F�·� of D is F�d� = EI�d�x1�x2� ≤ d�, where I�·� is the indicator function and
E denotes expectation with respect to the P ×P distribution.

Extending the usual definition of an ecdf for random samples, one can
define the ecdf of the interpoint distances associated with a random sample
x1� � � � �xn as

Fn�d� = 1
(

n

2

)
∑

1 ≤ i < j≤n

I�d�xi�xj� ≤ d��

The quantity
√

n�Fn�d� − F�d��, considered as a stochastic process indexed
by d, converges weakly to a Gaussian process (Silverman, 1976; Bonetti and
Pagano, 2004a). Because of the very definition of a Gaussian process, this
general result implies that for a fixed value d the cdf Fn�d� has

√
n-convergence

to F�d�.
More generally, consider the empirical cdf Fn�q� = �Fn�q1�� � � � � Fn�qk��

computed at a finite number k of fixed values q = �q1� � � � � qk�. The cutoff
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points qj are typically chosen to be the � j/k�100 % percentiles of the distribution
of D. If the range of D is unbounded, we set qk = �. Then, the weak
convergence implies that the joint asymptotic distribution of the centered
ecdf

√
n�Fn�q�−F�q�� = √

n�Fn�q1�−F�q1�� � � � � Fn�qk�−F�qk�� is asymptotic-
ally multivariate normal with covariance matrix � = 	�a�b
, with

�a�b = E�I�d�x1�x2� ≤ qa� d�x1�x3� ≤ qb�

−EI�d�x1�x2� ≤ qa�EI�d�x1�x3� ≤ qb��

A number of standard test statistics can be used to evaluate the distance
between Fn�·� and F�·� for hypothesis testing, but the lack of independence
among observed distances between individuals precludes the use of standard
statistics without using appropriate modifications.

The noted asymptotic normality suggests the following statistic to measure
the distance between Fn�q� and F�q�:

M̃�Fn�q�� F�q�� = �Fn�q�−F�q��T �−�Fn�q�−F�q���

a Mahalanobis-like statistic, where �− is a generalized inverse (see Rao and
Mitra, 1971) of the covariance matrix of the vector Fn�q�. For definiteness we
use the Moore–Penrose generalized inverse. In applications we typically use an
estimator of M̃: consider the quadratic form

M�Fn�q�� F�q�� = �Fn�q�−F�q��TS−�Fn�q�−F�q���

where S is the estimated covariance matrix, obtained by generating repeated
samples of size n from an assumed null spatial distribution of the individuals over
the region of interest. To calculate S we could also take repeated samples from
historic data, if available. We note that the M statistic can also be computed
when the data consists of counts recorded at a finite number of fixed loca-
tions (see Bonetti and Pagano, 2004a), with minor modifications. If these fixed
locations are a result of a discretization of the individuals addresses, there is
the possibility of a loss of power to detect deviations from the null geographic
distribution.

An alternative definition of M can be given in terms not of the cumulative
distribution function, but of its first differences at the subsequent bin counts
along the distance axis. The ecdf and the cdf of D are therefore summarized by
the observed proportions oj and the expected probabilities ej = j/k within each of
the bins, with j = 1� � � � � k. The variance–covariance matrix in that case needs
to be modified in the obvious manner, since the first differences are a linear
combination of the values of the cumulative distribution functions.
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As an alternative, a consistent estimator for the variance–covariance matrix
� can also be constructed. The covariance matrix can be estimated consistently
by the terms

�̂a�b = 4

{
1
(

n

3

)
∑

1 ≤ i < j<k ≤n

h�Xi�Xj�Xk� qa� qb�−
[

1
(

n

2

)
∑

1 ≤ i < j≤n

I�d�Xi�Xj� ≤ qa�

]

×
[

1
(

n

2

)
∑

1 ≤ i < j≤n

I�d�Xi�Xj� ≤ qb�

]}

�

where

h�Xi�Xj�Xk� qa� qb� = 6−1
∑

�

�I�d�X�1
�X�2

� ≤ qa� d�X�1
�X�3

� ≤ qb�

is the symmetrized kernel computed over the collection � = 	��1� �2� �3�
 of the
six permutations of the indices �i� j� k� (see Bonetti and Pagano, 2004b). In the
calculation of this estimator, for efficiency the triple sum should be implemented
as a single loop by making use of (fast) matrix multiplications for the inner sums.

