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A Method-of-Moments Estimation Procedure for
Categorical Quality-of-Life Data With

Nonignorable Missingness

Marco BONETTI, Bernard F. COLE, and Richard D. GELBER

Quality-of-life outcomes collected during clinical trials often have considerable amounts of missing data, which, if not appropriately
accounted for, may lead to bias in inferences. We introduce a method-of-moments (MM) estimating procedure for a model designed
to handle nonignorable missingness arising in categorical data measured on independent populations. The missingness mechanism
is assumed to be the same across the populations. We derive necessary and sufficient conditions for the identifiability of the model
and fit the model to quality-of-life data collected as part of a breast cancer clinical trial. We compare the MM estimator to the

maximum likelihood estimator in a simulation study.

KEY WORDS: Identifiability; Multinomial model; Nonignorable missingness; Quality of life.

1. INTRODUCTION

The importance of studying the quality of life of patients
participating in clinical trials is fully recognized, and the
collection of quality-of-life (QL) data directly from patients
is becoming common in clinical research (Berzon 1998).
Usually, a QL instrument is administered to the patients in
a study at a number of prespecified time points during both
the anticipated treatment period and the follow-up period.
Some studies attempt to collect QL data after a patient ex-
periences disease recurrence or exacerbation. A common
problem in the collection of QL data is that not all patients
fill out all of the questionnaires, and the missingness of an
observation may be related to the patient’s QL at the time
of the assessment (see Bernhard et al. 1998).

It is well known that nonresponse, or missingness, can
lead to serious bias when it is not appropriately taken into
account in the analysis. In particular, the probability that a
measurement is missing may depend on the actual, unob-
served value. Following the terminology of Little and Ru-
bin (1987), we call this phenomenon nonignorable missing-
ness. When the missingness probability is a function only
of other, observed quantities, then the outcome is said to
be missing at random (MAR). Otherwise, if the missing-
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ness probability is not a function of the observed or unob-
served quantities, then the outcome is said to be missing
completely at random (MCAR).

In this article we study the impact of nonignorable miss-
ingness on QL data from a clinical trial conducted by the
International Breast Cancer Study Group (IBCSG). IBCSG
Trial VII compared four chemoendocrine regimens for the
treatment of postmenopausal breast cancer. As part of the
trial, data were collected longitudinally on various QL do-
mains. These data were first reported by Hiirny et al. (1996)
using an MAR assumption in the analysis. More recently,
Fairclough, Peterson, Cella, and Bonomi (1998) evaluated
data from the same trial using five models that ranged
in assumptions regarding missingness (MCAR, MAR, and
nonignorable). The two nonignorable models considered by
Fairclough et al. were a joint mixed-effects model for the
longitudinal QL measurements and the time to a censoring
event such as disease progression or death, and a pattern
mixture model that assumes that the distribution of observa-
tions is a mixture of distributions with different patterns of
missing data. They found that results were similar for most
of the models used, with the exception of the complete-case
analysis, which included only the 33% of patients who com-
pleted all longitudinal assessments. In this article we expand
on this evaluation using a categorical data approach. The ad-
vantage of this approach is that we can directly model the
nonignorable missingness mechanism by assigning a miss-
ingness probability parameter to each of the categorical out-
comes. Our model assumes that outcome probabilities for
the QL categories differ among a number of independent
samples but that the missingness mechanism is the same
for each sample. In particular, we define three categories
for QL using the IBCSG data (good, medium, and poor)
and estimate outcome probabilities according to treatment
group.

Several approaches to model categorical outcomes sub-
ject to nonignorable missingness have appeared in the liter-
ature. Nordheim (1984) discussed estimation of the preva-
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lence of a genetic abnormality when the probability of
recording its presence or absence is a function of its ex-
istence. He assumed that the missingness probabilities are
known and derived explicit estimators for the underlying
distribution. He suggested using sensitivity analysis to as-
sess the impact of an incorrect specification of the missing-
ness probabilities. Fay (1986) and Baker and Laird (1988)
introduced a class of log-linear models that allow for non-
ignorable missingness and used the EM algorithm to obtain
the maximum likelihood estimators (MLEs) of the mod-
els’ parameters. They discussed the possibility that the es-
timators lie on the boundary of the parameter space. Their
framework allows for the fitting of different missingness
models, so that a wider sensitivity analysis than the one
discussed by Nordheim (1984) is possible. Park and Brown
(1994) extended the log-linear modeling within a Bayesian
framework to avoid boundary solutions during the estima-
tion of the parameters, because MLEs on the boundary may
not be stable.

The description of conditions for the identifiability of
models for nonignorable missingness is still an open prob-
lem. In general, a categorical model may be inestimable
even when it contains fewer parameters than the number
of degrees of freedom in the data (see Baker 1995 for one
such case). Fitzmaurice, Laird, and Zahner (1996) concen-
trated on this issue, describing maximum likelihood (ML)
estimation for logistic models. They proposed testing for
local identifiability through verification of the nonsingu-
larity of the Fisher information matrix. Global identifi-
ability may then be explored through an empirical pro-
cedure.

In Section 2 we introduce the IBCSG Trial VII and the
QL component of the study. In Section 3 we describe the
categorical model with nonignorable missingness, discuss
its identifiability, and propose a new method-of-moments
(MM) estimating procedure as an alternative to ML esti-
mation. We apply these techniques to the IBCSG data and
present the results in Section 4. Finally, in Section 5 we
compare the MM procedure to ML estimation in a simula-
tion study.

