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SUMMARY

We introduce the subpopulation treatment e�ect pattern plot (STEPP) method, designed to facilitate the
interpretation of estimates of treatment e�ect derived from di�erent but potentially overlapping subsets of
clinical trial data. In particular, we consider sequences of subpopulations de�ned with respect to a covariate,
and obtain con�dence bands for the collection of treatment e�ects (here obtained from the Cox proportional
hazards model) associated with the sequences. The method is aimed at determining whether the magnitude
of the treatment e�ect changes as a function of the values of the covariate. We apply STEPP to a breast
cancer clinical trial data set to evaluate the treatment e�ect as a function of the oestrogen receptor content
of the primary tumour. Copyright ? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Clinical trials are often conducted to compare treatments with respect to their e�ect on survival.
Analyses of the data usually focus on the estimation of outcome for the entire study population,
to avoid overinterpretation arising from subgroup analyses. On the other hand, some indication
of quantitative di�erences in treatment e�ect according to subpopulations is extremely useful for
designing future studies and for assisting with risk-bene�t considerations in selection of therapy
today. Because the subsets are usually de�ned with respect to one or more covariates, such analyses
amount to the study of treatment–covariate interactions. A description of the issues involved can
be found, among others, in Byar and Green [1] and in Peto [2].
One widely-used approach to quantifying treatment e�ects in clinical trials is through the Cox

proportional hazards (PH) model [3]. Consider the usual setting in failure time data in which we ob-
serve X = min(T; C), with T (failure time) and C (censoring time) independent. Let �=1(X =T ),
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and let Z be a collection of covariates. The vectors (Xi; �i; Zi), observed on n individuals, are
assumed to be i.i.d. The PH model [3] assumes that the hazard function for failure time T for
the individual i having covariate vector Zi is �(t; Zi)= �0(t) exp(�′Zi); i=1; 2; : : : ; n. The e�ect
of a covariate on the treatment e�ect can be studied by including in the PH model a term for
the interaction between treatment and the covariate [3; 4]. This approach requires proportional
hazards and an underlying multiplicative structure to maintain the nominal signi�cance level for
the interaction test. As an alternative, Schemper [5] extends the non-parametric approach �rst
introduced by Patel and Hoel [6] to the analysis of treatment–covariate interaction in the presence
of censoring. The variance estimate for the proposed test statistic is obtained by the jack-knife
procedure. Extensions to modelling the non-linearity of the covariate e�ects have been proposed for
the PH model, in particular by using the generalized additive model (GAM) approach introduced
by Hastie and Tibshirani [7] (see for example Gray [8] or Sleeper and Harrington [9]). Modelling
of the interaction between a dichotomous covariate (for example, treatment) and a continuous
covariate (for example, age) within the GAM framework, however, is not as immediate. Gray
[8] considers such a situation, but he limits the discussion to the study of whether the e�ect of a
continuous covariate is di�erent within, say, treatment groups. (He suggests �tting a separate spline
function to the covariate in each group). However, it seems possible to plot the spline-estimated
treatment e�ect as a function of the covariate values.
If the covariate of interest is not continuous, the interaction with the treatment e�ect consists

of changes in such e�ect among the subgroups of patients de�ned by the values of the covariate.
Gail and Simon [10] develop a likelihood ratio test to detect interactions between treatment e�ects
and patient subsets when such subsets are disjoint and speci�ed in advance. If the covariate of
interest is continuous, then its range may be split into two parts, and di�erences in treatment e�ect
examined between the two subsets. Koziol and Wu [11] propose a method to determine a cut-o�
point for dividing the covariate axis into the two categories for assessing the treatment–covariate
interaction.
The multiplicity problems associated with subset analyses are typical of frequentist statistical

techniques. The Bayesian approach, on the other hand, does not present such issue of the control of
error rates, because the conclusions drawn relative to one subset need not depend on whether one
will also draw conclusions about other subsets. Dixon and Simon [12] discuss such an approach
and apply it to the study of variation in treatment e�ect among patient subsets. They develop the
linear case under the assumption of normality of the prior distributions of the parameters and of
exchangeability among the interactions.
We propose an alternative to these approaches; to reduce the risk that individual subgroup