8.3.2.1 Example

As an example, consider points uniformly distributed on the unit square �0� 1×
�0� 1. The distribution of the interpoint distance between two such points
is as described in Bartlett (1964). The approximate quantiles at probabilities
(0.2, 0.4, 0.6, 0.8, 1) from that distribution are (0.2912, 0.4435, 0.5891,
0.7573, 1.4142). Using these as cutoff values, consider the empirical estimator
of that cdf Fn�qh� at the deciles qh� h = 1� � � � � 5. Note that q5 = 21/2 is the
largest possible interpoint distance on the unit square, and that the cumulative
distribution function is always equal to one for that value, so that consideration
of Fn�dh� at dh� h = 1� � � � � 4 suffices.

Table 8.1 shows the asymptotic variance–covariance matrix ��∗� of
n1/2�Fn�d1�−F�d1�� � � � � Fn�d4�−F�d4��, as estimated from 3000 samples of size
5000.

We then considered four sample sizes n = 100, 250, 500, and 1000. For each
sample size we computed the estimator of the variance–covariance matrix � one
hundred times, as described above. On the left-hand side of Table 8.2 we report,
for each sample size and for each element of the matrix, the relative bias of
the variance–covariance matrix estimator, computed as the difference between
the average of the 100 matrices and �∗, divided by �∗. On the right-hand side
of Table 8.2 we report, also for each sample size and for each element of the
matrix, the coefficient of variation relative to �∗, that is, the ratio between the
standard deviation of each term as computed from the 100 matrices and �∗.

The variance–covariance matrix estimator appears to be centered satisfact-
orily at the true (as estimated by �∗) variance–covariance matrix of the ecdf of
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Table 8.1 Estimated variance–covariance matrix � of√
n times the interpoint distance ecdf. The matrix is based

on 3000 samples of size 5000.

d1 d2 d3 d4

d1 0.011 0.022 0.029 0.027
d2 0.022 0.051 0.068 0.058
d3 0.029 0.068 0.092 0.077
d4 0.027 0.058 0.077 0.060

Table 8.2 Relative bias and coefficient of variation (relative to �∗ in Table 8.1) of
the estimator of �.

Relative bias
n = 100

d1 d2 d3 d4

d1 −0�06 −0�05 −0�04 −0�03
d2 −0�05 −0�05 −0�04 −0�02
d3 −0�04 −0�04 −0�03 −0�02
d4 −0�03 −0�02 −0�02 0�00

n = 250

d1 d2 d3 d4

d1 0�02 0�02 0�02 0�01
d2 0�02 0�01 0�01 0�01
d3 0�02 0�01 0�00 0�00
d4 0�01 0�01 0�00 0�00

n = 500

d1 d2 d3 d4

d1 0�05 0�05 0�04 0�04
d2 0�05 0�03 0�02 0�02
d3 0�04 0�02 0�02 0�02
d4 0�04 0�02 0�02 0�01

n = 1000

d1 d2 d3 d4

d1 0�04 0�04 0�03 0�03
d2 0�04 0�03 0�02 0�02
d3 0�03 0�02 0�02 0�02
d4 0�03 0�02 0�02 0�02

Coefficient of variation
n = 100

d1 d2 d3 d4

d1 0�60 0�45 0�35 0�24
d2 0.45 0.28 0.19 0.13
d3 0.35 0.19 0.12 0.08
d4 0.24 0.13 0.08 0.11

n = 250

d1 d2 d3 d4

d1 0.35 0.29 0.24 0.16
d2 0.29 0.19 0.13 0.09
d3 0.24 0.13 0.08 0.05
d4 0.16 0.09 0.05 0.07

n = 500

d1 d2 d3 d4

d1 0.20 0.17 0.14 0.09
d2 0.17 0.11 0.07 0.05
d3 0.14 0.07 0.04 0.03
d4 0.09 0.05 0.03 0.05

n = 1000

d1 d2 d3 d4

d1 0.13 0.11 0.09 0.06
d2 0.11 0.07 0.05 0.03
d3 0.09 0.05 0.03 0.02
d4 0.06 0.03 0.02 0.03



UNCORRECTED P
ROOFS

Spatio-temporal surveillance: an example 155

the interpoint distance. The relative bias of the estimator is reassuringly small
(less than or equal to 6 %) even for the smaller values of n. The variance of the
estimator is such that the relative standard errors only fall below 20 % when
the sample size n is at least equal to 500. Lastly, it should also be noted there
there tends to be more bias and variability in the estimation of the variances
and covariances that involve the cdf evaluated at small distances compared to
larger distances.

