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Abstract

We introduce a new approach to the analysis
transformation called the “Minkowski polytope”
guarantees the existence and uniqueness of such
a result about the almost sure convergence of a g

of random samples in R, based on a geometric
(MP). We describe how a theorem by Minkowski
a transformation, discuss its construction, and state

caled version of the MP in R We show how the
shape of the MP is sensitive to the presence of outliers and correlation in the sample. Finally, we use

the MP to develop a new Monte Carlo test for spatial randommess over non-uniform populations, and

illustrate its application on a well-known dataset of leukemia cases in the state of New York. © 2000
Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

al sample is to form functions of the
study. Usual statistics are either single
such as the order statistics. Motivated
» We extend this approach to
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set-valued statistics, that is, to functions of the sample that are sets. Of course, the
sample mean can be thought of as a (singleton) set, but our aim here is to consider
richer possibilities.

1.1. The Minkowski polytope

We are interested ‘in geometric representations of the sample itself from which
other statistics can be derived as functionals. Among these, we focus on the
Minkowski polytope (MP) constructed from the sample. A polytope is defined as the
intersection of a finite number of closed half spaces. In the form we consider it, the
mapping from a sample in general position to its MP entails only loss of location
information, and even that can be avoided with a somewhat more involved version.

It is instructive to consider the planar case (indeed much of our analysis has
focused on this case for its tractability). Consider a sample {x1,%,...,x,} in R?
that is subjected to centering {x; — %,x, — %,...,x, —X}. The latter comprises vectors
that sum to zero. Suppose that these are ordered according to their angle of inclination
to the (positive) x-axis, and a polygon is formed by starting with one vertex at the
origin and succeeding vertices given at the partial sums of the vectors. If the polygon
is rotated through /2, then it has the following property: it consists precisely of
sides that have lengths |[x; — X|| and normals x; — %. This polygon is the MP. Apart
from location, the sample (assumed once again in general position) can be retrieved
from the polygon (indeed if we center the polygon at %, then there is no loss of
information).

The existence of the Minkowski polytope in arbitrary dimensions is given by the
following:

Theorem 1 (Minkowski, 1903). Let v, v,,...,0, be pairwise different zero-sum vec-
tors in RY that span R. Then there exists a convex polytope P C R? with facet
normals vy,vy,...,v, and corresponding facet volumes ||v\||,||va|l,..., |vall. P is
unique up to translation.

Here, “facet” and “volumes” are the higher-dimensional extensions of the two-
dimensional concepts of “sides” and “lengths”. A proof of the theorem can be found
in Minkowski (1903). Of major interest in the theory of convex bodies, Theorem 1
has been used in several applied areas, such as physics (Jerison, 1996), astronomy
(Lamberg, 1993), and image processing (Little, 1983).

1.2. The reconstruction problem

We have seen in the previous section that the construction of the MP in R? is
immediate. There is another case in which the construction is direct. In fact, it is
quite easy to show that the Minkowski polytope corresponding to d + 1 normals
in RY can be obtained in closed form. In general, however, the problem of the
construction for d > 3 is non-trivial because of the unknown adjacency relationships
among the facets.
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The simplest available reconstruction algorithm known to us is given in Little
(1983) for R*. He developed an iterative algorithm that constructs the MP from the
extended Gaussian image (EGI) of the object. The EGI representation is used in
image processing to describe 3-D scenes, and is equivalent to the specification of
the vectors with directions normal to each face and length equal to the area of each
face. The polytope P that is sought minimizes

O(P) = B(P(L)) = [lvi||4r + -+ + [ [va] |2

over all polytopes L with volume at least unity. The values v;’s are the areas of the
faces, and the A;’s are the corresponding distances of the faces from the origin.

Little’s approach is to solve the constrained minimization problem with stan-
dard linear programming techniques using the reduced gradient method described in
Gill et al. (1981). The region of the admissible vectors A can be shown to be convex,
and this allows one to consider the problem from the optimization point of view.

Also of interest is the way in which Little constructs the polytope as intersection
of the specified half-spaces. He makes use of a “dual transform” (Huffiman, 1977).
This transform takes a plane with equation

Ax+By+Cz+1=0

into the point (4,B8,C) € R*. The n planes forming P correspond therefore to n
points in M3, and it can be shown that the convex hull of these points provides
the adjacency information for P. In particular, any face of the hull corresponds to a
vertex of P; and any two points incident on an edge of the hull correspond to a pair
of faces of P that share an edge. In other words, this adjacency information allows
determination of the vertices.