analyses might be overinterpreted, we suggest that patterns of treatment response, which might
di�er according to a continuum of values of a covariate of interest, could be examined. The method
that we propose is based on dividing the observations into subgroups de�ned with respect to the
covariate of interest, and �tting the PH model separately on each subpopulation. To increase the
number of patients that contribute to each point estimate, we allow the subpopulations to overlap.
This increases the precision of the individual estimates. For simplicity we limit our discussion to
the case of two treatment groups. We consider the collection of the hazards ratios for the treatment
e�ect as we move across the subpopulations as a way of illustrating the in
uence of the covariate
on the treatment e�ect itself.
We �t the PH model on each of p subpopulations Pl; l=1; : : : ; p, de�ned with respect to

one or more non-time-varying covariates, and call �̂l the corresponding estimate for each vector
of regression coe�cients �l corresponding to the vector Z of covariates in subpopulation Pl. We
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then have a collection of PH models �l(t; Zi)= �0(t) exp(�′l Zi); i=1; 2; : : : ; nl, where nl is the
sample size of subpopulation Pl. Let n be the total sample size. In the Appendix we derive the
joint asymptotic distribution of the estimators �̂1; �̂2; : : : ; �̂p. In particular, we are interested here
in the case in which one of the components of each vector �l corresponds to a treatment e�ect.
Because we are interested in having the subpopulations overlap, we further assume that all the
�l are equal. This is necessary to avoid the problem related to the inability to determine which
model represents the stochastic mechanism of an observation when the corresponding individual
is contained in more than one subpopulation. Under such hypothesis all the �̂l, l=1; : : : ; p are
estimates of the same quantity. We are interested in the study of possible deviations from this null
hypothesis as an exploratory tool for the identi�cation of treatment–covariate interactions.
In Section 2 we discuss further the study of treatment e�ects on overlapping subpopulations of

the patient cohort, and the strictly related problem of simultaneous inference in subset analyses. In
Section 3 we illustrate the method on clinical trial data, both on the study of a treatment–covariate
interaction and on a subset analysis. In Section 4 we give a summary. In the Appendix we prove
the main result, and show an application of a variation of the method (that focuses on the extreme
values of the covariate of interest) to the same clinical trial data.

2. STEPP: SUBPOPULATION TREATMENT EFFECT PATTERN PLOT

Let the subpopulations be de�ned with respect to an additional continuous or ordered categorical
non-time-varying covariate Z∗, and let Z∗i be the value of such covariate for patient i. When
we plot estimated treatment e�ects corresponding to each subpopulation we obtain what we call
‘STEPP’, for subpopulation treatment e�ect pattern plot. Because of its wide use in comparing
treatment groups in clinical trials, here we discuss treatment e�ects quanti�ed by hazards ratios
estimated through the PH model.
Our focus is on the practical interpretation of data arising from clinical trials to increase their

usefulness, both for patient care purposes and to stimulate future clinical research. With this in
mind, two ways are proposed as possible choices for de�ning subpopulations: the ‘sliding-window’
pattern and the ‘tail-oriented’ pattern.
These two di�erent patterns of subpopulations are illustrated in Figure 1, and are indicated by

(a) and (b), respectively. The horizontal axis in Figure 1 indexes the various subpopulations for
which treatment e�ects are estimated, and the vertical axis shows the range of the covariate values
used to de�ne the cohort of patients included in each subpopulation.

Figure 1. Illustration of the two subpopulation patterns for STEPP: (a) sliding window; (b) tail oriented.
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2.1. Sliding window version

We �rst de�ne subpopulation Pl as containing patients having Z∗ ∈ [�lowl ; �uppl ), where the de�nition
of the values �lowl and �uppl for l=1; : : : ; g will now be described. The goals in the selection of
the subpopulations are to simultaneously ensure that each subpopulation contains a ‘large enough’
number of observations, and that the number of the subpopulations is large enough to provide a
‘good’ resolution over the range of the covariate of interest. These requirements can hardly be
formalized, and are best left to the analyst’s choice. Another desirable property seems to be that
each subpopulation contains roughly the same number of patients.
We propose the following automated procedure. Let �1; �2; : : : ; �max be the ordered di�erent

values of Z∗ observed in the data; let �max = sup{Z∗i ; i=1; : : : ; n}. For convenience, call �0 = �1−1.
Proceed as follows:

1. Fix two quantities n1 and n2; n1¡n2¡n, where n is the number of individuals in the sample.
2. Identify among the values �t; t=1; : : : ;max the smallest one for which

∑n
i=1 1(Z

∗
i 6�t)¿n2,

and call it �upp1 . De�ne �low1 = �0, and let b=2. The counter b will be used to index the
subpopulations.

