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Abstract. The existerce theorem of Minkowski for a polytope with given facet normals
and areas is adapted to a data-analytic context. More precisely, we show thata centered, ran-
dom point sample arising from an absolutely continuous distribution in R? can be uniquely
mapped into such a polytope almost surely. With increasing sample size, the sequence of
(scaled) polytopes converges almost surely to a limiting convex body that is associated
with the underlying distribution. An accompanying central limit theorem is proved using
methods from the theory of empirical processes.

1. Introduction

Limit theorems of an additive type for random convex bodies were introduced in [1] and
[19] where a strong law of large numbers and a central limit theorem, respectively, were
shown. Since then there has been considerable activity in generalizing and extending
these results; see, for example, the on-line bibliography [13] and article [20].

In this note we present a strong law and a central limit theorem of a novel type. They
were motivated by recent work in exploratory data analysis that exploits the well-known
existence theorem of Minkowski by mapping a multivariate point sample into what we
have called the sample Minkowski polytope [2], [3]; to our knowledge, the approach
is new to general data analysis although it has been used for particular purposes in
astronomy [9] and image processing [8], [10]. The particular issue that arises is the
behavior of the polytope as the size of the sample increases without bound. The answer,



334 M. Bonetti and R. A. Vitale

as we show here, is that there is convergence to a convex body that is associated with
the underlying probability distribution of the sample.

To place our results in an analytical context, of the previous asymptotic results, most, if
not all, have relied on identifying an arbitrary convex body with its support function, thus
transferring the problem to a function analytic setting. Here, it turns out, we alternatively
identify a convex body with its surface area measure with which it is uniquely identified
up to translation. While we do not explicitly use the fact, there is an alternate operation of
Blaschke addition of convex bodies that corresponds to addition of surface area measures;
for general discussions and references, see [5], [7], and [14]-[16].

2. Background and Preliminaries

We work in R? with usual inner product (-, -}, norm || - ||, and unit sphere $¢~'; vectors
are generally taken to be in column form, and transposition is denoted by . For notation
and background on convex bodies, see [15].

Our point of departure is the existence theorem of Minkowski [11], [12]:

Theorem 1. Suppose that uy, us, ..., u, € S9-1 gre distinct and that they linearly
span R?. Further suppose that f1, fa, ..., f, are positive numbers such that

i=1

Then there is a polytope P C R4 with facet normals uy, u,, . .., u, and associated facet
areas ((d — 1)—dimensional volumes) fi, f>, ..., fn. P is unique up to translation.

In [2] and [3], translation-invariant questions for random samples in R¢ are treated
by adapting Theorem 1 in the following way: suppose that X;, X5, ..., X}, is arandom
sample in R¥, which is drawn from a probability measure . To avoid irrelevant com-
plications, we assume here that u is absolutely continuous although this can be relaxed
at the expense of more complicated statements. Forn > d + 1, let X, = (1/n) 27:1 X;
and define

X i 3{“n

I1X; =Xl
The hypotheses of Theorem 1 hold for (1) with probability one and thus guarantee the
existence of the Minkowski polytope P, associated with the sample. For definiteness, we
assume that P,, and all other convex bodies to be considered, are centered in the sense

of having the Steiner centroid at the origin [15, p. 42]. Indeed, mapping such a sample
into P, incurs no loss of information apart from location.

i

1 = .
Fo=—lXi=Xl, i=12...n M

3. Strong Law of Large Numbers

As we shall see, the large sample behavior of P, has convergence to a convex body that
is not a polytope. To introduce the formulation, we recall that the surface area measure
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@ of a convex body K can be described as follows: for each Borel set A C S¢71, let
0K (A) be the set of points in K having outward normal in A. Then the surface area
measure ¢ is defined on the Borel o-field of §47! by ¢(A) = As_; (3K (A)), where

Ag—1 1s the (d — 1)-dimensional Hausdorff measure. In the case of the polytope of
Theorem 1,

n
o= fis(- —u). @)
i=1
The following generalization of Theorem 1 holds [15]:

Theorem 2. Suppose that ¢ is a bounded measure on the Borel subsets of S°~! that is
not concentrated on a great circle and that satisfies

/ udp = 0.

gd-1

Then there is a unique centered convex body for which ¢ is the surface area measure.
We can now state the strong law of large numbers.

Theorem 3. Suppose that w is an absolutely continuous probability measure on R?

that yields a finite mean for an associated random vector X (iid copies X1, X2, ..., Xpn).
Let @ be the derived measure on S~ that satisfies, for each Borel A C $71,
(4) = El ( X EX ) IX — EX|| ©)
go == A B . — .
X — EX]|

Then (i) @ is a surface area measure corresponding to a centered convex body K, and
(ii) the sequence of sample Minkowski polytopes P, based on successive iid samples
{X1, Xo, ..., Xy} converges almost surely in the Hausdorff metric to K ,.