8.4 SPATIO-TEMPORAL SURVEILLANCE: AN EXAMPLE

Although the focus of this chapter is on spatial methods, we may also consider
the temporal aspect of a surveillance data stream, as well as methodology that
integrates the spatial and temporal information for the purposes of surveillance.
This integrated approach is often referred to as spatio-temporal surveillance. In
this section we illustrate the spatial methods described above with a real data
set, and then continue our example with this data set to illustrate the utility of
temporal and spatio-temporal methodology. To simplify the exposition we only
consider the day-to-day behavior of the system and ignore any memory from
one day to the next. Clearly, a real system would have memory beyond a single
day (see Reis et al., 2003).

The data set that we use to illustrate these methods was collected by a large
health provider in Massachusetts. As patients arrive for emergency care, their
cases are geocoded (typically the residential or billing address of the patient), and
this information is centralized electronically on a daily basis. In the interest of
anonymity, in this exposition the spatial data provided has been aggregated by
census tract, with jittering to further conceal the true locations of the individual
patients involved. We consider a subset of these electronic data, consisting
of upper respiratory infections (URIs) arriving at emergency and urgent care
departments for this provider between the dates of January 1, 1996 and October
30, 1999, a stretch of 1399 days or nearly four years of daily data.

This data stream thus provides the temporal patterns of disease in the form of
the number of cases arriving each day, as well as the spatial patterns of disease
produced as the locations of patients change over time. For all further analysis,
we have divided the data into three groups according to the day of the week:
weekends and holidays, days after weekends and holidays, and the remaining
days in the week. This was necessary because some of the locations provided
were closed on weekends and holidays, leading to a stratification of case volume
and spatial patterns on different days of the week.

Since there were no known bioterrorism attacks in Massachusetts during the
period of study, for the purpose of evaluating methods, we chose to augment the
real data with simulated clusters. To this end, we created three new data sets.
For two, we chose six adjacent census tracts in close proximity and added one
additional URI per day per tract, for a total of six additional cases per day. For
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brevity, we call such a simulated signal a ‘cluster’. The two data sets contain
clusters centered around census tracts labeled 477 and 179 respectively, and we
refer to the corresponding data sets accordingly. In a third round of simulations,
we added both clusters of six cases, for a total of 12 additional cases (six each
in the two separate locations; see Figures 8.2 and 8.6).

8.4.1 Temporal Component

Before consideration of the spatial and spatio-temporal surveillance of the
Massachusetts data, we briefly describe an approach to the temporal surveil-
lance of such data. Rather than describe the variety of methods available (see
Chapter 2), we simply describe the modeling approach that we have taken with
these particular data.

Let N�t� denote the daily case volume of URIs across the entire study area,
1 ≤ t ≤ 1399. The time series N�t� shows several trends which make modeling
challenging. Both the mean and variance of N�t� have strong seasonal and
day-of-week variation (see Figures 8.3 and 8.4). Closure of some locations on
weekends and holidays further complicates modeling and analysis.

In order to construct a model for N�t� we first used standard linear regression
methods to fit a deterministic component for the mean expected case count.
This is essentially the approach described in Brookmeier and Stroup (2004,
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Figure 8.2 Locations of the census tracts with superimposed clusters, relative to the
remaining census tracts in the Massachusetts data set.
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sharp increases in the winter months.

Mon Tue Wed Thu Fri Sat Sun

0

50

100

150

Day

N
um

be
r 

of
 c

as
es

Figure 8.4 Number of cases by day of week.



UNCORRECTED P
ROOFS

158 Distance-based methods

pp. 203–231). The linear model included several harmonic terms for the charac-
teristic seasonal effect on URIs, as well several indicator variables corresponding
to identifiable day-of-week effects. An additional indicator for the months of
December through February (the well-known ‘flu season’) was included to
account for the frequent excess of cases in these months. The day-of-week vari-
ation is exhibited in both first and second moments, so after subtracting the
fitted values from the observed data we divided by the daily standard error in
order to standardize the residuals. Denote by ��t� the time series constructed
from each resulting data point; we can think of ��t� as a standardized residual
departure from the baseline mean.

