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1. Introduction 
In clinical survival studies conducted in the United States, 
rich data are frequently available on variables recording time 
to drop out and the evolution over time of a patient’s clinical 
signs, symptoms, and laboratory measurements. Motivated by 
a Greek study, Frangakis and Rubin (FR) consider estimation 
of a marginal survival curve under a double sampling design 
from severely impoverished reduced data that included none 
of the aforementioned variables due to confidentiality restric- 
tions. To make our discussion relevant to settings with and 
without confidentiality restrictions, we shall consider survival 
curve estimation both from rich data that includes the afore- 
mentioned variables and from reduced data that does not. 
Let T ,  L ,  and C be continuous failure, dropout, and adminis- 
trative censoring times, respectively, with time measured from 
date of enrollment. The goal is to estimate the cumulative net 
(marginal) hazard of failure A( t )  = Ji X ~ ( u ) d u  and the sur- 
vival function S( t )  = under a double sampling design 
in which a subset of the dropouts is followed up in a second- 
phase sample. In their analysis, FR assumed (a) all dropouts 
had the same chance of being selected into the second-stage 
sample, (b) all dropouts selected into the second phase had 
their censoring indicator A = b(T < C) and their minimum 
X = min(T,C) of censoring and failure successfully ascer- 
tained, and (c) C was independent of underlying variables 
such as T and L. It was necessary for FR to impose these 
assumptions because FR’s estimator of A ( t )  is inconsistent 
unless (a)-(.) hold. 

In practice, one or more of assumptions (a)-(c) may often 
fail to hold. For instance, in the first paragraph of their Section 
5 ,  FR noted it will often happen that a subset of the dropouts 
pursued in the second phase will fail to have (X,A) ascer- 
tained, violating assumption (b). FR recommend that mem- 
bers of this subset be treated in the analysis as having been 
administratively censored. However, were this recommenda- 
tion to be followed, FR’s survival estimator would be incon- 
sistent and could be severely biased if the number of second- 
stage subjects who do not have (X,A) ascertained is large. 
Assumption (a) will be false if a potentially more efficient de- 
sign has been employed in which subjects who dropped out 
early are oversampled in the second phase. Assumption (c) 
will be false when there are secular trends in the distribution 
of T ,  as was the case during the 1980s and 1990s for the sur- 
vival time T of AIDS patients. If only assumption (a) were 

false, then, as FR note, identification of h(t) could be restored 
by addition of the known second-phase sampling probabilities 
to FR’s reduced data. However, when assumptions (b) and/or 
(c) are false, both additional assumptions and rich data are 
required to restore identification. 

In this discussion, we make the following points. First, we 
show in Section 4 that, if assumptions (a)-(c) hold, then (i), 
when only the reduced data are available for analysis, FR’s es- 
timator is algebraically identical to the efficient inverse prob- 
ability weighted (IPW) estimator, but (ii) when rich data 
are available, FR’s estimator is inefficient; for this case, we 
provide in Section 8 a locally semiparametric efficient (LSE) 
estimator of S( t )  that exploits the information in the rich 
data. Second, we consider the more realistic setting in which 
(i) FR‘s estimator is inconsistent because one or more of as- 
sumptions (a)-(.) fail to hold and (ii) rich data are available. 
In Sections 6 and 7, we derive doubly robust LSE survival 
curve estimators under the assumption that the missingness 
process is ignorable. 

In summary, we describe aspects of a powerful methodol- 
ogy for the analysis of doubly sampled censored survival data 
that can resolve the three principal problems left open by FR: 
(i) how to construct locally LSE estimators of S ( t )  when FR’s 
assumptions (a)-(.) hold and, as would typically be the case 
in the United States, rich data are available for analysis; (ii) 
how to construct LSE doubly robust estimators of S(t)  when 
FR’s assumptions (b) and/or (c) fail but missingness remains 
ignorable; and (iii) how to conduct a sensitivity analysis when 
missingness may be nonignorable. This methodology is in ef- 
fect a subset of the general theory developed in Robins and 
Rotnitzky (1992), Robins (1993a,b), Robins, Rotnitzky, and 
Scharfstein (1999), and Scharfstein, Rotnitzky, and Robins 
(1999a) for the analysis of semi- and nonparametric right- 
censored data models specialized to  the case of doubly sam- 
pled censored survival data. Because of space limitations, our 
resolution of problem (iii) will be described elsewhere. 