Proof. Without loss of generality, assume that EX = 0. Using (3), we have

/ ud —E(——X—)‘][XH'—EX—O
P AT sEAED

so that the conditions for Theorem 2 are satisfied, thus yielding (i).
For (ii), using (1) and (2), we see that surface area measure associated with P, is
given by

1 <& X; — X, —
n==) 8| - ———=|I1Xi = Xxll.
nz ( “Xi_Xn“)

i=1
It is enough to show that with probability one the sequence of measures ¢, converges
weakly to ¢ [15, p. 393]. This will be the case if we can show that, for each g in a
countable dense subset of Lipschitz continuous functions in C(S9~1),

/ gd%f:i)f gdeo. @)
Sd—l Sd~1
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Let g be given by g(0) = 0 and g(x) = g(x/|x|]) - llx|| for x 0. Then, as shown in

Lemma 1 below, g is also Lipschitz continuous (constant L). The existence of a mean
for X then easily implies E|g(X)| < oo and hence

1 & a.s. ~
=Y EX) S Eg(X).
n i=1

Also,
1S 1 - 1. . -
SD BX) =~ 3 R =X < = 3 [2(X) — §(X; — X))
i=1 P==1 i=1
s~§:mxu—umn—»o
Together these imply that
]. I ~ < a.s. ~
=D E(X; — X)) = EZ(X),
i=1
which is equivalent to (4). O

Lemma 1. Suppose that g and g are as presented above. Then g is Lipschitz con-
tinuous with constant L = 2K 4 M where K is the Lipschity constant of g and
M = max,=11g(u)|.

Proof. We estimate [g(y) — g(x)|. If say x = O, then

18 - 8O =g = }8(” “) ||y||| Milyll.

If neither x # O nor y # 0, then we can write

__mwxMﬂM
el Il
x [yl = xllxl +xlxll =yl
EIREY
_ Wyl =y —xl =)
=Tl i =iyl

It follows that

g0 =860 =g (2) g () et
F( ;)i (nn)””+g(nu)”“_g(un>””l
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< ’g (u’i’ﬂ) —g (WEH)J Syl + Jg (ﬁ)’ IR

ly —xI

<K-2 T Iyl + My — x|
= QK+ My - x|,
so that g has Lipschitz constant L = 2K + M. |

4. Central Limit Theorem

. We turn now to the associated central limit theorem. Here, as for the strong law of large
numbers, we are on new ground. Owing to the delicate asymptotics of the centering of
the sample as given in (1), we have chosen to take an approach using tools from the
theory of empirical processes [17], [18]. For that, some additional smoothness on g is
required, specifically continuity of first partial drivatives. This is the most natural way
to ensure that g has a derivative, i.e., first-order local linear approximant [21].

Theorem 4. Let . be the absolutely continuous probability measure on R? for iid

random vectors X, X1, X»,..., Xy - ... Assume further that all second moments exist.
Let g be defined and with continuous first partial derivatives in a neighborhood of S,

Then
An=ﬁ[f gdoon-f gd(ﬂ} 5)
Sd—l Sd—l

is asymptotically normal with mean zero and variance equal to Var[g(X)~(VEZ (X)) X 1.
Proof. Note that the (strengthened) conditions on g imply in a routine way that its

restriction to $4~! is Lipschitz continuous so that Theorem 3 holds. As in that proof, we
assume without loss of generality that EX = 0, and alternatively write

1 SN — .
Ao =/n [; 3 F (X~ X - Eg(X)} .
1
For technical 1 reasons relating to the Donsker con_@ition below, we need tq_f:ontrol the
behavior of X,. It will be enough simply to let X, be the projection of X, onto the

unit ball of R?, that is, Y: is that point of the unit ball closest to Yn; of course, with

probability one, there is some (random) N such that Tn =X, forn > N.
We will show that

I - ~
Ay = [; 2 FXi =Xy - Eg(X)}
is asymptotically normal, which will yield our result since

8y - Al = VEY [Ex - XD - g0 - X,
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<Vn) LIX, - X,
i
<n2LIX, = X, =5 0.
Consider now the collection of functions {gy}, where 6 is a point in the unit ball
of R? and gg¢(x) = 2(x — 6). By the Lipschitz condition, |g(x — 6)) — g(x — 6,)| <

L||61 — 6:]|, we have that {80} is a Donsker class [18, Example 19.7]. It is also the
case that fRd (glx — X:) — 2(x))*u(dx) — 0, since the integrand is bounded above by