The residuals ��t� are characterized by a high degree of autocorrelation. Our
goal is to model the residuals, resulting in a predicted value for N�t� that can
be compared to the observed value. Taking a simple approach, we used a first-
order autoregression (AR(1)) to model the autocorrelation. After inclusion of
the autoregressive terms the standard deviation of the residuals was reduced by
nearly 10 % from 0.923 to 0.838. Thus the full model is:

N�t� ≡ �0 +�1 cos
(

2�

365

)
+�2 sin

(
2�

365

)
+�3I�wkend�

+�4I�Monday�+�5 cos
(

2�

30

)
+�6 sin

(
2�

30

)

+�7I�flu season�+ interaction terms + ∈ �t��

��t� ≡ ∈ �t�

�
= ���t− 1�+��t��

Thus we can view N�t� as a test statistic for temporal surveillance, where we
consider any observed N falling in a critical region to raise an alarm.

8.4.2 Bivariate Test Statistic

In order to fully utilize the available information, we consider using a bivariate
test statistic, composed of the two statistics, the M statistic calculated daily and
N�t�, described above. In an abuse of notation we refer to their daily product
as NM, dropping the reference to time, t.

N�t� allows us to calculate a residual value for the number of cases arriving,
based on the time series prediction for that day, and the residuals are distributed
approximately normally. Simultaneously, log �NM� can be used to evaluate the
deviation of the spatial distribution of cases from normalcy. Theoretical research
(Bonetti and Pagano, 2004a) shows that asymptotically, NM follows a �2 distri-
bution with degrees of freedom not dependent on N. This has two immediate
consequences. First, log�NM� and N are asymptotically independent. Second,
the log of a �2 variable is approximately normal, therefore log�NM� is approxim-
ately normal as well. Due to the independence of N�t� and NM, standard tech-
niques from multivariate analysis are applicable for construction of an elliptical
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or other appropriately chosen rejection region for a bivariate normal population
at prespecified alpha level that we can use to test for deviations from normalcy.

Another approach we can use is to consider bivariate values in the event of a
bioterrorist attack; in this case there is an optimal discriminator (the quadratic
classification rule) between two bivariate normal populations (Johnson and
Wichern, 2002, Section 11.3) in order to decide if an attack has occurred.
This rule defines a classification boundary via a quadratic form (defined by
means and covariances of the training set populations) in order to assign new
observations to one of the existing populations. The two populations in this case
would be the bivariate distribution under the null, and the modeled bivariate
distribution under the alternative of a biological attack. The classification rule is
a quadratic form that, given ��t� and log �NM� on a particular day, assigns
this observation to either the null or alternative population. In Figure 8.5
we illustrate a typical case of the null and alternative populations, together
with the boundary of the discriminator. This rule minimizes the expected error
of misclassification. The false positive rate can be controlled by shifting the
quadratic boundary appropriately, as determined via simulation or resampling
of the historical record.

8.4.3 Power Calculations

With each of 1399 days of data, we added a simulated cluster to each day
and compared the power of temporal, spatial, and spatio-temporal statistics to
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detect such a signal. Power calculations were performed separately for each
of the three daily categories, since prediction and behavior differ within each
of these categories. We define power as the ratio of daily detections to the
total number of days observed. Using the statistics discussed above, we calcu-
lated power based on the simulated disease signal in our three constructed
data sets.

For the univariate test statistic based on time series modeling, we calculated
power to detect a temporal signal in the data. Using the first 1096 days (three
full years) to train the model, power was calculated to detect an additional 6, 9,
or 12 cases added to the case counts of the final 303 days of data. Results are
shown in Table 8.3 (these results are not stratified by location since the statistic
depends only on the number of cases and not the spatial locations). We see
that the power to detect a disturbance increases as the size of the disturbance
increases, as it should.

For the three data sets of clustered data, we calculated values of the two
test statistics on each of the 1399 days available, and compared the value of
the statistics to their respective distributions under the null hypothesis of no
clustering. These null distributions are determined using resampling methods
with the unaltered historical data. Results are shown in Table 8.4.

When considering a bivariate statistic we generate a training sample based
on a modeled signal consisting of six cases near location 179, superimposed on
each of the first 1096 days of data. The temporal test statistic is N, and for the
spatial statistic we choose log �NM�. Here, the transformation of the test statistic
M to log �NM� standardizes the distribution for differing numbers of cases, and
the logarithm gives a statistic that is roughly normally distributed.