2. THE INTERNATIONAL BREAST CANCER
STUDY GROUP CLINICAL TRIAL

Between July 1986 and April 1993, the IBCSG en-
rolled 1212 postmenopausal patients with node-positive
breast cancer into a 2 x 2 factorial clinical trial evalu-
ating chemoendocrine treatment versus endocrine therapy
alone for postmenopausal breast cancer patients. The pa-
tients were randomized to receive one of four adjuvant reg-
imens: tamoxifen (tam) alone for 5 years; tam plus three
early single cycles of cyclophosphamide, methotrexate, and
fluorouracil (CMF) on months 1, 2, and 3; tam plus de-
layed single courses of CMF on months 9, 12, and 15; and
tam plus early and delayed CMF on months 1, 2, 3, 9, 12,
and 15. Treatment groups were balanced according to age,
race, type of primary surgery, number of positive nodes,
and tumor size. (See International Breast Cancer Study
Group 1997 for an extensive description of the trial and its
findings.)
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Patients were asked to complete a QL questionnaire at
the beginning of treatment, 2 months after the start of
treatment, then every 3 months for 2 years, and at 1 and
6 months after disease relapse. The QL questionnaire was
administered in the clinic prior to chemotherapy treatment.
Following Hiirny et al. (1996), we analyzed the answers to
the perceived adjustment/coping question: “How much ef-
fort does it cost you to cope with your illness?” (PACIS),
which was assessed with a single-item linear analog self-
assessment scale ranging from 0 (“no effort at all”) to 100
(“a great deal of effort”). We focused on the QL data col-
lected during the first 18 months following randomization.

Date of relapse was defined as the time when recurrent
disease was diagnosed or, if confirmed later, when it was
first suspected. Disease-free survival (DFS) was defined as
the length of the time from the date of randomization to any
relapse (including ipsilateral breast recurrence), the appear-
ance of a second primary cancer (including contralateral
breast cancer), or death, whichever occurred first. Overall
survival of patients within the first 18 months was very high
(around 95%) and roughly the same across treatment arms.
DFS, however, did have a more substantial absolute and dif-
ferential impact, and the treatment of patients was usually
modified after relapse. Because the intent of the analysis
was to assess QL prior to relapse and within the first 18
months, for the 175 patients (15% of the total) who relapsed
prior to the 18-month assessment, we only considered ob-
servations collected before relapse. We also excluded as-
sessments made within 3 days of the relapse, because the
patient might have known about the relapse when filling out
the form.

3. A MISSINGNESS MODEL FOR
CATEGORICAL DATA

3.1 The Model and Identifiability

Let Y; denote the outcome of an individual in the ith
group, and let p;; = Pr(Y; = j), where s = 1,...,¢ and
j = 1,...,k; q denotes the number of independent pop-
ulations; and k& denotes the number of categories for the
outcome variable. We call P = {p;;} the matrix containing
the probabilities p;;. We also let r = {r;} be the vector of
probabilities,

r; = Pr(Y; obs|Y; = j), i=1,...,k

For each j, r; denotes the conditional probability of ob-
serving the outcome variable given that the outcome vari-
able has the value j. Note that r; is independent of %, so
that the missingness mechanism is the same across the in-
dependent samples. We assume throughout that r; > 0 for
all j.

We call the collection M of the ¢ probability mass func-
tions and the missingness mechanism r a g X k model. We
say that a model M is nonidentifiable if there exists another
model M* # M such that Pr(Y; = jiM*)Pr(Y; obs|Y; =
Jy M*) = Pr(Y; = j|M)Pr(Y; obs|Y; = j, M) for all ¢ and
j (ie., Piry = Pyr;). When M is nonidentifiable, M and

ij'J ) .
M* are sometimes called “observationally equivalent.”
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A 2 x 2 model is nonidentifiable if and only if the two un-
derlying “true” probability mass functions are identical (see
Elashoff and Elashoff 1974 for a proof). This result suggests
that we may be able to reveal the structure of the nonignor-
able missingness acting on two dichotomous outcomes if
the missingness mechanism is the same for both outcomes,
and if the two underlying distributions are not identical. In
the Appendix we prove the following more general result:
A ¢ x k model is nonidentifiable if and only if the column
rank of the matrix P is not full. An immediate corollary
to this result is that for ¢ < k, the model is never iden-
tifiable. It also follows immediately from the proof in the
Appendix that a ¢ x k£ model with ¢ > & + 1 is nonidentifi-
able if (¢ — k + 1) or more of the distributions are
identical. (When ¢ = k, the model is nonidentifiable if
two or more distributions are identical.) After derivation
of this result, we became aware of the work of Glonek
(1999), which contains essentially the same result for the
case k = 2.

Observe how this last condition describes just one of
the many possible cases that would cause P to not have
full column rank, because this generally will happen when-
ever its number of linearly independent rows (and therefore
columns) is less than ¢g. As a simple example, consider the
following 4 x 4 model:

25 .25 .25 .25 .20
p— .40 .10 .20 .30 | . r— .10
2 .05 6 .15 |° .30
.10 .40 .30 .20 .60

It is easy to verify that this model is observationally
equivalent to the model defined by

22 23 .25 .30 23
pe_ |3 0020 36| . |1
17 .05 .60 .18 |’ 30
.09 .37 .30 .24 50

In fact, the two observed distributions are identical.

It should be noted that randomly dividing an outcome
category into two categories will not “generate” identifia-
bility, as the resulting matrix of probabilities would be less
than full rank. In particular, for finite sample size, this pro-
cedure could be dangerous, because the observed matrix of
counts might actually allow estimation of the parameters of
such a meaningless model.

Also, because the inference is based on observed finite
counts, one may not be able to identify a model that actually
would be identifiable, simply because of the particular sam-
ple produced by random variation. Observe how in general
one cannot empirically check identifiability of the model,
because formal verification of the conditions described ear-
lier requires knowledge of the true distributions. The issues
of model identifiability and estimate stability are closely
related, and we elaborate on this in the Appendix.

3.2 Method-of-Moments Estimation

Let n;; denote the number of times that outcome j is ob-
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served from sample i, where t = 1,...,¢gand j =1,...,k.
Letting n; denote the total number of observed and miss-
ing observations in sample ¢, we have that the number of
missing observations for sample i is n; — Z;“:l Ngj.

The MM estimation procedure proceeds by first esti-
mating the quantities p¢; = Pr({Y; = j} N {Y; obs}) =
Pr(Y; obs|Y; = j)Pr(Y; = j) = r;p;;. Therefore,
Dij = DY /r;. The outcome frequencies (ni1, ..., Nk, (n; —
Z;.“:l n;;)) for each ¢ = 1,...,¢ are realizations of a
multinomial random variable with the (k + 1) probabili-
ties (p9, 0%, - - Py (1 — Z§=1 p%;))- This is the observed
model, and we can estimate each value 2 with the corre-
sponding MLE p; = n;;/n;. Substituting, pf; /r; for p;; in
the fqrmula Z?Zl pi; = 1 yields the following system of
equations:

Pl/ri+ -+ D/ =1
Do/t Doy /e =1

(1)
ﬁgl/’l‘l + - +ﬁ2k/’l‘k =1.
Let us rewrite (1) in matrix form as
1 1/7‘1
1 1/7‘2
.| =D . ,  where D = [p7].
1 1/rk
We obtain the values 71,...,7; that minimize the ob-
jective function |[D(ri?,...,r;") — 17||?, which is the

squared distance of the left side of (1) from the vector
[1,1,...,1].