L2| X ||> — 0. It follows that
1. - - | L -
Vn [; Y #(Xi-X,) — Exg(X — Yi)} =/n [; > ExXn - Eg(X)} +op(1)
i=1 i=1
[18, Lemma 19.24]; here Ex signifies expectation with respect to X. Equivalently,
I J— -
V| =3 EX: = X,) — E&(X)
i=1
- —x - 1 -
= Vi [Exg(X = X;) = E3(X) |+ [; doEX) - Eg(X)] +0,(1). (6)
i=1

Lemma 2 below verifies that the map 6 +— Eg(X — 0) is differentiable at & = 0. It
follows that
Exg(X = X,) = EZ(X) — [VEZX)] X, + IX,II - £(IIX,, ), )

where e: R? — R! vanishes at 0 and is continuous there. From (6) and (7) it follows that

1< —x .
Jn [; D Exi-X,) - Eg(}@}
i=1

S| o=

=_ﬁ[v5g(X)]’7:+ﬁ[ > g - Eg’(X)] +0,(1),  (8)
i=1

since /1 - | X, lle(IX, 1) = 0p(1). Since X, — X,, almost surely, the scalar central
limit theorem guarantees that the expression in (8) converges to a normal distribution
with mean zero. Then the variance of the asymptotic distribution is

,— 1N .
Var [ﬁ [-VEZX)] Xn ++/n (5 § B(X)) — Eg(X))}
i=1

1 ¢ T - -
= Var |:—\772 ; ([-VEg(X)] X +gXy) — Eg(X))}
= Var[g(X) — (VEZ(X))'X]. |

Lemma 2. Let 4 and g be as in Theorem 4. Then the map 6 + Eg(X — 6) is
differentiable at 6 = Q.
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Proof. Tt suffices to show the existence and continuity of all first partial derivatives at
6 = 0. Lemma 1 has g Lipschitz continuous (constant L). Let §; be the vector having
all elements equal to zero except for the jth element, which is set to 8. It follows that

‘g(x—0—5j)—§(x 6)
é

Efl” —0 -6 —-x+0||=L <o0.

Then by the Dominated Convergence Theorem the jth partial derivative of Eg(X — 0)
is
g(x—60-8)—g(x—0 g(x—0—-8)—g(x—0
bm E [g(x )-8 )] _E [lim gl 1) —8(x—0)
50 1) 80 8

} =EV;3(x — 6).

We now show continuity at & = 0 by computing directly the vector of partial deriva-
tives of g(x — 6) with respect to the components of 8. We note first that the partial
derivative of g[(x — 6)/||x — 8] is

v (=) ] (=)

i(x_e)— ! _ c—ox—0y-—1
36 \lx—0611) ~ Ix -6l Ix—6] ¢

Applying the product rule to g(x — @) then yields its vector of partial derivatives with
respect to 9 as

x—6 x—0 1\ (x —8)Y
I ”_g(n en)_g(nx—eu)nx—eu
x—0\1TG&x—-0x-—06) I
‘”x"e”[vg(ux—en)ﬂ x— o ’nx—eu}
x—8 )\ (x—-8)
_g(ux—en)nx—en’
which is bounded above in norm by

Ig(ni:gu)\”l (Ix-GII)H

Our assumptions guarantee that (for 6 # x) this is uniformly bounded above by a
constant. Application of the Dominated Convergence Theorem then yields, for each
j=1,2,...,d,

BV S(X — 8) — E Ll V.5(X — 6) = EV.3
lim EV;£(X — 6) = E lim V;2(X — 6) = EV;8(X),

where

which concludes the proof. ]

Example. Asanimportant special case of the convergence given by Theorem 4, let g be
identically equal to 1. Then (5) asserts that the normalized difference of the surface areas
of P, and K, is asymptotically normal with mean 0 and variance equal to Var[[| X|| —
(VEIXI)X].
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5. Final Remarks

1. The careful reader will have noted that the surface area measure ¢ in Theorem 3
does not characterize the underlying probability distribution, even up to translation. This
is an interesting question, and we plan to investigate the implied equivalence relation
elsewhere.

2. For other recent limit theorems of innovative type, see [4] and [6], the former is
similar in spirit to what we have done in the case of a planar sample although it does not
impose a centering.

3. The issue of shape for a point sample, that is, its nature modulo scale and rigid mo-
tions, has been intensively studied in the literature. For a sample in general position, we
suggest that shape may alternatively be considered to be precisely the Minkowski poly-
tope, understood in classical geometric terms as modulo rigid motions and normalized,
say, to have unit surface area.
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