3. ‘Slide’ from left to right as follows:
(a) Identify �lowb as the smallest of the � for which

∑n
i=1 1(Z

∗
i 6�

upp
b−1)1(Z

∗
i ¿�

low
b )6n1.

(b) Identify �uppb as the smallest of the � for which
∑n

i=1 1(Z
∗
i 6�

upp
b )1(Z∗i ¿�lowb )¿n2. If

there is no such value let �uppb = �max and stop.
4. Repeat step 3 after increasing b by 1.

De�ne subpopulation Pb as containing all patients for whom �lowb ¡Z∗i 6�uppb . Given this algo-
rithm, the value chosen for n2 roughly de�nes how many patients are included in each subpop-
ulation. Observe that there is a trade-o� between resolution over the range of Z∗ and variability
in the estimates of the regression coe�cients. The di�erence between n2 and n1 describes the
minimum number of subjects replaced between any two subsequent subpopulations. The choice
of the values n1 and n2 can generate a variety of di�erent subpopulations, whose number will
also change. Windows include many subjects if n2 is large, and there is little patient turnover
from window to window if n1 is close to n2; this scenario provides relatively precise estimates of
treatment e�ect and a large number of windows.
The choice of n1 and n2 determines the number of subpopulations. De�ne nj =pjn; j=1; 2; for

two proportions 0¡p1¡p2¡1. If we assume that there are no ties in the values Z∗i (that is, if
P(Z∗i =Z∗j ; i 6= j)= 0), it is easy to show that as n → ∞ the number of subpopulations de�ned
by the algorithm described above tends to the smallest integer greater than or equal to the number
[1+(1−p2)=(p2−p1)], with the last subpopulation containing a proportion of the patients at most
equal to the desired p2. If ties are present, however (as is the common case of Z∗ discrete), this
criterion will necessarily su�er from the discontinuities, so that even as n→∞ the proportions p1
and p2 may never be achieved exactly. Observe how the situation n2 = n (and n1 free) produces
only one subpopulation, which contains all patients.

2.2. Tail-oriented version

As an alternative to the sliding-window STEPP, the tail-oriented pattern plot concentrates on the
in
uence of extreme values of the covariate on the magnitude of the treatment e�ect. Consider a set
of increasing values of Z∗ {z1; z2; : : : ; zg}; we construct an increasing collection of subpopulations

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2595–2609



STEPP METHOD TO ASSESS TREATMENT–COVARIATE INTERACTIONS 2599

Pl; l=1; 2; : : : ; g by including in Pl the patients for whom Z∗i 6zl (in the notation of the proof in
Appendix A, 1i(Pl)= 1(Z∗i 6zl)). Similarly, we construct the subpopulationsPl; l= g+1; : : : ; 2g−1
by including in Pl the patients for whom Z∗i ¿zl−g. In what follows we call p the resulting total
number of subpopulations (2g− 1). By taking zg=sup{Z∗i ; i=1; 2; : : : ; n} we ensure that Pg will
contain all the patients.
In applications, we suggest choosing the values {z1; z2; : : : ; zg} so that they divide the patients

in groups of roughly equal sample sizes. Although this procedure is data-dependent in terms of
the actual values of the covariate, it does not use any outcome information. In some cases, a
large enough number of subjects have the same covariate value (for example, age in years),
and cut-o�s at each of the observed values of the covariate might be appropriate. This option
achieves the maximum possible resolution for the analysis. Lastly, cut-o� values may be chosen
to correspond with ‘usual practice,’ when speci�c subpopulations have historically been used in
a particular disease setting. This method has the advantage of facilitating the communication of
the results to clinical investigators (who often think in terms of cohorts of patients de�ned with
respect to increasingly larger or smaller values of a covariate) and the comparison of such results
with previous studies. Observe that as a result of the de�nition above, the ‘pivotal’ subpopulation
displayed in the centre of the plot contains all patients.
Considering the construction and interpretation of the tail-oriented version of STEPP and the

exploratory nature of the method, we recommend that any testing procedure be applied sepa-
rately to the left and right parts of the plot. An application of this approach is illustrated in
Appendix B.