If we define 8; = 1/r; — 1, then it is easy to show
that this is equivalent to solving the optimization problem
ming(z — DB]'[z — D], where z = (I — D)1 and 8 > 0.
Standard techniques can be used, and once the solution B
has been found, all of the quantities r; and p;; can be ob-
tained immediately.

Inference can be conducted by bootstrapping from the
original sample. A (1 — «)100% confidence interval for the
parameters can be obtained by extracting the («/2)100th
percentile and the (1 — «/2)100th percentile from the col-
lection of estimates obtained from the bootstrap samples.
Using bootstrap confidence intervals has the advantage of
guaranteeing the validity of the intervals (i.e., they have
asymptotically correct coverage probabilities) even when
the point estimates lie on the boundary (see Hahn 1996).

Observe that the minimization is constrained. If the
model is correct and the sample size is sufficiently large,
then consistency of the p¢; implies that the foregoing mini-
mization would have the same solution if it were done with-
out constraints; that is, it would be the least squares solu-
tion (D'D)~'D’[1,...,1]". Some measure of the distance
between the two solutions thus might be a measure of the
model’s goodness of fit. Further work needs to be done in
this area, because boundary solutions commonly arise, par-
ticularly in small sample sizes. (This fact was also observed
in Baker and Laird 1988 when fitting log-linear models.)
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As we have seen, for ¢ = k, we can invert the matrix D
and obtain a solution to the system in (1). In practice, how-
ever, inverting the matrix D may yield a solution outside
the parameter space. To avoid this problem, the constrained
minimization procedure is recommended even when ¢ = k.
Moreover, for n — oo, the matrix D! exists with proba-
bility 1, but for finite n, it might not, due to the particular
sample counts observed, even if the underlying model is
identifiable.

In the ¢ = k situation, the estimators obtained are a dif-
ferentiable function of the MLEs for the observed multino-
mial counts, and it is easy to show with the aid of the delta
method that they are asymptotically unbiased and normally
distributed (see Agresti 1990, sec. 12.2.1). For the general
case in which ¢ > k, it is not clear how the method-of-
moments estimates (MMESs) behave, and in Section 5 we
explore their characteristics.

As alast remark, the MMEs are very easy to obtain from
the table of counts. We used the function nnls in the pack-
age MATLAB (The MathWorks, Inc. 1998) to solve the
constrained optimization; similar functions exist in many
scientific packages.

3.3 Maximum Likelihood Estimation

We used a modified Newton—Raphson algorithm to obtain
the ML estimates. In the Appendix we report the expres-
sions for the log-likelihood and its first and second deriva-
tives. The modification consists of alternately maximizing
the likelihood, first with respect to the p;;’s jointly, and then
with respect to the r;’s jointly. We repeated these steps un-
til the global maximum was determined. We found that this
“hill-climbing” procedure was more successful than stan-
dard Newton—Raphson in converging to a solution.

ML estimation with the (modified) Newton—-Raphson al-
gorithm has the advantage that an estimate of the asymp-
totic covariance matrix of the parameter estimates can be
obtained as a byproduct of the maximization of the likeli-
hood. This covariance estimation, however, is not valid in
the case where any of the parameter estimates lies on the
boundary of the parameter space, a situation that seems to
be rather common with these models. In such cases it fol-
lows that the corresponding asymptotic confidence intervals
of the parameters are also not valid.

Moreover, our experience has been that ML estimation
is difficult in large problems. For example, the modified
Newton—Raphson procedure failed to converge in a 7 x 6
model (simulated data), and even in some of the 4 x 2 mod-
els discussed in Section 5. It may be possible to modify
the algorithm to obtain convergence; for example, by using
the EM algorithm or a combination of the two algorithms
(as suggested in Baker 1994). The MMESs can be used to
provide a sensible set of starting values for the parameters,
thus making it less likely for the algorithm to converge to
the wrong boundary, or to a local maximum. For the model
that we consider here, the MM procedure with bootstrapped
confidence intervals seems to be the simplest solution.

Journal of the American Statistical Association, December 1999

4. RESULTS

Following Hiirny et al. (1996), we analyzed the PACIS
scores collected within the first 18 months. We discretized
the PACIS measure by defining three possible values:
“good” (if PACIS < 13), “medium” (if > 13 and < 40),
and “poor” (if > 40). This recoding of PACIS scores, in
addition to allowing the use of a model that does not re-
quire strong distributional assumptions, has the advantage
of facilitating interpretation by clinicians, because results in
terms of categories of outcome are clinically meaningful.

The three categories of QL were defined using the distri-
bution of all the observed scores, so that each would con-
tain approximately one-third of the available data. We fit
a 4 x 3 model for each of the seven time points. The un-
derlying assumption is that perceived health (and thus the
measured PACIS scores) may differ across the treatment
groups, but the missingness mechanism must be the same
for each group. We allow for differences in the missingness
mechanism over time by fitting a separate model for each
time point.