In order to successfully exploit our general theory in the 
context of doubly sampled data, an additional problem must 
be faced. Specifically, in this context, the distribution of the 
censoring variable has both discrete and continuous compo- 
nents; as a result, none of the estimators of S( t )  previously 
proposed in the aforementioned papers are directly applica- 
ble. In Section 6 and the Appendix, we provide a survival esti- 
mator that allows for a mixed discrete and continuous censor- 
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ing distribution as in Satten, Datta, and Robins (unpublished 
manuscript). 

2. Representation of the Rich Data as 

One key insight underlying the construction of LSE estima- 
tors that are consistent under much less stringent assump- 
tions than FR’s (a)-(.) is that the observed rich data can be 
represented as “full data” that is right censored by a censor- 
ing variable Q whose distribution function is discontinuous, 
with an atom of positive mass at the random dropout time 
L. To specify the full data, suppose that, contrary to fact, 
administrative censoring was absent and data on T were ob- 
tained through double sampling for 100% of dropouts; then, 
for all subjects, we would observe full data F = (T, L,  Z ( L ) ) ,  
where, by convention, L = T if a subject never drops out 
and Z(u) = {Z(z);O 5 z 5 u} denote the data on all 
other possibly time-dependent covariates that would be avail- 
able on a subject up to time u. In the actual study, there 
is administrative censoring and incomplete double sampling 
of dropouts. Hence, as in FR, we let S = 1 for a dropout 
selected for the second-phase sample and S = 0 otherwise. 
Let v(u)  = (6(L < u) ,  6(L < u)L,  Z{min(u, L ) } )  denote the 
covariate information actually recorded up to time u on a 
subject and whether and when the subject dropped out be- 
fore u. We now construct a new censoring variable Q given 
by Q = L if L < min(T, C) and S = 0 and Q = C otherwise. 
Let I;; = min(T, Q) and A = 6 ( X  = T). Thus, A = 1 if and 
only if a subject is actually observed to fail. Note that, when 
A = 0, the censoring time Q is the dropout time L whenever 
the subject’s dropout time is observed and the subject was not 
selected for follow-up in the second stage, i.e., when S = 0; 
otherwise, Q is the administrative censoring time C. Thus, 
in the setting considered by FR but with rich data available 
for analysis, the observed data can be represented as n i.i.d. 
copies of 0 = (X, A, v(X)). The important point here is that 
this representation shows that the observed rich data 0 is the 
full data F right censored by Q. 

REMARK. Data on C may also be recorded on all subjects. 
This will have no bearing on our inferences concerning A ( t )  
if the known probability of selection into the second-stage 
sample does not depend on C (Robins, 1993a, Appendix 4). 
If second stage selection depends on C ,  then inference on A( t )  
will require that one use the general theory of estimation in 
multiphase designs described in Scharfstein, Rotnitzky, and 
Robins (1999b, p. 1145) with a small correction printed in 
Robins (2000, Section 4) rather than the methods used in 
this discussion. 