2.3. Con�dence bands and hypothesis testing

Let �̂∗l be the component of �̂l corresponding to the treatment e�ect for subpopulation Pl. The
plot of the estimated hazards ratios �̂l= exp(�̂∗l ) will in general be hard to interpret, due to
the varying sample sizes in the subpopulations, and especially due to the correlation among the
estimates. This is true in particular when the amount of overlapping between the subpopulations
is large. A con�dence band constructed from the sequence of the hazards ratios �̂l can help in
the interpretation, and it can be obtained immediately from a con�dence band obtained from the
�̂∗l . If we let �l= [var(�̂∗l )]1=2, the marginal asymptotic 95 per cent con�dence interval for each
�∗l is given by {�∗l ∈ �̂∗l ± 1:96 �l}. We choose to construct a 95 per cent con�dence band that is
based on rectangular simultaneous con�dence intervals for �∗1 ; �∗2 ; : : : ; �∗p . We de�ne the band as
{�∗l ∈ �̂∗l ± 
1:96�l; l=1; : : : ; p}, that is, with widths proportional to the widths of the marginal
con�dence intervals. The value of 
 is such that P[

⋂p
l=1{�∗l ∈ �̂∗l ± 
1:96�l}] = 0:95, and it can

easily be obtained through simulation from the asymptotic distribution of the estimators. Observe
that 
 can be regarded as a measure of the e�ect of the simultaneous inference on the width of
the con�dence intervals.
An omnibus test for the equality of the coe�cients across subpopulations can be obtained by

considering the transformation �=A�∗ such that �j = �∗j+1− �∗j ; j=1; 2; : : : ; p− 1. Under the
null hypothesis H0 : �=0, if we call � the estimated asymptotic variance matrix of �̂∗, the test
statistic G=�̂′(A�A′)−1�̂ is (approximately) �2p−1-distributed.
Knowledge of the asymptotic distribution of the estimators allows one to apply other test statis-

tics that might seem appropriate for a particular alternative hypothesis, since the distribution of
any test statistic can be estimated via simulations.

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2595–2609
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2.4. Subset analysis

The result derived in Appendix A can in general be used when the subpopulations are de�ned
arbitrarily, and in particular according to di�erent covariates. Fitting of the PH model on such
subsets of the patients is commonly done in clinical trials. Knowledge of the (asymptotic) dis-
tribution of the resulting estimators thus allows one to make the correct simultaneous inference
on the treatment coe�cients obtained from �tting the PH model on each subpopulation. We can
therefore capture the additional uncertainty of the estimates due to the multiple subdivisions of the
population. In Section 3 we show an example of this using the data set from the IBCSG trial.

3. AN APPLICATION

We have applied STEPP to the International Breast Cancer Study Group Trial VII, a 2× 2 fac-
torial clinical trial evaluating chemoendocrine treatment versus endocrine therapy alone for post-
menopausal breast cancer patients. A total of 1212 patients from 24 institutions in 9 countries are
involved in the trial. The interested reader will �nd a complete description of the trial in IBCSG
[13]. The following covariates were collected as part of the trial: treatment; age; level of oestro-
gen receptor (ER, in fmol=mg of cytosol protein), and number of positive axillary lymph nodes.
We have used the data from the 592 evaluable patients in two of the four arms, which represent
the two treatments tamoxifen for �ve years and tamoxifen for �ve years plus three cycles (three
months) of early chemotherapy given with tamoxifen. Disease-free survival (DFS) was de�ned
as the length of time from the date of randomization to any relapse (including ipsilateral breast
recurrence), the appearance of a second primary tumour (including contralateral breast cancer),
or death, whichever occurred �rst. The median follow-up duration was 60 months, and the DFS
proportions at 5 years were 55 per cent and 64 per cent for the two treatment arms, respectively.
Here we concentrate on the in
uence of the level of ER on the treatment e�ect on disease-free
survival.
Preliminary analyses showed that ER and nodes should be log-transformed before the PH model

could be �t properly, and in what follows this will be implicit. Fitting of the PH model with all
the covariates described above on all patients produced an estimated treatment group hazards
ratio (HR) of 0.64 favouring tamoxifen plus chemotherapy, with a corresponding 95 per cent
con�dence interval equal to [0:49; 0:83]. The two-sided p-value associated with the HR is 0.001.
The overall e�ect of adding the early cycles of chemotherapy to tamoxifen is thus highly signi�cant.
The interaction term between treatment and log(ER) is not signi�cant when it is included in the
regression model (p-value = 0:84).