Table 1. Discretized PACIS Scores in the Four Treatment Arms,
for Each Time Point, for 1,212 Patients

Early +
Tam Early Delayed delayed Total
Month PACIS only CMF CMF CMF (%)
306 302 308 296 1,212 (100)
1 Poor 96 112 103 108
Medium 75 89 103 82
Good 69 46 44 57
Missing 64 54 57 49 224 (18.5)
Relapsed 2 1 1 0 4 (.3)
3 Poor 43 81 67 83
Medium 68 79 76 79
Good 82 54 62 49
Missing 107 84 95 85 371 (30.7)
Relapsed 6 4 8 0 18 (1.5)
6 Poor 46 61 51 78
Medium 74 67 89 72
Good 86 76 68 68
Missing 86 92 81 75 334 (27.7)
Relapsed 14 6 19 3 42 (3.5)
9 Poor 40 56 70 71
Medium 74 77 65 80
Good 84 72 65 59
Missing 79 82 84 75 320 (26.5)
Relapsed 29 15 24 11 79 (6.5)
12 Poor 34 56 55 69
Medium 57 74 92 80
Good 96 75 71 58
Missing 78 72 61 70 281 (23.3)
Relapsed 41 25 29 19 114 (9.4)
15 Poor 26 41 52 60
Medium 56 70 82 71
Good 104 76 69 78
Missing 73 81 69 61 284 (23.5)
Relapsed 47 34 36 26 143 (11.8)
18 Poor 26 38 40 42
Medium 59 67 76 69
Good 92 84 75 73
Missing 70 74 75 77 296 (24.5)
Relapsed 59 39 42 35 175 (14.4)
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Tamoxifen (Tam) Alone (a), Tam + Early CMF (b), Tam + Delayed CMF (c), and Tam + Early + Delayed CMF (d).

Based on the discussion in Section 3.2, the model is iden-
tifiable if the corresponding 4 x 3 matrix of probabilities has
rank at least three. In fact, even though the identifiability
of such models cannot be checked, we know that the num-
ber of the groups must be at least as large as the number
of categories of the outcome variable. As we discuss in the
Appendix, having four groups makes it possible to obtain
more stable estimates for the parameters.

1.0 P—P
%) _—
O
&
L 05
[2]
Q
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Month

Figure 2. Probabilities of Observing the QL Conditional on the QL
Score, Estimated for Each of the Seven Time Points and for the Three
QL Scores Poor (P), Medium (M), and Good (G).

Table 1 summarizes, for each time point and each treat-
ment arm, the observed number of patients falling in each
of the three categories of the PACIS scores, as well as the
number of missing observations and the number of assess-
ments that were undefined due to prior relapse (“relapsed”).
The amount of missing data for the different time points
ranged between 18.5% and 30.7% of the total number of
patients (1,212). Note that the number of undefined assess-
ments (relapsed group) increases with time by definition,
and that there is a greater proportion of such assessments in
the tamoxifen alone arm compared to the chemoendocrine
therapy arms.

The observed and estimated (by MM) means of the dis-
cretized PACIS scores for the patients are shown separately
for each of the four treatment groups in Figure 1. The
means were computed by assigning the three values 0, 1,
and 2 to the three PACIS categories “poor,” “medium,” and
“good.” In this way, higher values of the discretized PACIS
reflect better quality of life. The estimates obtained by ML
were similar to those obtained by MM and are omitted for
brevity.

We note from Figure 1 that the estimated means (E) are
greater than the observed means (O). We computed the
area under the curve (AUC) measurement to summarize
and compare the quality of life of patients in the treatment
groups. The AUC consists of the integral of the estimated
outcomes for each treatment over time and is used as a
summary of longitudinal outcomes (see Fairclough 1997).
In the current application, the AUC can range from O if ev-
ery assessment is in the “poor” category over all 18 months
to 36 if every assessment is in the “good” category over
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all 18 months. The respective values of the AUC for the
four treatments a, b, ¢, and d were 21.5, 17.6, 18.1, and
16.4 for the “ignorable” model (O) and 23.2, 19.3, 19.5,
and 18.2 for the “nonignorable” model (E). Thus consider-
ation of the possibly nonignorable missingness adjusts all
of the estimates upward.

The model provides estimates for the probabilities

Pr( obs|PACIS) at each time point. These probabilities,
shown in Figure 2, they indicate that patients with “good”
QL scores were more likely to have missing observations.
This observation runs counter to the prevailing hypothesis
in oncology that “poor” QL scores are associated with a
greater likelihood of missing data. This, however, is based
mostly on attempts to measure QL in the advanced dis-
ease setting, where patients can be “too ill” to complete
the forms (see Simes et al. 1998). Troxel et al. (1998) sug-
gested that even in the adjuvant setting, lower QL is as-
sociated with higher probability of missing assessments.
Their analysis considered premenopausal breast cancer pa-
tients receiving chemotherapy and included QL measure-
ments only for months 1, 3, and 6. The present study was
on postmenopausal women who received endocrine therapy
or chemoendocrine therapy and included QL assessments to
18 months. It is possible in the adjuvant setting that patients
might feel “too well” to come in for clinic visits where the
form would be administered.
. Figure 2 also shows that some of the estimated missing-
ness probabilities were equal to 1. This boundary-solution
phenomenon is common to both estimating procedures
(MM and ML), and we believe that such boundary esti-
mates should be taken as an indication of the pattern of the
missingness mechanism rather than as the exact values of
its parameters.

Figure 3 shows the mean discretized PACIS scores (es-
timated by MM) according to treatment group. For treat-
ment comparison, we considered the contrast between the

1.5 -
@ 7E§§
S 10{4
o

0.5-

1 3 6 9 12 15 18
Month

Figure 3. Means of Discretized PACIS Scores Estimated From the
Model for the Four Treatment Arms Tamoxifen (Tam) Alone (A), Tam +
Early CMF (B), Tam + Delayed CMF (C), and Tam + Early + Delayed
CMF (D).
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AUC in the treatment arm involving only tamoxifen (A)
and the mean of the AUCs of the three chemoendocrine
therapy arms (B, C, and D). A 95% bootstrap confidence
interval was constructed by resampling based on each sub-
ject’s cluster of repeated measurements. The point estimate
for the contrast was 4.0, and the 95% confidence interval
(based on 10,000 samples) was [2.1,5.8], showing a con-
trast significantly different from O in favor of the tamox-
ifen alone group (with p < .05). In comparison, the same
contrast computed using the ignorable missingness model
(i.e., the observed frequencies) yielded a point estimate of
4.1 and the confidence interval 2.6, 5.6]. Thus, although the
separate treatment AUCs differed between the “nonignor-
able” and the “ignorable” models as shown previously, the
contrast of interest was similar between the two models.
The analysis of the AUC for discretized PACIS scores
showed that QL was significantly higher for the tamox-
ifen alone arm compared to the chemoendocrine therapy
groups. But this analysis did not take into consideration the
fact that a greater proportion of patients in the tamoxifen
alone arm relapsed within 18 months compared to the other
treatment groups. Quality-adjusted survival analysis is an
alternative approach that simultaneously considers both QL
and time to event differences between treatments. The Q-
TWiST (Quality-adjusted Time Without Symptoms of dis-
ease or Toxicity of treatment) method (Gelber, Cole, Gelber,
and Goldhirsch 1995) was applied to the overall survival,
disease-free survival, and toxicity duration data from the