Following this approach, we generate two distinct bivariate normal popula-
tions of values, consisting of � residuals together with log �NM� calculations for
1096 days of null and alternative training data. For the simulated clusters in the
final 303 days of data, we calculate the corresponding bivariate test statistic and
use the quadratic classification rule to place each day’s simulated cluster into
the null (no signal) population or the alternative (signal present) population.
Power in this case is the number of clusters classified in the alternative over
total number of observations. Results are shown in Table 8.4.

The power of the univariate statistic N�t� which detects deviations from the
predicted number of cases on a daily basis illustrates the difficulties of time
series modeling for public health surveillance. Rather than rely on a simple

Table 8.3 Power to detect temporal clusters.

Hol./wkends
94 days

Wkdays
165 days

Day after hol.
44 days

Overall weighted
average

N + 6 0�266 0�248 0�250 0�254
N + 9 0�479 0�315 0�318 0�366
N + 12 0�755 0�467 0�364 0�541
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Table 8.4 Power to detect various cluster models. Group 1 refers to the cluster centered
at tract 179, with an additional case added to tracts 179, 182, 183, 184, 191, and
192. Group 2 refers to the cluster centered at tract 477, with an additional case added
to tracts 477, 478, 479, 480, 482, and 484.

Wkends/hol.
438 days

Wkdays
749 days

Day after hol.
212 days

Overall
weighted
average

Group 1 MEET 0�813 0�194 0�099 0.373
N + 6 M statistic 0�495 0�362 0�250 0.387

Bivariate statistic 0�585 0�394 0�227 0.429

Group 2 MEET 0�769 0�085 0�066 0.296
N + 6 M statistic 0�475 0�295 0�222 0.340

Bivariate statistic 0�543 0�358 0�250 0.399

Groups 1 & 2 MEET 0�986 0�427 0�226 0.571
N + 12 M statistic 0�568 0�430 0�325 0.457

Bivariate statistic 0�904 0�606 0�386 0.667

autoregression, results could be improved by considering a multivariate periodic
autoregression (Pagano, 1978). For both the MEET and M statistics, power is
consistently higher for weekends and holidays than for other types of days. On
weekends and holidays, mean case volume is much lower at the clinics. This
leads to a higher signal-to-noise ratio in the simulated data and thus a more
detectable spatial aberration when a cluster of fixed magnitude (6 or 12 cases)
is added to the data. The MEET is especially sensitive to this type of aberration,
as adding one case to a region where the expected number of cases is minuscule
greatly inflates the statistic. Although the MEET has especially high power on
weekends and holidays, the power of the MEET statistic declines much more
rapidly than M as the case volume increases.

Both spatial statistics perform quite well in detecting the simultaneous
179/477 clusters. Superior performance on data sets containing multiple
clusters is a characteristic typically shared by distance-based methods of cluster
detection as compared to other spatial methods (Kulldorff et al., 2003; Ozonoff
et al., 2004).

The bivariate statistic shows promise for an effective use of available data.
The power results show that for these simulated clusters, the bivariate approach
outperforms the use of purely temporal or purely spatial information.

8.5 LOCATING CLUSTERS

Having decided that the M statistic indicates that there is a deviation from the
null distribution, the next step is to determine whether this deviation is caused
by an exogenous cluster, or clusters, of individuals, and to locate this cluster or
clusters.
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There are not too many principled guides in the literature for locating clusters,
especially if there is more than one cluster (see Lawson and Denison, 2002,
for discussion of small-area data). Fortunately, the M statistic related methods
based on distances suggest a natural method for locating clusters.

Here we concentrate on the spatial location problem, leaving the time
component to later studies. Let 	si


n
1 be the locations of the individuals, and

D = �dij� be the n×n distance matrix where dij is the distance between si and sj.
In Figure 8.6 we see a distribution of points in a plane with two clusters of points
superimposed. We presume that the null hypothesis about the distribution of
	si


n
1 has been rejected, and we now search to locate the exogenous cluster or

clusters that presumably were the reason for rejection.
Consider each row of the matrix of distances, D. Fixing on row i, the dij� j =

1� � � � � n, are a sample of independent distances from the point si. From the null
distribution, either theoretically or via Monte Carlo, we can determine what the
null distribution of points from si should be. Then we can compare this distri-
bution with the observed distribution of distances from si, and presumably will
be able to discern the points sj that belong to an exogenous cluster. Of course, it
is too much to hope that for a single i we will pick these sj with any confidence,
but if we gather information from all the si, one at a time, we can use the
aggregate information to identify the clusters. This is the intuitive description
of the method we use.