3.1. STEPP

We apply STEPP in its version (a) to this data set. This version consists of �tting the PH model
on subsets de�ned in a sliding-window fashion. (Application of the tail-oriented version is shown
in Appendix B). We set n1 = 55 and n2 = 60. The algorithm introduced in Section 2.1 generates
a total of 55 subpopulations; each subpopulation contains about 60 patients, and approximately
5 patients (60 minus 55) are exchanged as the window moves along the ER axis. The resulting
treatment hazards ratio estimates (tamoxifen plus chemotherapy versus tamoxifen alone) are shown
in Figure 2 together with the corresponding 95 per cent con�dence band. The dashed horizontal
line shows the overall treatment hazards ratio for the entire patient population, and the numbers in
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Figure 2. STEPP (sliding-window analysis) for IBCSG Trial VII data according to ER values
(n1 = 55, n2 = 60).

Table I. Testing for various choices of n1 and n2 (n=592).

n1 n2 Number of subpopulations 
̂ p-value

40 50 38 1.6375 0.3815
55 60 55 1.6375 0.5842
60 75 26 1.5375 0.2771
70 75 53 1.6125 0.8013
95 100 49 1.5875 0.0044
100 110 31 1.5375 0.4576
105 110 46 1.5625 0.2907
120 130 29 1.5125 0.0740
125 130 45 1.5375 0.2893
140 150 30 1.5125 0.1423
145 150 44 1.5125 0.2789
190 200 25 1.4625 0.0507
195 200 37 1.4625 0.0572
170 180 27 1.4625 0.6894
175 180 40 1.4625 0.4659

parentheses below the x-axis are the numbers of patients in each subpopulation. The label on the
x-axis for each subpopulation is the median of the values of ER in that subpopulation. Application
of the omnibus test does not reject the hypothesis of no interaction (p-value = 0:58).
We experimented with di�erent values for (n1; n2), and observed a large variability in the results

of the omnibus test as the size of the subpopulations (n2) and the number of patients exchanged
(n2−n1) are changed. Table I shows the number of subpopulations obtained from di�erent combi-
nations of values n1 and n2, and for each combination the value of the estimate of the parameter 
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Figure 3. STEPP (sliding-window analysis) for IBCSG Trial VII data according to ER values
(n1 = 95, n2 = 100).

and the p-value for the omnibus test. The table shows how STEPP highlights the large uncertainty
associated with the process of making inference about interaction without introducing a speci�c
functional assumption about its form. This issue, common to all smoothing techniques, suggests
that STEPP should be used mainly for exploratory purposes, and as a useful hypothesis-generating
tool. More generally, STEPP addresses the issue of the variability of the results obtained from
subgroup analyses, the results of which should always be judged with extreme caution.
The appearance of STEPP, on the other hand, seems to have a remarkable degree of robustness

to the selection of the pair (n1; n2), and the con�dence band also does not seem to change much.
Figures 3 and 4 show the plots corresponding to the choices (95; 100) and (145; 150) for the two
parameters (n1; n2). The STEPP should therefore be used with con�dence when trying to identify
ranges of the covariate for which treatment e�ects may behave unusually. In this example there
seems to be indication of a strong treatment e�ect for values of ER around 100, as well as for
very large values of ER. On the other hand, for patients with tumours having ER values between
the mid-100s and the mid-300s, the magnitude of the e�ect of adding chemotherapy to tamoxifen
appears to be less than the overall estimate. Thus, some patient subgroups might not bene�t as
much from chemotherapy as other subgroups.

3.2. Subset analysis

Consider �tting the PH model on two subsets of patients P1 and P2, where P1 contains patients
having age at least equal to 60 and P2 contains patients having ER level at least equal to 10. A
total of 268 of the 596 patients are common to these two subpopulations, which have sizes 338
and 458, respectively. The maximum partial likelihood estimates of the treatment coe�cients in
the subpopulations P1 and P2 are �̂∗P1 =−0:37 and �̂∗P2

=−0:51, and their corresponding estimated
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Figure 4. STEPP (sliding-window analysis) for IBCSG Trial VII data according to ER values
(n1 = 145, n2 = 150).

Figure 5. Joint 95 per cent con�dence interval for the treatment coe�cients corresponding to �tting a pro-
portional hazards regression model on the two subpopulations of patients P1 (having age at least equal to

60) and P2 (having ER level at least equal to 10).

asymptotic covariance matrix �̂�̂∗ can be obtained from the result described in the Appendix. A
95 per cent joint con�dence interval for �̂∗P1 and �̂∗P2

can thus be obtained as shown in Figure 5.
For comparison, the two marginal 95 per cent con�dence intervals are also shown in Figure 5.
Observe the high correlation existing between the two estimators (r=0:63), which was to be
expected because of the extensive overlapping of the two subpopulations.
A test for the hypothesis H0 : �∗P1 = �∗P2

= 0 is rejected at the 0.05 level since the corresponding 95
per cent con�dence interval does not include the point (0; 0). Alternatively, one may be interested

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:2595–2609
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in whether the two subpopulations have the same treatment coe�cient, that is, the hypothesis
H′
0 : �

∗
P1
= �∗P2

. Letting a= [1;−1]′, the value for the test statistic Z̃ =(�̂∗P1 − �̂∗P2
)=[a′�̂�̂∗a]1=2 is

0.94, and since Z̃ is approximately normally distributed under H′
0, we conclude that we cannot

reject H′
0 at the 0.05 level of signi�cance.