Once the (translated) P has been obtained, re-scaling by V''*(P) is done to have
unit volume. Then the value of ®(P) is computed and the optimizing algorithm is
invoked, that computes the next step through the gradient of V(P). Iteration con-
tinues until the reduction in the value of @(P) is smaller than a pre-determined
value 6 > 0. Little’s paper also contains a detailed illustration of the construc-
tion of the MP from a set of vectors in R>, with interesting stereo views of the
polygons.

The iterative algorithm requires O(nlogn) operations for each iteration, and the
number of iterations depends on the algorithm used. The one proposed achieves
linear rate of convergence, i.e. if one calls ¢ the error at step i, then the algorithm
satisfies

lim s =y <l

imoo g

Gritzmann and Hufnagel (1995) point out that there is no polynomial bound on the
running time of Little’s algorithm. They suggest a more involved algorithm, and
show that if the dimensionality d of the problem is known, then the reconstruction
problem can be solved in polynomial time.

The use of the MP for data analysis is motivated by the following result, that
deals with the large sample behavior of the MP.
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2. A strong law of large numbers for the MP

In traditional statistics we are often interested in the convergence of a sequence of
random variables to a particular limiting value. For example, one might consider the
sequence {7, =(1/n) >/, x;} of the sample means calculated from random samples
of increasing sample size n and ask whether as n — oo the sequence converges
to the population mean u. We are now interested in the limiting behavior of the
Minkowski polygon constructed from a sample arising from a particular distribution
in M2, Scaling the MP to take into account the increasing sample size, there is
convergence of the scaled Minkowski polygon to a convex body characteristic of
the population from which the samples are obtained. We first need to introduce the
concept of support function.

The support function Ac(v) of a convex body C is defined as follows: Vv €
R4 she(v)=sup . (v, y) (see Schneider, 1993). The support function uniquely iden-
tifies the body C and conveniently allows one to deal with translations, changes in
scale, and rotations in the axes. We say that a sequence {C,} of convex bodies
converges to a convex body C if the sequence of the corresponding support func-
tions {A¢,} converges pointwise to /c. The evident positive homeogeneity of support
functions allows them to be restricted to the unit sphere S?~'. Here we concentrate
on the case of vectors {x;,x,,...,x,} arising from a probability distribution in R2,
in which case /¢(v) can be defined as a function of the angle 0 € [0,27):

he(0) = sup (e(0),x), where e(6) = [cos 0,sin ]

xeC

Theorem 2 (Bonetti, 1996). If Z,,Z,,...,Z, is a random sample obtained from an
absolutely continuous distribution F; on the plane with zero mean and finite
variances, then the scaled (i.e. divided by n) Minkowski polygon converges a.s.
to a convex body associated with Fy. Such convex body is described by the sup-
port function

h (9 _ g) = E;1(@ < 0)Rcos(O — 6),

where © and R are the expression in polar coordinates of the random variable Z.

A proof of this result can be obtained from the author. (Since submission of the
present paper, a more general result has also been obtained in Bonetti and Vitale,
1999.) Examples of this form of convergence can be observed in Figs. 1-3 below,
where the scaled MP is constructed from samples of size 1000 arising from different
distributions.

Example 1. Consider the sample as coming from a bivariate normal random variable
Z ~ N;3[0,06°L]. For this simple case it is well known that the polar coordinates
(0(2),p(Z)) are independent, and Theorem 2 indicates that the limiting scaled MP
1s a circle of radius » = E(p)/2n “sitting” on the origin.
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Fig. 1. Scaled MP constructed from a sample of size 1000 from a uniform distribution on a triangle,
plus an extreme outlier at (20,20).
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Fig. 2. MP constructed from a sample of size 1000 obtained from a normal distribution having correlated
coordinates.

3. Exploratory data analysis using the MP

Exploratory data analysis is traditionally accomplished through numerical and
graphical work, using techniques such as stem-and-leaf displays, numerical sum-
maries, and q-q plots. Along these lines, we discuss some ways in which the MP
can be used to develop new exploratory data analytical techniques. We concentrate
on the R case, and the three properties of outlying observations, collinearity, and
clustering. The discussion that follows is informal, and aimed at exploring the effect
of these properties on the MP.

3.1. Flatess

Recall from Section 1 the construction of the MP in R?: given our sample,
we create a polygon based on Minkowski’s theorem. If the underlying distribution
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Fig. 3. MP constructed from a sample of size 1000 obtained from a mixture of two equally weighted
circular normal distributions centered at (—1,0) and (1,0).

is sufficiently uniform, then an outlying observation has its corresponding vector
(x; — %, y; — 7) longer than the others; this means that the corresponding side in
the MP will be longer than “expected”. That is, because of the way in which the
polygon is constructed, an outlier will cause the polygon’s tending to be flat (see
Fig. 1).