Choose a row i� i = 1� � � � � n, and determine the null distribution of the
distances from si. This may have to be achieved by resampling points from the
null distribution of points. Having determined this distribution, then, for a fixed
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Figure 8.6 Typical distribution of cases for the Massachusetts data set. Superimposed
clusters are denoted by a ‘+’.
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integer k > 1, determine the k equispaced quantiles for the distribution, and
hence create k equiprobable bins to receive the dij. The dij associated with the sj

in exogenous clusters will presumably give rise to bins with excessive counts.
These sj from exogenous clusters will presumably have a similar impact for
other i, and so a record can be kept of the sj which appear in bins that are
oversubscribed, as we consider each row i.

To aggregate over the rows, consider a scoring system. For each row i, let
score(i� j) = 1 if sj belongs to an oversubscribed bin. Then with each point sj

associate the

score�j� =
n∑

i=1

score�i� j��

Subsequently look at these scores to determine which ones are too large. These
are the ones that can be tagged as belonging to the exogenous clusters.

The binning process described above is a traditional way of determining good-
ness of fit. One of its disadvantages is that the underlying distribution of points
is continuous, whereas the binning is inherently discrete. This may manifest
itself in points which are in an exogenous cluster but, because of the discrete
character of the bins, fall just next door to an oversubscribed bin. To overcome
this effect of discretization, we compromise by defining a score function which
takes the value one for an oversubscribed bin, and the value 0.50 for the bins on
either side of the oversubscribed bin. If the oversubscribed bin is on a boundary
(either it is the first or last bin) then it will only have one neighbor.

This scoring system is, of course, one of an infinite number of scoring systems
one can devise.

The only remaining unknown is the definition of what we mean by an
oversubscribed bin. For a fixed i we can consider the n distances dij as a
sample of independent and identically distributed variables. Thus the counts
of the numbers falling into the k bins can be considered as the realization of
a multinomial distribution of size n with equiprobable cells, each with prob-
ability 1/k. We can determine a bin to be oversubscribed if the number of
distances in the bin exceeds n/k by two standard deviations. Other cutoffs can be
entertained.

The last step is then to determine how large score(j) must be before we declare
sj to be a location within a cluster. A cutoff can be determined via Monte Carlo
methods.

This method is exemplified below.
We now return to the example taken from data from a large health care

provider in Massachusetts. We wish to show the efficacy of the above method
in locating clusters in the data. Again, we subset the data by the day of the
week (weekends/holidays, day after weekend/holiday, and weekdays).

As a measure of the adequacy of this method, we borrow from methods used
in diagnostic testing and report estimates of sensitivity and specificity. Suppose
our method tags b regions as a comprising cluster or clusters. In our setting,
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we define sensitivity as the probability of detecting the regions that actually
constitute the cluster(s). Specificity is defined as the probability that the regions
that are not tagged are not in the cluster(s).

Table 8.5 provides a summary of the results of this method applied to the
Massachusetts data. Here we give results for detecting the three cluster models
(region 179, 477, and a cluster in 179 and 477 simultaneously) for the three
different types of days (weekends and holidays, weekdays, and days after holi-
days). We consider three different significance levels for determining the cutoff
for the scores: 0.05, 0.10 and 0.15. Increasing the significance has the effect
of increasing sensitivity and decreasing specificity. However, specificity remains
high in all scenarios.

In the surveillance setting, we would often be satisfied with detecting at least
part of the cluster. Therefore, we can imagine a much more forgiving definition
of sensitivity as the probability of detecting at least one of the cluster regions.
In other words, we are not concerned that we detect all of the regions in
the cluster, as health professionals alerted by the alarm would likely fan out
from investigating that region to surrounding areas that would likely comprise
the cluster. Were we to use this as a measure of efficacy, the method would
undoubtedly appear even better. The last column probably best approximates
the ubiquitous 95 % specificity.