4. DISCUSSION

STEPP considers a sequence of treatment e�ects estimated on potentially overlapping subpopula-
tions in order to understand the in
uence of covariates on treatment e�ect. STEPP is especially
useful when trying to identify subpopulations of patients for whom the overall trial results may
be less representative.
In this article we have discussed a form of STEPP based on quantifying treatment e�ects through

a regression parameter in the PH model. One referee pointed out that it is impossible to clearly
specify the stochastic mechanism of an observation when the corresponding individual falls in two
or more overlapping subpopulations on which di�erent PH models are estimated. For this reason
we stress the exploratory nature of the method (rather than its use for formal estimation) when
the PH model is used in STEPP. Observe that this problem is also an issue in subsets analysis.
In Section 3.2, for example, a patient having both age at least equal to 60 and ER level at least
equal to 10 would belong to both subpopulations P1 and P2, and it is not clear which PH model
(if any) would describe the disease-free survival for this patient. Such subsets analyses are very
common, and this concern is largely ignored in practice. However, further examination of this
issue will be considered for future research.
When compared to the usual subset analysis approach, STEPP allows one to examine the patterns

of treatment e�ects according to a sequence of subpopulations, rather than through the comparison
of the treatment e�ects between only two subpopulations de�ned by a more or less arbitrary cut-o�
value. We have seen how the choice of the cut-o� points that de�ne the subgroups can have a
major impact on inference.
The sample size needed for a clinical trial to be able to investigate treatment–covariate interac-

tions without imposing parametric assumptions on the form of the interaction is quite large, and
applying STEPP to a larger database from a meta-analysis would increase the precision of the
estimates.
Examination of the plot can help detect deviations from the proportionality assumption if a

multiplicative interaction term is used in the PH model. More in general, STEPP can be used to
assess an appropriate parametric form for the treatment–covariate interaction.
The two versions of STEPP can be used together, since the two approaches complement each

other. While the sliding-window approach is suitable for the exploration of interactions about
which no a priori information is available, the tail-oriented pattern is designed to be sensitive
to interactions that are likely to impact the treatment e�ect at extreme values of the covariate
of interest. The tail-oriented version also presents the primary treatment comparison based on the
entire patient population as the ‘pivotal’ element in the centre of the plot.
Another example of the use of smoothing techniques is provided in Thaler [14], where a non-

parametric estimate of the hazard ratio function is developed. While that work does not provide
any inference machinery, it bears some similarities with our sliding-window approach, in particular
in its use of overlapping time intervals. As was suggested by one referee, STEPP can be extended
to study time–covariate interactions, and we plan to explore that possibility in future work.
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In conclusion, the use of STEPP helps in appreciating the inherent variability of subgroup
analyses, and in trying to identify real shifts in treatment e�ect magnitude as a function of covariate
values.

APPENDIX A: ASYMPTOTIC DISTRIBUTION OF THE ESTIMATORS

We make use of the multiplicative intensity model �rst introduced by Aalen [15]. The general form
of the intensity function of the counting process N (s) is �(s|Z)= �0(s)g(Z)Y (s), where �0(s) is
an unknown function, g(Z) corresponds to the covariate e�ect, and Y (s) is a stochastic process
which together with N (s) can be observed over the time interval of interest (see Aalen [15]).
The proportional hazards (PH) model is obtained from this by specializing g(Z)= exp(�′Z), by
de�ning for the censoring process NC(s)= I(X6s; �=1), and by setting YC(t)= I(X¿t). For such
a model the process MC(t)=NC(t)−AC(t)=NC(t)−