3. Weakening FR’s Assumptions (a) and (c) 
We now provide additional plausible modeling assumptions 
under which the observed rich data 0 is ignorable right-cen- 
sored data. FR’s assumptions (a)-(c) define a restrictive spe- 
cial case of this model. Specifically, we assume that the cause- 
specific hazard of censoring at time u given the full data 
F depends only on the observed past, i.e., XQ(U I F )  = 
XQ[U I v(u)]. Separating the discrete and continuous com- 
ponents of XQ(U 1 F ) ,  this assumption says that (i) when 
u # L ,  the conditional cause-specific hazard of C ,  XQ(U I 
F )  = limh-,opr(u 5 Q < u + h I X 2 u,u # L ,  F ) / h ,  de- 
pends on the full data F only on the observed past V ( u ) ,  and 

Right-Censored Full Data 

(ii) when u = L,  the known conditional probability of being 
selected into the second-phase study, XQ(U I F )  = pr(S = 0 1 
X 2 u, L = u, F ) ,  may depend on the observed past v(u). 
Robins and Rotnitzky (1992) noted that this assumption is 
equivalent to the assumption that the full data F are coars- 
ened at random (CAR) (Heitjan and Rubin, 1991; Gill, Van 
der Laan, and Robins, 1997), i.e., the density fo(0 I F )  of 
the observed data 0 given the full data F is a function of F 
only through 0. Missingness is ignorable if the data are CAR 
and, as we shall assume, the parameters of fo(0 I F )  are 
distinct from those of the marginal distribution of F.  

We refer to the model defined by assumptions (a)-(.) and 
the reduced data as FR’s model. It ‘then follows that FR’s 
model is the special case of our model in which, (1) by as- 
sumption (c), when u # L,  the conditional cause-specific haz- 
ard of C does not depend on the past V ( u ) ,  i.e., XQ(U I 
V ( u ) )  = XQ(U), (2) by assumption (a), when u = L ,  the 
chance of a dropout not being selected for the second phase 
is a known constant 1 - w, i.e., XQ(U I V(u) )  = 1 - w, and 
(3) the only data available for analysis are n i.i.d. copies of 
the reduced data Ored = ( I ,  Robs, I X ,  I A ) ,  where A = S(T < 
C ) , X  = min(T,C),RobS 1 - 6(L < X )  is the indicator 
that a subject was not observed to drop out during the study 
and I = Robs + (1 - RobS)S is the indicator that ( X , A )  is 
recorded. 

4. FR’s Estimator Is an IPW Estimator 
We now show that FR’s model is itself an ignorable semi- 
parametric missing data model and that FR’s estimator of 
A(t ) ,  which is the nonparametric maximum likelihood estima- 
tor (NPMLE) in this model, is algebraically identical to the 
efficient inverse probability weighted estimator. Specifically, 
FR’s model is a missing data model with I as the missing 
data indicator and Fred = ( X ,  A,  Robs) rather than F acting 
as the full data since, when I = 1, is equivalent to ob- 
serving the full data Fred. FR’s model also implies that (i) 
the data are CAR and thus ignorable in the model with full 
data Fred and observed data Ored since the conditional prob- 
ability of nonresponse ( I  = 0) given Fred depends on Fred 
only through the reduced data Ored = ( I ,  Robs) and (ii) the 
joint law of Fred is completely unrestricted. Now, the cumu- 
lative hazard A( t )  is a functional of the distribution of the 
full data Fred since, as FR note, h(t) = E(J6 dN*(u)/pr(X > 
u)) = E(J;S(T = u , X  2 u)/E{S(X 2 u)}) .  But Robins 
and Rotnitzky (1992) and Rotnitzky and Robins (1995) show 
that the NPMLE of a functional of an unrestricted full data 
distribution in a CAR model is the efficient IPW estima- 
tor C, I i f , ~ ’ { ~ ~  dN:(u)/Ci Ii7izT16(Xi 2 u)}  obtained by re- 
placing all expectations of incompletely observed variables in 
the functional by weighted averages with inverse probability 
weights Iiiizr’, where iii is the empirical conditional proba- 
bility of observing full data Fred on subject z, i.e., i?i = 1 for 
nondropout i ,  and for dropout i ,  7ii is the empirical propor- 
tion 2 of the dropouts selected in the second-phase sampling. 
Since FR’s estimator is the NPMLE in this model, it has to 
coincide with the efficient IPW estimator. 