Table 2. Parameter Combinations Used in the Simulations

Parameter P11 P21 P31 Pa1 ry r2
1 20 .40 60 .80 80 80
2 20 .40 60 .80 50 50
3 10 .20 30 .40 80 80
4 10 .20 30 .40 50 50
5 10 .25 75 .90 80 80
6 10 .25 75 .90 50 50
7 10 .20 30 .90 80 80
8 10 .20 30 .90 50 50
9 20 40 .60 80 95 80

10 20 40 .60 80 80 95
11 20 40 .60 80 80 50
12 20 40 .60 80 50 80
13 20 40 .60 80 70 30
14 20 40 .60 80 30 70
15 10 20 .30 40 95 80
16 10 20 .30 40 80 95
17 10 20 .30 40 80 50
18 10 20 .30 40 50 80
19 10 20 .30 40 70 30
20 10 20 .30 40 30 70
21 10 25 75 20 95 80
22 10 25 .75 90 80 95
23 10 25 .75 0 80 50
24 10 25 75 90 50 80
25 10 25 .75 90 70 30
26 10 25 .75 20 30 70
27 10 20 .30 20 95 80
28 10 20 .30 0 80 95
29 10 20 .30 90 80 50
30 10 20 .30 90 50 80
31 10 20 .30 90 70 30
32 10 20 .30 90 30 70
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Table 3. Ratio of Estimated MSE for MMEs Versus MLEs

n =30 n= 100 n = 1,000
Parameter  piy P21 P31 P41 ry rz P11 P21 P31 Pa1 ry r2 P11 P21 P31 Pa1 ry r2

1 .86 .98 97 1.14 .81 .81 1.05 1.1 98 1.7 90 1.07 106 1.14 128 113 1.06 1.03

2 .76 1.01 1.02 1.07 .63 69 1.04 1.01 1.14 1.48 .83 95 1.00 112 1.37 1.47 97 97

3 75 .89 .88 .90 .79 .70 .94 92 94 .91 .82 .78 .92 .99 .96 .99 .94 .98

4 52 .56 .73 77 .81 42 .80 .79 .87 .92 .90 .69 .93 94 1.03 .96 97 94

5 1.03 96 139 157 .95 91 1.05 1.04 1.31 1.65 1.07 95 1.07 1.00 127 1.68 .88 1.06

6 97 1.03 153 194 .89 89 115 107 175 283 1.12 97 113 1.01 1.71 251 1.06 1.12

7 95 99 1.06 1.16 .95 Q0 119 111 1.02 97 95 1.09 98 1.13 1.07 1.00 1.01 1.08

8 79 1.1 112 1.22 91 88 1.09 105 123 112 1.00 112 1.11 1.07 116 125 1.01 1.07

9 1.03 1.04 96 1.10 .95 .86 96 1.06 1.02 1.09 96 1.03 1.04 1.04 92 1.04 1.04 .98
10 1.07 115 120 1.48 .87 90 115 118 1.18 1.17 90 1.00 9 129 135 125 1.13 1.00
11 79 .97 94 1.09 .83 .92 .98 .87 98 1.09 .89 94 106 1.03 1.09 1.00 1.02 1.01
12 1.05 133 148 1.79 .82 .91 .89 135 176 1.75 1.08 92 103 159 197 155 1.03 1.14
13 1.02 97 .87 1.06 74 97 .99 .92 91 .90 .84 99 1.02 100 1.03 1.16 1.08 1.02
14 113 153 194 342 1.20 .87 .88 160 203 224 1.08 83 114 194 272 215 1.05 1.22
15 .79 .86 .95 .92 .79 .73 .92 95 1.01 1.05 1.02 94 1.00 .93 99 1.00 97 91
16 .89 .92 99 1.03 .81 75 1.01 97 1.02 1.12 .85 .79 .96 99 114 1.02 .93 .93
17 .65 .73 .80 .90 .83 .68 95 1.00 .90 .99 92 1.00 .99 97 1.01 1.05 1.01 1.07
18 61 .82 89 1.03 .88 .58 .80 1.01 1.06 1.06 .93 74 95 110 1.07 1.04 97 .90
19 67 .92 88 1.10 .83 .80 1.04 93 97 97 87 110 117 117 116 130 1.51 1.28
20 .48 .69 94 1.21 1.23 .48 74 96 1.08 1.18 1.14 65 1.02 1.21 135 1.14 .92 .95
21 96 1.02 98 1.10 .88 .83 .90 .98 97 1.11 96 1.02 98 1.06 .88 133 1.07 1.04
22 114 1.07 152 1.96 .82 95 1.00 1.16 1.51 1.69 99 1.01 1.08 1.06 1.61 189 105 1.13
23 1.05 .99 92 1.29 .93 .96 91 116 112 146 .83 .89 98 1.01 1.08 153 1.11 93
24 .87 117 234 362 1.10 .78 1.00 128 236 3.83 99 100 1.10 134 269 374 1.18 1.06
25 1.15 1.06 90 1.14 .84 1.05 .88 1.06 93 1.32 95 1.05 1.03 .95 99 1.58 .96 .89
26 81 125 331 599 1.10 71 110 135 343 6.63 .99 93 1.05 147 435 6.72 1.083 1.05
27 .99 .99 96 1.11 91 67 1.04 100 1.03 1.03 .95 .88 1.05 1.03 90 1.00 1.05 1.03
28 93 1.09 1.06 1.20 .94 .88 .87 107 126 1.02 1.01 .90 95 1.04 119 .96 .95 .89
29 1.09 105 107 125 1.09 1.11 95 1.01 98 1.18 115 1.16 1.03 .95 95 117 1.02 94
30 95 1.16 1.35 1.48 .89 .83 97 120 144 118 1.05 97 1.06 116 164 112 112 1.21
31 1.04 .99 99 1.14 97 1.32 93 1.02 1.01 124 110 117 1.1 95  1.01 112  1.08 .99
32 77 112 152 3.08 .89 .67 96 127 1.71 159 1.10 97 1.06 137 1.81 126 1.02 1.09

IBCSG Trial VII. The results showed that despite the higher
QL provided by tamoxifen alone, the superior control of
disease relapse achieved by chemoendocrine therapy bal-
anced the toxic effects of this treatment (Gelber et al. 1998).