On the other hand, a high specificity is also desirable. A typical system may
require a decision each day and missing an outbreak might lead to disastrous
consequences; but, by the same token, too many false positive alarms might lull
the analyst into treating the system with skepticism and subsequently missing
a valid alarm. It is thus comforting to see the high specificities in Table 8.5.

Table 8.5 Sensitivities and specificities for locating the clusters with the Massachusetts
data set. Results are given with the cutoff for the score being determined as the 95th,
90th or 85th percentiles of the empirical distribution of the scores.

95th 90th 85th

Sens. Spec. Sens. Spec. Sens. Spec.

Group 1, N + 6
Hol./wkends 0.76 0.99 0.84 0.99 0.89 0.99
Wkdays 0.61 0.98 0.73 0.96 0.89 0.95
Day after hol. 0.59 0.97 0.68 0.95 0.79 0.94

Group 2, N + 6
Hol./wkends 0.77 0.99 0.84 0.99 0.88 0.98
Wkdays 0.60 0.98 0.75 0.96 0.82 0.98
Day after hol. 0.63 0.97 0.72 0.95 0.81 0.94

Group 1 and 2, N + 12
Hol./wkends 0.45 0.99 0.61 0.99 0.76 0.98
Wkdays 0.45 0.98 0.62 0.96 0.72 0.95
Day after hol. 0.48 0.97 0.63 0.95 0.73 0.93
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8.6 CONCLUSION

Spatial surveillance has as it goal the recognition of deviations from the ‘normal’
distribution of events in a region. We have shown the utility of distance methods
in achieving the stated objectives of spatial surveillance. Distance methods are
characterized as statistical methods that utilize the distances between events in
detecting aberrations in spatial behavior.

Two statistics are immediately applicable for use in spatial surveillance. The
MEET statistic is widely recognized in contemporary literature and practice. It
is only applicable to aggregated data, such that the data consists of counts of
events within each spatial region. The statistic has been shown to have good
power, especially when case volume is low relative to the increase in the number
of cases attributed to a cluster.

Much of the focus of this chapter has been on the M statistic. This statistic
seeks to detect changes in the distribution of the interpoint distances by consid-
ering a statistic that is similar to the Mahalanobis distance. This can be easily
applied to data streams with either aggregated or exact location information.

The M statistic can further be extended to incorporate temporal trends in
the data stream, as exemplified by the bivariate statistic illustrated above. Not
surprisingly, this leads to an increase in power for the detection of anomalies
in the data, as one would expect such a disturbance to represent an increase in
case volume, as well as a disturbance in the spatial distribution.

Spatial surveillance requires not only an alarm to be sounded when a disturb-
ance has occurred, but also some indication of the location and shape of the
disturbance to facilitate further investigation and efficient methods to control
and diffuse the source of the disturbance, inhibiting further spread to the popu-
lation. We have shown an effective method for locating the source of the signal
causing an alarm with the M statistic. Such methods are crucial to the success
and efficacy of a surveillance system.

Distance methods are a natural tool for spatial surveillance. The issues
presented by this problem require methods that incorporate information
extending beyond a simple mean or other traditional statistics that are often
employed when confronted with data on the real line. The increased dimension-
ality and correlation of the data call for methods that can distinguish between
normal and abnormal behavior for an infinite number of scenarios that are not
easily characterized or classified. Distance methods appear to have the potential
to capture the complexity of a spatial distribution. Further, statistics such as M
allow for incorporation of additional information into the data stream, such as
temporal trends.

It would be unfair to fail to recognize the many difficulties that arise when
working with distance data. As has been illustrated above, these methods still
require much refinement and further research. Working with the dependencies
intrinsic in interpoint distances is complicated and requires further rigorous
investigation. Much of these complexities can be circumvented in practical
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implementation via resampling methods. However, to better understand, gener-
alize, and optimize these statistics, greater theoretical understanding is needed.
It has also been shown that theoretical developments can lead to an increase
in efficiency and decreases in computation time. This is exemplified by the
estimation of the variance–covariance matrix for the M statistic.

We advocate the use and further development of distance methods in spatial
surveillance. These methods have been shown to be effective and comple-
mentary when compared to quadrat methods, such as the spatial scan statistic.
Further, the M statistic has great promise in detecting spatial aberrations that
extend beyond simple circular clusters. Ideally, a surveillance system would
make use of multiple statistical methods, coupled with vigilant and timely
epidemiological investigation of alarms raised by these automated methods.
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