We can consider some measure of such flatness, for instance, the quantity

F 3 X2 e ey Xy g ) = X PN 1
(tx.x ot perimeter”(MP) M

It is well known that this ratio ranges between 0 and 1/4n, where 0 corresponds to
a segment and 1/47 corresponds to the circle (in fact, this is the isoperimetric ratio,
see Mitrinovi¢ et al., 1989, p. 443). This quantity, therefore, is a measure of how
far the polygon is from being a circle.

How can we be sure that any flatness of the polygon is indeed due to the presence
of one (or possibly more) outliers? In fact, multicollinearity and clustering also
produce flatness: in a situation of collinearity, for example, the sample points tend
to fall in a pattern that favors certain directions in the vectors (x; —X, y;— 7). This, in
turn, corresponds to favoring certain orientations in the sides of the polygons. (See
Fig. 2 for an illustration of this.) Also, if for example the sample is formed by two
clusters, there will also be certain preferred directions (see Fig. 3).

3.2. p-histograms and G-histograms

We suggest plotting the two simple histograms corresponding to the lengths p;’s
and to the angles 6,’s of the centered vectors x; — ¥. Careful observation of these
two histograms in many different simulated cases (see for example Fig. 4) has illus-
trated its value in determining the contribution of individual observations to the flat-
ness measured in the polygon. In particular, individual outlying observations can be
detected by one (or more) spikes in the p-histogram. Also, both the presence of two
clusters and correlation between the coordinates result in preferred directions, but
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Fig. 4. Clustering vs. correlation.

the O-histogram for the latter case has sharper gaps. Moreover, the distance between
the clusters causes very few vectors to have small lengths (the sample mean tends
to fall between the clusters, with few points close to it), and this is clearly shown
by the p-histograms. Observe how rotation of the distribution leaves the p-histogram
unchanged, while it shifts the 0-histogram along the x-axis (modulo 2r).

The definition of one more quantity can be suggested: let the “second-order” out-
lying measure be the area corresponding to the triangle obtained connecting the side
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Fig. 5. Second-order outlying measure.

corresponding to each observation with the center of gravity of the MP. This new
measure (M;) depends not only on the length of the vector corresponding to the
observation, but also on the overall influence of that observation on the final shape
of the polygon. Simulated examples suggest (see Fig. 5) that observation of an index
plot of these quantities A; allows can be helpful in distinguishing the presence of
clustering from correlation, even in the presence of outliers (which are also easily
identified). The definition of this new measure M; can easily be extended to general
samples in R if one thinks of (hyper-)volumes instead of areas, thus providing the
necessary reduction in dimensionality.

The characterization given above is not general, and we cannot expect it to be
so. This is particularly so when the distribution is highly non-homogeneous (for
example, in the case of a human population), in which case making any statement
about the characteristics of the distribution is going to be very challenging.

There are two particular situations that require comment: (a) two or more of the
vectors actually are positively proportional; and (b) two or more vectors are not
only positively proportional, but they are replications of the same vector. Both cases
introduce a problem since Minkowski’s Theorem does not apply. Positive propor-
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tionality of one or more vectors means that the MP would have a facet to which
would correspond more than one vector, thus making it impossible to identify the
effect of each contributing vector. In other words, we would not be able to transform
the MP back to the vectors, since a large facet could correspond to many “short”
vectors, to fewer “longer” vectors, or to some identical vectors.

Both situations arise with probability zero if the sample is obtained from a con-
tinuous probability distribution, but they might be observed in practical applications,
due to discretization. An example of situation (2) above will be analyzed in the
next section, where population counts will be given for cells corresponding to a
sub-division of a region of interest (in R?). It is therefore important to understand
the consequences of these situations. In fact, they do not necessarily constitute a
particular problem for the practical construction of the MP, but they require more
care in its interpretation.

The flatness of the MP can be thought of as being a numerical summary of the
shape of the sample. We now discuss as an example of application of this fact to a
new test for the spatial randomness of disease cases.

4. A test for spatial randomness

Waller et al. (1994) study leukemia cases recorded in an eight-county region in
upstate New York during the five-year period 1978-1982. The data, obtained from
the state Cancer Registry, report 591 cases of leukemia over a population of little
over 1 million individuals, and the interest is in the detection of possible spatial
clusters in the cases. The detection of clustering in the leukemia cases could provide
some hints about factors that might be related to the incidence of the disease in the
population. In this section we make use of the MP to construct a new test for spatial
randomness over non-homogeneous populations.