The decision about the number of categories used to dis-
cretize the PACIS score is likely to affect the results, and
we have experimented with two and four categories. (More
than four categories would make the model not identifi-
able.) The cutoffs were chosen so that each category would
contain roughly the same number of observations. To prop-
erly scale the results for comparison with the three-category
model, the highest QL group was assigned a value of 2 and
the lowest a value of 0, and intermediate levels were equally
spaced.

After appropriately rescaling the y-axis to account for
the different number of categories, the plots of the esti-
mated means according to treatment were similar to those
shown in Figure 3. The point estimates for the AUC contrast
between tamoxifen alone and the other treatments were 4.4
for the two-category case and 3.4 for the four-category case.
The 95% bootstrap confidence intervals were [2.7,6.3] and
[1.6, 5.0], confirming the statistical significance of the result
obtained using three categories.

The model that we describe here could easily be modified
to assume that the missingness mechanism behaves in a
different way—for example, that it is constant over time

but varying by group, or constant over time and group. In
the context of our data, however, a constant missingness
mechanism over time is not realistic, because the timing
of QL assessment did not always coincide with treatment
administration. Moreover, we wanted our model to allow
for patients’ changing attitudes toward QL assessment over
time.

5. SIMULATION STUDY COMPARISON OF
THE ESTIMATORS

We performed a simulation study to explore the prop-
erties of the MM estimators—in particular, to assess the
relative efficiency of the MMEs compared to the MLEs.
We considered the 4 x 2 model and explored an array of
possibilities for the values of the four parameters defin-
ing the distributions (p;; = Pr(Y; = 1),4 = 1,...,4 and
r; =Pr(Yobs|Y =j), j =1,2). Table 2 shows the 32 pa-
rameter combinations that define the simulation experiment.
As the table shows, we considered missingness mechanisms
with probabilities r; equal to at least .3 and included some
cases in which the missingness was actually ignorable (i.e.,
r1 = ro; rows 1-8).

For each set of parameter values, we simulated 1,000
samples of size n = 30,100, 1,000 and fit them using both
MM and ML. We then estimated the mean squared error
(MSE) of the resulting estimators, and decomposed it into
its bias and variance components. The bias component of
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the MSE was negligible for both estimating procedures,
with ratios between variance and MSE very close to 1. Table
3 shows the ratios of the estimated MSE for the MMEs ver-
sus MLEs of each of the six parameters. The results clearly
indicate that the MSE of the two estimators are very similar,
and that the MMEs do better than the MLEs in some cases,
particularly when the true model has ignorable missingness.

We also estimated the coverage probabilities of the
bootstrap-based 95% confidence intervals for MMEs of
the parameters in each of the models. These estimates
are shown as the nonitalic numbers in Table 4. The val-
ues are based on 500 samples simulated from each model,
and the confidence intervals were constructed from 100
bootstrap samples. The coverage probabilities are all very
close to .95 for large n, and are very satisfactory even for
n = 30.

It is possible to define the naive estimator for each
probability p;1, ¢ = 1,...,4, as the ratio between the
number of observations in category 1 and the total num-
ber of nonmissing observations Y;. Thus this naive esti-
mate assumes ignorable missingness. One can show that
the expected value of the naive estimator converges to
ripi1/(r1pi1 + ro(1 — pi)), whereas its variance converges
to Pr(Y; = 1]Y; obs)(1 — Pr(Y; = 1|Y; obs) E(N; | N; > 0),
where N; follows the binomial(n, (r1p;1 +72(1—p;1)) distri-
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bution and represents the total number of nonmissing obser-
vations. It is easy to show that the asymptotic distribution of
the naive estimator is normal, and thus theoretical coverage
probabilities for, say, 95% confidence intervals for the pa-
rameters can be easily computed under different alternative
hypotheses. These coverage probabilities are shown in italic
type in Table 4 for the parameter combinations considered
in the simulation study. Observe how the theoretical cover-
age probabilities for the first eight parameter combinations
are exactly 95%, because these combinations correspond to
ignorable missingness. As anticipated, the coverage proba-
bilities for the naive estimators decrease (quite rapidly) as
the sample size increases when missingness is informative
(rows 9-32).

6. DISCUSSION

We have introduced a simple estimation procedure that
can be used to account for the effect of nonignorable miss-
ingness in QL data collected as part of clinical trials. By
assuming that the missingness mechanism is the same at all
time points, we can construct a model that is likely to be
identifiable.

The MM estimating procedure that we propose is to be
used as an alternative to the usual ML method. For the par-
ticular 2 x 2 model, the resulting estimators are identical,

Table 4. Coverage Probabilities (in Percent) for 95% Confidence Intervals for the Model Parameters