5. Relaxing FR’s Assumption (b) 
We now return to the general problem of estimation with 
rich data 0. We wish to consider inference that is valid when 
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assumption (b) fails, i.e., when there are nonrespondents in 
the second-phase sample. To do so, we augment the observed 
rich data 0 by J, where J = 1 for dropouts who have ( X ,  A) 
ascertained and J = 0 otherwise. We redefine the censoring 
time Q to be L if L < X and either (i) S = 0 or (ii) S = 1 
and J = 0; otherwise, Q = C. Hence, a dropout is regarded 
as censored at his/her observed dropout time if the dropout 
is either not selected into the second-stage sample, i.e., if S = 
0, or if he/she is selected but fails to respond, i.e., S = 1 
and J = 0. Thus, the discrete hazard of censoring at the 
dropout time u = L is now XQ(% I F) = pr(S = 1 I F , L  = 
u ) p r ( J = O / S = l , F , L = u ) + p r ( S = O I  F , L = u ) . A s i n  
Section 3, we consider the possibility that assumption (a) fails 
because selection into the second-phase sampling depends on 
the observed past, i.e., we make the less restrictive assumption 
(a’) that pr(S = 1 I F, L = u)  = pr(S = 1 I L = u, v(u)) and 
this probability is known by design. We replace assumption 
(b) by the less restrictive assumption (b’) that the unknown 
conditional probability pr( J = 0 I S = 1, F, L = u)  of being 
a nonrespondent depends only on the observed past, i.e., it 
equals pr(J = 0 I S = 1, V ( u ) ,  L = u). Finally, as in Section 3, 
we relax (c) and allow the possibility of dependent censoring 
by making the assumption (c’) that, when u # L,  XQ(U I 
F )  = XQ(U I V(u)) .  Note that, with the augmented data, 
assumptions (a’)-(c’) are equivalent to the CAR assumption 
xQ(u I F ,  = XQ(u I V(.)) .  
6. Estimation Under the Less Restrictive Ignorable 

The Nelson-Aalen estimator of A(t) based on the data 0 is 
A X A ( ~ )  =- .f6 CF==, {d$t(u))/{C&l E ( u ) } ,  where dN(u)  = 
b(A = 1, X = u) ,  and Y ( u )  = b(X 2 u)  is the at-risk indica- 
tor at u. In our setting, A N A ( t )  will generally be inconsistent 
for R(t)  because censoring by Q may be dependent. There- 
fore, we propose estimating A(t) by the inverse probability 
of censoring weighted Nelson-Aalen (IPCW NA) estimator of 
Robins (1993b). The IPCW NA estimator is defined as A( t )  = 
16 C;==, {kt-l(u)dNz(u)}/{C~=l kXp1 (u)g(u)} ,  where k ( u )  
is an efficient estimator of the conditional probability K(u)  = 
pr(Q > u I F )  of remaining uncensored up to u under (a’)-(c’) 
based on the following model XQ [u I V(u);  771 for XQ [u I V ( u ) ] ,  

Assumptions (a’)-(.’) 

where 7 7 =  (71,772,773): 

xQ[u I V(u) ;  V11 

= XOQ(U)exP(Q’W(u)), u # L,  (1) 

= $0 + $;w*(u), u = L (2) 

= logit pr(S = 1 I L = u, V ( u ) )  + ~ i ~ * * ( u ) ,  u = L. 