The eight-county region was divided by the Census bureau into 790 subregions
or cells with population counts and leukemia incidence counts (see Fig. 6 for a
map of the region). The cells were defined by using US Census block groups
(for all but one county), and for each cell there are spatial coordinates of the
centroid of the cell and the pair of counts for the population and the leukemia
cases. Because of confidentiality issues, the exact geographic locations are not
available.

A test for the randomness of the geographical distribution of the leukemia cases
must consider the underlying distribution of the population of the region. The au-
thors of the study applied several different techniques to this data set. The main three
are:

e A method proposed in Whittemore et al. (1987) based on the mean distance
between all pairs of cases, which has been shown to be asymptotically normally
distributed under the null hypothesis of randomness.

e A graphical procedure called “geographical analysis machine” or GAM
(Openshaw et al., 1988) based on the number of cases observed within a cir-
cle of fixed radius and scanning the region. This method picks the circles that
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sites containing trichloroethylene indicated by @ (reprinted with permission from Waller et al. (1994)).

contain an “excessively high” (with respect to a Poisson distribution) number of

cases, and is looked at as a descriptive tool.

the same number of cases, respectively.

We do not discuss the details of each method here. Rather, we quote the overall
conclusion of the authors of Waller et al. (1994) that “the evidence of clustering
of the cases is rather weak, although there is some suggestion that there may be a
mild effect when one considers larger radii in the method of Turnbull et al. (1990)”.
The authors indicate that this may be due to the fact that “by trying to maintain a
type I error rate in the face of so many multiple tests [...] the power of the procedures

Two Monte Carlo testing procedures, described in Besag and Newell (1991) and
in Turnbull et al. (1990), that evaluate different test statistics based on the GAM
idea, but in which the circles are constrained to contain the same population and

must necessarily be very low”. (Waller et al., 1994, p. 16).
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Fig. 7. MP constructed from the leukemia cases (dashed line) and MP from the whole population
(solid line).

Table 1

Summary of sample of flatness values

Min [0]] Median O3 Max
0.04968 0.05477 0.05601 0.05719 0.06186

Let us consider the sampling distribution of the flatness measure F=Area,/Perimeter’
of the MP constructed from the centered sample consisting of the coordinates of
the leukemia cases. Comparison of the value corresponding to the actual sample of
leukemia cases with such sampling distribution allows one to construct a procedure
for testing the hypothesis that such sample be indeed a random sample from the
population. An estimate of the sampling distribution of the flatness of the MP is
obtainable through Monte Carlo simulation of the sampling process, when we sam-
ple by giving to each individual in the population the same probability of becoming
one of the cases.

The MP obtained from the leukemia cases (shown in Fig. 7) has a flatness measure
of 0.0518034. The results of our simulations (based on 5000 samples of size 591)
are shown in Table 1. Observation of the sorted values shows that the 60th value is
0.05180081 and the 61st is 0.05183548, so that our (2-sided) testing procedure gives
an estimated p-value of about 0.024. We thus reject the null hypothesis of spatial
randomness of the leukemia cases.

Observe that we are given the population and leukemia cases counts correspond-
ing to the centroids of the cells, and we do not know the specific location of each
individual. Our analysis is therefore “discretized” to the centroids. We can try to
artifically reconstruct a possible distribution of the individuals within each cell, for
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example uniformly within the cell. This might be important since the dependence of
the result on the size and shape of each cell might modify the outcome of the testing
procedure. We have experimented in this direction, but the limited information avail-
able to us about the boundaries of the cells forced us to introduce an approximation
of such boundaries through the construction of the Voronoi diagram (see O’Rourke,
1993) corresponding to the centroids. Uniform spreading of the population (and of
the sample) within the cells has lead to results extremely similar to the ones obtained
without the introduction of this reconstruction.

5. Discussion

Summarizing, we have introduced a set-valued data-analytical tool that presents
some interesting characteristics. The development of a distributional theory for the
MP and for statistics obtained from it appears rather difficult, but the derivation of
the SLLN is encouraging. Ongoing work is aimed at studying more of the behavior
of the MP, and will appear elsewhere.

Our results from the application discussed in Section 4 are different from the ones
reported by Waller et al. (1990) in that our results show evidence of non-randomness
in the leukemia cases. The analysis that we have described here, however, is meant as
an illustration of the method, and it should not be considered as being conclusive for
this delicate problem. The method that we have introduced consists of a single overall
test over the region, and as such it does not present the problem of repeated testing.
Also, the method does not require any distributional assumption, nor estimation of
parameters.
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