n=30 n= 100 n = 1,000

Parameter  p1¢ P21 P31 Pa1 rrot2 pre P21 P31 Pat ry t2 Py P21 P31 Pat ry o 2
1 95 95 94 95 94 95 93 95 93 94 94 95 95 95 96 95 93 95 94 92 93 95 94 95 96 95 94 95 95 92
2 97 95 96 95 94 95 91 95 95 97 95 95 93 95 94 95 94 95 96 95 92 95 93 95 93 95 93 95 93 95
3 96 95 94 95 93 95 94 95 98 95 96 95 95 95 93 95 93 95 94 95 94 95 93 95 92 95 94 95 93 93
4 97 95 94 95 94 95 93 95 98 96 98 95 96 95 94 95 95 95 98 97 92 95 93 95 95 95 94 95 94 95
5 93 95 92 95 93 95 92 95 92 92 93 95 94 95 95 95 94 95 95 95 94 95 94 95 94 95 94 95 95 O3
6 93 95 94 95 93 95 93 95 95 96 95 95 94 95 94 95 96 95 94 93 94 95 93 95 95 95 94 95 94 92
7 94 95 93 95 96 95 91 95 92 93 95 95 95 95 94 95 93 95 94 93 96 95 93 95 93 95 94 95 95 95
8 94 95 94 95 95 95 85 95 94 95 92 95 92 95 93 95 92 95 95 93 94 95 94 95 94 95 93 95 94 94
9 94 94 93 93 95 93 90 93 95 91 94 90 93 88 94 88 93 90 95 93 95 49 93 30 92 29 94 45 94 94
10 92 93 94 93 92 93 94 94 90 93 94 90 94 88 92 88 94 90 94 94 92 45 94 29 95 30 96 49 94 93
11 95 88 94 83 93 82 91 86 96 94 94 71 93 55 94 52 94 63 94 94 96 17 93 0 9% 0 93 0 94 93
12 96 86 95 82 95 83 92 88 93 95 97 63 94 52 92 55 95 71 92 93 94 0 95 0 94 0 93 7 95 93
13 94 79 93 66 91 60 86 68 95 92 94 43 93 18 93 12 93 22 94 94 95 0 94 0 95 0 95 0 94 94
14 95 68 94 60 96 66 90 79 93 93 97 22 93 12 94 18 94 43 94 95 095 0 96 0 93 0 9% 0 94 95
15 93 94 93 94 93 93 95 93 98 87 93 92 94 90 94 89 95 88 96 91 95 69 94 49 94 37 94 30 95 94
16 93 94 92 93 95 93 92 93 93 97 95 92 94 90 94 88 94 88 96 95 95 65 94 45 93 34 95 29 95 94
17 94 91 93 88 95 85 92 83 97 91 93 82 94 71 94 62 92 55 95 93 95 9 95 17 95 0 93 0 95 95
18 95 90 94 86 94 83 93 82 96 98 95 76 94 63 96 55 94 52 94 96 94 2 9% 0 95 0 93 0 93 96
19 90 87 92 79 92 72 93 66 93 88 93 67 93 43 93 27 95 18 95 93 94 0 92 0 93 0 93 0 95 94
20 983 79 94 68 95 62 95 60 94 95 95 44 95 22 95 14 94 12 91 94 95 0 96 0 96 0 94 0 93 98
21 93 94 92 93 93 93 88 94 94 91 94 92 94 90 94 89 94 92 94 94 92 69 93 42 95 39 94 65 95 93
22 91 94 95 93 92 93 92 94 93 92 94 92 93 89 94 90 94 92 93 96 94 65 95 39 96 42 95 69 94 95
23 94 91 94 87 92 84 90 90 95 96 93 82 93 66 94 58 93 76 93 92 95 9 9% 0 95 0 94 2 96 94
24 94 90 95 84 94 87 91 91 92 92 92 76 95 58 93 66 94 82 94 92 95 2 93 0 92 0 93 9 92 94
25 93 87 95 75 89 65 91 79 96 96 92 67 91 34 94 17 92 44 93 92 94 0 9% 0 96 0 95 0 95 96
26 92 79 93 65 95 75 91 87 95 95 93 44 94 17 96 34 94 67 93 93 94 0 94 0 92 0 92 0 93 93
27 93 94 92 94 94 93 91 94 89 91 95 92 95 90 95 89 90 92 94 94 93 69 94 49 95 37 95 65 94 94
28 91 94 93 93 91 93 89 94 93 93 93 92 95 90 95 88 94 92 92 92 94 65 94 45 95 34 93 69 95 93
29 91 97 92 88 93 85 85 90 95 93 95 82 95 71 95 62 94 76 94 94 095 9 95 17 93 0 9% 2 96 95
30 93 90 94 86 96 83 88 97 95 93 94 76 95 63 93 55 94 82 94 95 95 2 94 0 95 0 95 9 94 092
31 91 87 92 79 92 72 91 79 93 90 94 67 95 43 95 27 93 44 94 93 94 0 92 0 9% 0 96 0 95 94
32 95 79 92 68 96 62 84 87 96 95 94 44 96 22 94 14 93 67 94 96 94 0 94 0 95 0 94 0 94 93

NOTE: Results for bootstrap confidence intervals for the MMEs appear in nonitalic type. For comparison, the theoretical coverage probabilities of the confidence intervals based on the naive

estimator, which assumes ignorable missingness, are shown in italic type.
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but in general they are not. Our estimators have the advan-
tage of being very simple to obtain compared to the MLEs,
and the simulation study has shown that the loss in terms
of MSE tends to be small (and that there is the possibility
of a gain for small sample sizes). Moreover, the bootstrap
confidence intervals for the MMEs are valid even when the
point estimates lie on the boundary.

The model that we have applied here does not take ad-
vantage of the longitudinal nature of the data. Extensions
that make use of such information will have to make spe-
cific modeling assumptions, and in general the derivation of
results about the identifiability of such models will be diffi-
cult (see also the discussion in the Appendix). This remains
an open problem.

When one does not know whether or not the missing-
data mechanism is nonignorable, the simple MM fitting of
a model such as the one that we have described here may
constitute a useful sensitivity analysis to the MCAR (or,
more generally, MAR) assumption. In the QL study that
motivated this work, we have observed how allowing for
nonignorable missingness in the data may help correct for
bias and provide further insight in the study.

APPENDIX: PROOFS
Proof of Identifiability Result

Here we give the proofs of the identifiability results described
in Section 3. We also provide formulas for the log-likelihood and
its first and second derivatives, which are used in the modified
Newton—-Raphson algorithm for maximizing the likelihood. (Gen-
eral formulas for these expressions are described in Baker 1994.)

Call f1,fs,...,f; the true probability mass functions of the ¢
independent categorical outcomes Y1, Y2, ..., Y,;. Without loss of
generality, let all Y;, ¢ = 1,..., ¢ be defined on the same support
{1,...,k}. Let r be the missingness mechanism that describes the
probability of observing each outcome Y;; that is, r; = Pr(Y; is
observed|Y; = j), 7 = 1,...,k. We thus assume that r is the
same for all ¢ variables. Also, let all 7; > 0. We call a ¢ x k
model the (¢ + 1)-ple M = {f1,fs,...,f;,r}. A model M =
{f1,f2,...,f,,r} is nonidentifiable if there exists another model
M* = {ff£5,... £, r"} # M such that 7} £ (y) = r;fi(y),i =
1L,...,q,5=1,...,k.