(3) 

logit pr( J = 0 I S = 1, V ( u ) ;  72) 

logit pr(S = 1 I L = u, V ( u ) ;  73) 

Here, W ( u ) ,  W*(u) ,  and W**(u) are known vector functions 
of V(u)  chosen by the analyst; a,72 = ($o,$;)’ ,  and 773 are 
parameter vectors to be estimated; XOQ(U) is an unknown 
baseline hazard function; and 771 is the infinite dimensional 
parameter (XOQ(U),CZ).  We provide the formula for $(a) in 
the Appendix. Note the logit of the known second-phase sam- 
pling probabilities are entered as an offset in model (3). Hence, 
the true value of 773 is known to be zero. However, we ignore 
this knowledge and estimate 773 by maximum likelihood. We 

do so because, under CAR, one never decreases and usually 
increases the asymptotic efficiency of our IPCW estimator 
A(t) by replacing known values of parameters in any model 
XQ[U I v(u);q]  for censoring by efficient estimates. Indeed, 
even when assumptions (a)-(.) hold so that FR’s estimator 
based on the reduced data Ored is also consistent, the asymp- 
totic variance of the IPCW NA estimator A(t)  never exceeds 
and is often much less than that of FR’s estimator. However, 
A(t) is not fully semiparametric efficient unless the functions 
W(u) ,  W*(u) ,  and W**(u) are chosen optimally, as discussed 
in the following paragraph. Robins (1993b) showed that the 
IPCW estimator A( t )  is consistent and asymptotically nor- 
mal (CAN) when CAR holds and the model XQ[U I V(u);q]  
is correct. 

7. Locally Semiparametric Efficient Doubly Robust 

Unfortunately, A(t) will be inconsistent if X Q [ U  I V(u);q]  is 
misspecified. When assumption (b) and/or (c) may not hold, 
one cannot be certain that the model XQ[U I V ( u ) ;  771 is cor- 
rectly specified. Because of this uncertainty, one might choose 
to specify a parametric model f(F; Q) for density of the full 
data F and then estimate both 0 and the full data functional 
A($) based on the data 0 with parametric Bayes, paramet- 
ric maximum likelihood, and/or parametric multiple imputa- 
tion estimators (Rubin, 1987). However, if the model f ( F ;  0) 
is misspecified, these estimators of A(t) are inconsistent and 
can be severely biased when the number of nonrespondents in 
the second-stage sample is large (Scharfstein, Rotnitzky, and 
Robins, 1999b, Section 3.2.6; Robins and Wang, 2000). Hence, 
the best that can be hoped for is to find a locally semipara- 
metric efficient (LSE) doubly robust estimator. An estimator 
is doubly robust if it is CAN under the assumption of CAR 
when either (but not necessarily both) of the models f ( F ;  0) 
or XQ(U I v (u ) ;v )  is correct. A doubly robust estimator is 
LSE if it is the asymptotically most efficient doubly robust es- 
timator of A ( t )  when both models f(F; 0) and X Q ( U  I V ( u ) ;  7 )  
happen to be correct. Thus, in CAR models, it is best to si- 
multaneously model the censoring (missingness) mechanism 
and the law of the full data and then calculate a LSE dou- 
bly robust estimator (Robins, 2000; Robins, Rotnitzky, and 
van der Laan, 2000, Section 7; Scharfstein, Rotnitzky, and 
Robins, 2000b, Section 3.2). In the Appendix, we show that 
there exist random functions Wopt(u), Wzpt(u), W:;t(u) such 
that the associated IPCW estimator Aopt(t) is doubly robust 
and LSE. 

8. A Rich Data Estimator That Improves on FR’s 

Under FR’s assumptions (a)-(c), Aopt(t) is guaranteed to be 
CAN since these assumptions imply that our censoring model 
X Q [ U  I v(u) ;q]  is correctly specified with cy = n3 = $1 = 0 
and $0 = --M. Further, Aopt(t) has asymptotic variance that 
is always less than or equal t o  that of FR‘s estimator. In fact, 
Aopt(t) remains LSE under FR‘s assumptions (a)-(c) since 
these assumptions are just further a priori restrictions on the 
ignorable censoring model XQ[U I v(u); 771 and, in an ignorable 
model, knowledge of the censoring mechanism has no effect 
on efficiency. 

Estimators Under the CAR Assumptions (a’)-(.’) 