∫ t
0 �0(s) exp(�

′Z)YC(s) ds is a local martingale
(that is, AC(t) is the compensator of NC(t)). The full development of the PH model as a version
of the multiplicative intensity model can be found in Andersen and Gill [16].
Let 1i(P) be the indicator function 1(patient i∈P), and P a subpopulation de�ned with respect

to a non-time-varying covariate. Call Mi(t) the process M (t) associated with the ith patient, Zi the
corresponding vector of covariates, and Yi(u;P)= I(Xi¿u; 1i(P)= 1). Following the development
in Fleming and Harrington (Reference [17] pp. 148–150), the score function U (�;P) associated
with our model for the generic subpopulation P is the value at t=∞ of the process

U (�; t;P)=
n∑
i=1

∫ t

0
{Zi − R(�; u;P)}1i(P) dNi(u) (A1)

where

R(�; u;P)=
S(1)(�; u;P)
S(0)(�; u;P)

=
n−1

∑n
i=1 ZiYi(u;P) exp(�

′Zi)
n−1

∑n
i=1 Yi(u;P) exp(�

′Zi)
: (A2)

Observe that in (A1) we implicitly de�ne a new set of covariates Zi(P)=Zi1i(P), and that
Zi(P)1i(P)=Zi1i(P)I(Xi¿u)1i(P)=Zi1i(P). Integration with respect to the processes Ni(t) over
the range [0; sup{Ti; i=1; 2; : : : ; n}] is equivalent to expressing the score function as

U (�;P)=
n∑
i=1
�i1i(P)

(
Zi −

∑n
j=1[I(Xj¿Xi) exp(�

′Zj)Zj1j(P)]∑n
j=1[I(Xj¿Xi) exp(�

′Zj)1j(P)]

)
:

We can write the integrals in (A1) with respect to the processes Mi(t) instead of Ni(t):

U (�; t;P) =
n∑
i=1

∫ t

0
{Zi − R(�; u;P)}1i(P) dNi(u)

=
n∑
i=1

∫ t

0
{Zi − R(�; u;P)}1i(P) dMi(t)

+
n∑
i=1

∫ t

0
{Zi − R(�; u;P)}�0(u) exp(�′Zi)Yi(u;P) du
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where the last term can be shown to be zero. U (�; t;P) can thus be expressed in the form∑n
i=1

∫ t
0 Hi(s;P)dMi(s) with

Hi(s;P)=

(
Zi −

∑n
j=1[I(Xj¿t)e

�′ZjZj1j(P)]∑n
j=1[I(Xj¿t)e

�′Zj1j(P)]

)
1i(P)

and is therefore also a martingale with respect to t (see Fleming and Harrington, Reference [17],
Theorem 2:4:1). The solution to the system U (�;P)= 0 is the p-dimensional maximum partial
likelihood estimator (MPLE) �̂(P). Taylor expansion of U (�̂(P);P) yields

(�̂(P)− �(P))' −
[
@U (�(P);P)
@�(P)

]−1
U (�(P);P): (A3)

We now extend our notation to include the processes de�ned by the indicator functions 1i(Pl),
where P1;P2; : : : ;Pp are subpopulations de�ned with respect to some non-time-varying covariate.
For l=1; 2; : : : ; p and i=1; 2; : : : ; n, call �̂l= �̂(Pl); �l= �(Pl), and Ul(�l)=U (�l;Pl). For de�-
niteness we assume that the parameters in all subpopulations be all equal, but we keep the notation
�1; : : : ; �p for clarity. Call Ni(t)= I(Xi6t, �i=1) and Yli(t)= I(Xi¿t, 1i(Pl)= 1). We can repeat
the expansion in (A3) for each population Pl, and write



�̂1 − �1
�̂2 − �2
...

�̂p − �p


'−




[ @U1(�1)@�1
] 0 : : : 0

0 [ @U2(�2)@�2
] : : : 0

...
...

...

0 0 : : : [ @Up(�p)@�p
]




−1 

U1(�1)

U2(�2)
...

Up(�p)


 :

We are interested in the asymptotic distribution of


�̂1 − �1
�̂2 − �2
...

�̂p − �p


' nM−1



U1(�1)

U2(�2)
...