Proposition A.1. Let M be a discrete model M = {fi,
fg, e ,fq,r} defined on {1, ey k’} Call f; = [pil,piz, cee ,pik]/,
where p;; = Pr(Y; = 7). Then M is identifiable if and only if the
matrix P = [fy, ..., f;]’ has full column rank.

We first show that if the matrix P has full column rank, then
there can be no other model M* = {ff', f5,...,f;,r*} # M such
that r;f; = rif, i =1,...,¢,5 = 1,..., k. Suppose that it does
exist. Then it must be r;pi; = rjpi; <= pi; = (r5/7])pij,t =
1,...,q, j = 1,...,k From this, it follows that for M* to be
different from M, it must be true that r # r* and that not all
f; = £;. The following one-sum constraints must hold:

pi1+pia+- - +pip =1
Pg1 TP+ +og =1,

and we can rewrite the system as
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P1171 P1TE 1/ry 1
: : o= (A1)
Pq1T1 PqkTk 1/r% 1
or, equivalently, as
p11 D1k 1 0 1/r} 1
: ] D= ]
DPq1 Pqk 0 Tk 1/ry 1

or [PR][1/r*] = 1.

The system in (A.2) has at least r* = r as a solution and thus is
consistent. Multiplication of P by the full-rank matrix R is such
that the resulting matrix PR still has full column rank, and thus
the solution to the system is unique and r* # r is contradicted.
Therefore, the necessity part of the proposition is shown to be
true.

We now show that if P is not of full column rank, then the
model is nonidentifiable. As we have seen, a model M™* # M must
be such that r* satisfies the system (A.2). Also, the probabilities r}
must be strictly positive and not greater than 1. If P is not of full
column rank, then PR is not as well, and the system (A.2) does not
have a unique solution. In particular, if we call G a generalized
inverse of the matrix PR, then all possible solutions to the system
can be written as G1 + (GPR — I)z by plugging in all possible
values for z (see Searle 1982, p. 237). Because we assume that r
is a solution to the system, there must exist a value Z such that
r = G1 + (GPR —I)Z. By continuity, we can find another value
z* such that r* = G1 + (GPR — I)z* # r is also in (0, 1]*, thus
showing the nonidentifiability of M.

A way of constructing the solution r* # r described in the last
part of the proof is as follows. Because P is not of full column
rank, so is the matrix PR, which means that (A.2) has at least two
linearly independent (and, in particular, different) solutions. If we
call one solution r € (0,1]* and the other solution r’ (where r’
may or may not be in (0, 1]¥), then we can construct r* as a con-
vex linear combination of r and r’ in such a way that all of the
components r; € (0, 1]. The rank condition contained in Propo-
sition A.1 is such that the two corollaries described in Section 3
are immediately seen to be true.

The connection between the nonidentifiability of a model and
the estimability of the parameters of that model by ML is of inter-
est. If a parametric model is not identifiable, then the Kullback—
Leibler information H(6,8) (a measure of the distance between
the observed distributions corresponding to the parameter value 6
and the true value ) is 0 over a subset of the parameter space
© that contains more than one point. In the particular case con-
sidered here, we have seen that such a subset will be linear. The
model corresponding to 6 is identifiable if and only if the equation
H(0,00) = 0 has a unique solution at 8 = 6y (see Rao 1992, p.
123). Because H"(09,00) = —I(6o), where I(8) is the Fisher
information matrix, it follows that if the model is nonidentifiable,
then the observed likelihood is flat over some subset of ©, thus
creating a ridge and making estimation of the parameters (which
are not unique anymore) impossible. As we approach this condi-
tion, the MLEs of the parameters will necessarily become less and
less stable.

Likelihood Formulas

For reference, we report here the formulas necessary for appli-
cation of the Newton—Raphson algorithm to obtain the MLEs. Let
pi; denote the probability of observing the jth outcome category
from the ith group, where i = 1,...,q; j = 1,...,k; g denotes
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the number of independent populations; and &k denotes the number
of categories for the outcome variable. Let r; denote the condi-
tional probability of observing the outcome variable given that the
outcome variable has the value 7 (i.e., nonignorable probability of
missingness). Letting n;; denote the number of times that category
7 is observed in group 7, n; denote the total number of observa-
tions in group i, and n; = n; — Z§=1 n;; denote the number of
missing observations from the ith group, the observed likelihood
for a sample of data is given by

q k

k n
rp,r) =[] || [Tar™ ) | Dt - Tj)) ;

i=1 j=1

where p and r denote vectors of the p;; and the r;. We note for
the purpose of computing derivatives that p;x =1 — Z;:ll pij for
all 5. If we call I(p, r) the log-likelihood, then the score vector is
given by

al(p,r) — Nst N:(Tk - Tt) _ ﬂ
Opst Dst Z;.c___l psj(l — 7‘]') DPsm
and
q
dl(p,r) nit _ n}pit
= ., o
ore = e Y ipi(l—)
and the matrix of second derivatives of I(p,r) is
azl(pa I‘) _ —MNst _ E’_S_k_ _ n:(’rk — ’I”t)2
opZ, P

2 29
Pk <Z:=1 ps](l — T]))

O%Up,r)  —ni(rk —re)(rk — Tu)

OpstOpsu 27
P (S pai=1)

&lp,r)

OpstOpuvu
&l(p,r) _

*, 2
7 Pit

or? r? 2’
t =1 (Z;?___l pij (1 — Tj))

821(p, I‘) _ zq: _n:pitpiu
OrOry,

i=1 (Z.?:l pij (1 — Tj)>2’

—Mit

?*l(p,r) ng (e — T)pst — Mg Z;;l psj(1—15) "
8 s 67" - 2 )
P (Shoipet =)
azl(pa I‘) _ TL:('T']C - Tt)psu

OpstOry 27
Pt <Zf=1 pii (1 — 7”1‘))
ns(Te — T¢)Psk + N Zf___l psi(1 —75)

(S ot =)

&l(p,r) _
apstark N
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