Estimator Under FR’s Assumptions 



346 Biometrics ,  June 2001 

REFERENCES 

Gill, R. D., van der Laan, M. J., and Robins, J. M. (1997). 
Coarsening at random: Characterizations, conjectures 
and counterexamples. Proceedings of the First Seattle 
Symposium on Survival Analysis, 255-294. New York: 
Springer-Verlag. 

Heitjan, D. F. and Rubin, D. B. (1991). Ignorability and 
coarse data. The Annals of Statistics 19, 2244-2253. 

Robins, J. M. (1993a). Analytic methods for estimating HIV 
treatment and cofactor effects. In Methodological Issues 
of AIDS Mental Health Research, D. G. Ostrow and R. 
Kessler (eds), 213-290. New York: Plenum. 

Robins, J. M. (1993b). Information recovery and bias adjust- 
ment in proportional hazards regression analysis of ran- 
domized trials using surrogate markers. Proceedings of 
the Biophamaceutical Section, American Statistical As- 
sociation, 24-33. Washington, D.C.: American Statistical 
Association. 

Robins, 3. M. (2000). Robust estimation in sequentially ignor- 
able missing data and causal inference models. Proceed- 
ings of the 1999 Joint Statistical Meetings, Washington, 
D.C.: American Statistical Association in press. 

Robins, J. M. and Rotnitzky, A. (1992). Recovery of informa- 
tion and adjustment for dependent censoring using sur- 
rogate markers. In A IDS Epidemiology-Methodological 
Issues, N. Jewell, K. Dietz, and V. Farewell (eds), 297- 
331. Boston: Birkhauser. 

Robins, J. M. and Wang, N. (2000). Inference for imputation 
estimators. Biometrika 87, 113-124. 

Robins, J. M., Rotnitzky, A., and Scharfstein, D. 0. (1999). 
Sensitivity analysis for selection bias and unmeasured 
confounding in missing data and causal inference models. 
In Statistical Models in Epidemiology, E. Halloran (ed), 
1-94. New York: Springer-Verlag. 

Robins, J. M., Rotnitzky, A., and van der Laan, M. J. (2000). 
Discussion of “On Profile Likelihood” by Murphy and 
van der Vaart. Journal of the American Statistical Asso- 
ciation 95, 477-482. 

Rotnitzky, A. and Robins, J. M. (1995). Semiparametric re- 
gression estimation in the presence of dependent censor- 
ing. Biometrika 82, 805-820. 

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in 
Surveys. New York: Wiley. 

Scharfstein, D. O., Rotnitzky, A., and Robins, J. M. (1999a). 
Adjusting for non-ignorable drop-out using semipara- 
metric non-response models. Journal of the American 
Statistical Association 94, 1096-1120. 

Scharfstein, D. O., Rotnitzky, A., and Robins, J. M. (1999b). 
Rejoinder to “Adjusting for Non-ignorable Drop-out Us- 
ing Semiparametric Non-response Models.” Journal of 
the American Statistical Association 94, 1135-1 146. 

Scharfstein, D. O., Robins, J. M., Rotnitzky, A., and Ed- 
dings, W. (2001). Causal inference in randomized stud- 
ies with informative censoring and discrete time-to-event 
outcomes. Biometrics, in press. 

APPENDIX 

Received April 2000. Revised October 2000. 
Accepted October 2000. 

Formula for k ( u )  
In this Appendix, we provide a formula for k ( u )  that takes 
into account that Q has a mixed continuous and discrete dis- 
tribution, 

&(u) = &(?A, $) 
= {expit{logit pr(S = 1 I L,  V ( L ) )  + &w**(L)) 

x 11 - expit{& + & W * ( L ) ) ] ) ~ ( ~ < ~ )  

x exp { - 1’ d ~ o g ( v )  exp(h‘w(w)) 

where expit(s) = er / ( l  + e r ) ;  
n. 

i=l 

h is the Cox partial likelihood estimator of a in the Cox model 
(1) for the cause-specific hazard of C for C < T ,  f j3 is the MLE 
of 7 3  solving 

o = C{S~  - p r ( s  = 1 I q ( ~ i ) ; q 3 ) ) 6 ( ~ i  5 X ~ ) W : * ( L ~ ) ,  

and 62 = (do,&) ’ .  To compute A(t) ,  W(u) needs only to be 
evaluated at the observed administrative censoring times C 
5 min(T,t), while W**(u) and W*(u) need to be evaluated 
at observed dropout times L < t .  