Up(�p)


 (A4)

where M is block-diagonal, and we call each block on the diagonal Âl(�l)= (1=n)@Ul(�l)=@�l,
l=1; 2; : : : ; p. By Theorem 4.2 in Andersen and Gill [16], each term Âl(�l) converges in probability
to a non-singular deterministic matrix, which we call Al(�l), which can be consistently estimated
by Âl(�̂l) as follows:

Âl(�̂l)=
1
n

n∑
j=1
�j1j(Pl)


∑n

i=1 Yli(Xj)Z
⊗2
i exp{�̂′lZi}∑n

i=1 Yli(Xj) exp{�̂
′
lZi}

−
(∑n

i=1 Yli(Xj)Zi exp{�̂
′
lZi}∑n

i=1 Yli(Xj) exp{�̂
′
lZi}

)⊗2
where for a vector a, a⊗2 = aa′.
By Theorem 8.2.1 in Fleming and Harrington (Reference [17], p. 290), the normalized (by

n−1=2) score process converges to a Gaussian process, and there exists a consistent estimator
for the corresponding covariance function. In particular, assume that conditions (2.1)–(2.6) in
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Reference [17] pp. 289–290, hold. This guarantees that Theorem 5.3.5 also holds, and if we
de�ne the processes H (n)i; l as being H

(n)
i; l = [Zi − El(�0; x)]1i(Pl), simple modi�cations in Theorem

8.2.1 then establish the asymptotic distribution. Consistency of the MPLE of the coe�cients �l can
easily be shown, and by Slutsky’s theorem the result about the convergence of the score process
is transferred to the estimators.
The asymptotic covariance matrix between any two terms n1=2(�̂l) and n

1=2(�̂h) can then be
estimated consistently by the quantity D̂l(�̂l; �̂h)= Â

−1
l (�̂l)B̂lh(�̂l; �̂h)Â

−1
h (�̂h), where B̂lh(�̂l; �̂h)=

n−1
∑n

j=1Wlj(�̂l)Whj(�̂h)
′, and

Wlj(�̂l) = �j1j(Pl)

{
Zj − S(1)l (�̂l; Xj)

S(0)l (�̂l; Xj)

}
−

n∑
m=1

�m1m(Pl)Ylj(Xm) exp(�̂
′
lZj)

nS(0)l (�̂l; Xm)

×
{
Zm − S(1)l (�̂l; Xm)

S(0)l (�̂l; Xm)

}
:

Observe that one could de�ne a separate counting process Nil(t)= I(Xi6t, �i=1, 1i(Pl)= 1)
for each individual for each population, and express the score functions as integrals with respect
to these counting processes. This approach, however, would not allow derivation of the result,
since these counting processes do not constitute a proper multivariate counting process. (In fact,
the condition that no two processes jump at the same time is clearly violated.)

APPENDIX B: TAIL-ORIENTED STEPP

We now apply the tail-oriented version of STEPP [(Figure 1(b)] to the IBCSG clinical trial
data. Using 17 subpopulations (eight for decreasing ER values, one for all patients, and eight for
increasing values of ER), we obtained the results shown in Figure A1, where we show the value for
treatment hazards ratios (tamoxifen plus chemotherapy versus tamoxifen alone), the overall 95 per
cent con�dence band, and the hazards ratios for the non-overlapping subpopulations P∗

l =Pl ∩Pl+1
for l=1; : : : ; p. The latter estimates are shown in the �gure as open diamonds, and they illustrate
how little precision in the estimates is available when non-overlapping subpopulations are used. The
dashed horizontal line shows the treatment hazards ratio for the entire patient population (labelled
as ‘ALL’ on the x-axis) and the numbers in parentheses below the x-axis are the numbers of
patients included in the subpopulations. The plot also shows, for comparison, the individual 95
per cent con�dence intervals for all patients (‘ALL’), and for the two subpopulations ‘ER¡10’
and ‘ER¿10’. These two subpopulations represent a subgroup analysis usually performed on
breast cancer adjuvant therapy clinical trials data; for this trial these subgroups were prospectively
strati�ed at randomization. For this example, we have chosen the cut-o� points for subpopulations
shown in Figure A1 according to the ‘usual practice’ criterion, after consultation with an expert
medical oncologist.
The plot in Figure A1 illustrates the pattern of treatment e�ect sizes relative to the ‘ALL’

patient value according to subpopulations de�ned by ER value, both for decreasing (to the left) or
increasing (to the right) values of ER and for independent and non-overlapping subgroups (open
diamonds). The results from this analysis indicate the possibility of a di�erence in the hazards
ratios when we look at the subpopulations having large values of ER. Testing can be performed on
each half of the plot. Testing for equality in the coe�cients on the left side gives a p-value of 0.43,
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Figure A1. STEPP (tail-oriented analysis) for IBCSG Trial VII data according to ER values.

and testing the right side alone gives a p-value of 0.0004. These results indicate the possibility
that for very high levels of ER the addition of chemotherapy to tamoxifen could be very e�ective.
The con�dence band for the STEPP is 43 per cent wider than the individual con�dence intervals
(
=1:43).
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