Formula for Wept (u) , W& (u) , W:& (u) 

Let $0 and Ao( t )  equal f j  and A ( t )  as defined previously and 
let 4 be the MLE of 0 based on data 0 in model f ( F  : 0). 
Define, for any function r(v, q) ,  

i 

t 

ue17(u, = K-’ (v; v){dfi(v) - AT(”; ~ ) ~ ( v ) d v ) / r ( v ,  7) 

HoTj(u, = Eo,[Uoq(w .) I Y(,)  = 1, # 4, 
s, 

H&(u , r )  = E~,[Uo,(u,r) I V(u) ,Y(u)  = 1 , u  = L,S  = 11, 

and 
H;;(u,r) = Eg,[UO,(u,r) 1 V(u) ,Y(u)  = 1 , u =  L].  

Let F(v,q) = K1C7==, K z ~ l ( v , q ) ~ ( v ) .  Recursively for j = 
0,1,2, .  . . , define 

w;. 773 (u) = (W*(u)’,H; Si ( u , F ) ) ’ ,  

and 

WT* (u) = (1, (u, F))’ , 
0% 

Then f j j+l  and A j + I ( t )  are $ and A(t)  except with W(jA 7 3  ’ 
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Wie3,  WX* replacing W, W*,  W**. Finally, Wept, W&, 

Wo& and hopt(t) are the limits as j -+ m of W J ~ , ,  W&,., 
Wr* and Aj ( t ) ,  respectively. They can be computed by it- 
erating on until convergence. Consider the union model 
that specifies that the data are CAR and either f(F;f3) or 
XQ(U I V(u);  Q) is correct. The cumulative hazard estimator 
Aopt(t) is LSE in the union model at the intersection sub- 
model in which both f(F; 6 )  and X Q ( U  1 V ( U ) ;  Q) are correct. 
When model X Q [ U  1 V(u);  771 is correct, 7j3 is assymptotically 
equivalent to 60. When model X Q [ U  1 V(u);q] is misspecified, 
fjj can differ substantially from 60. In that case, Aopt(t), in 
contrast to A, (t), remains CAN, provided model f ( F ;  0) is 
correct. 

If either d or the required expectations are too difficult to 
compute, one can sacrifice double robustness and use the fol- 
lowing approach. In u@17(U) ,  replace x ~ ( v ;  0) by a preliminary 

@*? 

@*? , 

estimate based on nonoptimal W ,  W*, W** and replace 
E@v{6(x > v)} by a sample average to give G(u). Q(u) can be 
regressed on functions of V(u)  among subjects with Y (u) = 1 
and u # L to give k (u ) .  O(L)  can be regressed on func- 
tions of V ( L )  to give k * * ( L ) ,  and o ( L )  can be regressed on 
functions of V ( L )  among subjects with S = 1 to give i!?*(L). 
Then, in the model characterized by CAR and (1)-(3) being 
true, the associated estimator, say Aopt(t), will be (nearly) 
semiparametric efficient if the regressions models used to cal- 
culate H ( u ) ,  l ?* (~ ) ,  and k * * ( ~ )  are (nearly) correct and will 
be CAN even if they are badly misspecified, provided the cen- 
soring model is correct. 

Finally, we note that the “1” column did not have to be 
included in W,*,*(u) to insure either double robustness or local 
semiparametric efficiency. Rather, its inclusion was necessary 
to guarantee that A,,t(t) is always at  least as efficient as FR’s 
estimator of h(t) when FR’s assumptions (a)-(c) hold. 




