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Abstract

In this paper a simple dynamic optimization problem is solved with the help of

the recursive saddle point method developed by Marcet and Marimon (1999). Ac-

cording to Marcet and Marimon, their technique should yield a full characterization

of the set of solutions for this problem. We show though, that while their method

allows us to calculate the true value of the optimization program, not all solutions

which it admits are correct. Indeed, some of the policies which it generates as

solutions to our problem, are either suboptimal or do not even satisfy feasibility.

We identify the reasons underlying this failure and discuss its implications for the

numerous existing applications.
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1 Introduction

Marcet and Marimon (1999) (henceforth MM) develop an elegant and flexible recursive

saddle point method, suitable for solving a wide class of dynamic optimization problems.

Because of its tractability and computational advantages, throughout the last years

many authors have started applying this approach.1 The list of papers in which it is

used includes, among many others, Attanasio and Rios-Rull(2001), Ayagari, Marcet,

Sargent and Seppälä (2002), Cooley, Marimon and Quadrini (2001), Friedman (1998),

Kehoe and Perri (2002), Khan, King and Wolman (2000), Klein and Rios-Rull (2002),

Marcet and Marimon (1992), Seppälä (2002), and Siu (2002).

In this paper we apply the MM method to a simple concave dynamic optimization

problem which falls into the class of problems which MM consider in their paper. In

this example a principal has to share a constant stream of endowments with an agent in

such a way that his own utility is maximized subject to the constraint that the agent’s

utility never falls below a certain threshold. We show that while the MM technique

allows one to calculate the true value of the problem, the set of solutions which it admits

does not coincide with the true set of solutions. In particular, in our example the MM

approach allows both for solutions which are feasible but suboptimal and solutions

which even violate feasibility.

The method developed by MM builds on the fact that the solution of an opti-

mization problem can often be obtained by finding the saddle points of its associated

Lagrangean. Roughly speaking, the idea underlying the MM approach is to use recur-

sive techniques to calculate these saddle points. That is, MM aim to show that by using

appropriate summaries of the Lagrange multipliers as state variables (MM refer to these

state variables as co-states) a sequential saddle point problem can be transformed into

a recursive one which gives rise to exactly the same set of solutions.2 In particular,

they argue that the equivalence between sequential and recursive saddle points does

not require any concavity assumptions on the underlying optimization problem. They

conclude therefore that, just as the standard Lagrangean approach, their method pro-

vides a full characterization of the set of solutions of concave optimization programs,

and yields sufficient conditions for solutions of nonconcave problems.3

1 One of the key advantages of the MM method with respect to dynamic programming is that

the state space is not itself endogenous but is given exogenously. This can simplify the numerical the

numerical analysis substantially as costly preliminary computations which the Bellman approach might

imply can be avoided (see, for example, Abraham and Pavoni (2003) and Chang (1998)).
2Hence, they essentially extend Bellman’s Principle of Optimality for dynamic optimization problems

to (a class of) dynamic saddle point problems.
3In their own words: ’Concavity is no more necessary for our approach than for the classical La-

grangean method.’ (MM page 3).
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Since our example is concave, equivalence between saddle points of the Lagrangean

and solutions of the optimization problem indeed holds. The fact that the MM method

nonetheless allows for wrong solutions therefore proves that the set of sequential saddle

points and the set of their recursive counterparts do not always coincide under the

conditions imposed by MM. For our problem it turns out, that the latter is a strict

superset of the first one. Hence, at least in this case the technique of MM yields only

necessary but not sufficient conditions for a solution.

In our discussion we will argue that the MM method might fail to yield a correct so-

lution whenever the problem under consideration is not strictly concave. This highlights

the importance of our results: Concavity (and hence all the more so strict concavity)

is a rather restrictive condition as many interesting economic problems which include

incentive constraints are very often nonconcave. In fact, most of the models analyzed in

the articles mentioned above study problems which fall into two main categories, Ram-

sey taxation and default with capital accumulation, which are known to have typically

a nonconcave structure.4 An exception to this point is Attanasio and Rios-Rull (2001),

who study risk sharing with default without capital accumulation. It seems that the

popularity of the MM approach derives mainly from the computational advantages it

provides in numerical analyses (see footnote 1). Our findings (the lack of sufficiency of

the optimality conditions which the method yields) show though that its use for such

purposes is rather inappropriate.

An interesting interpretation of the limitations of the MM approach can be obtained

by comparing it with classical dynamic programming. This comparison reveals that

the MM co-states do not allow for a sufficiently ’sharp’ description of the true state of

the optimization problem. In a sense which we will make more precise in this paper,

in our example to each of the MM co-states along the optimal path there corresponds

a whole interval of values of the primal state variable used in the Bellman approach.

Therefore, fixing a co-state does not pin down the correct continuation path which,

as we will see, in effect amounts to a relaxation of the true feasibility and optimality

conditions.

We proceed in the following way. In the next section we introduce our problem

and describe its true set of solutions. In Section 3 we go on to characterize the set of

solutions obtained by using the MM method. In Section 4 we discuss the results and

the reasons underlying the failure of the recursive saddle point technique. The last
4Ramsey taxation problems are known to be in general nonconcave since Lucas and Stokey (1983)

(see page 62). In the case of default with capital accumulation Cooley et al. (2001) themselves (in

footnote 10) point out that the problem is nonconcave since the endogeneity of default value creates

nonconvexities in the incentive feasibility set.
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section concludes.

2 The Problem

Consider the following problem:

sup
{at}

∞∑

t=0

βt (y − at) (1a)

s.t. at ∈ [0, ā] , ∀t ≥ 0 (1b)
∞∑

n=0

βnu(at+n) ≥ b

1− β
, ∀t ≥ 0, (1c)

where y > ā > b > 0 and 0 < β < 1.5 Throughout the main part of the paper we will

furthermore assume that u(a) = a. Only in the appendix we will consider the case of

a non-linear constraint.

For the sake of concreteness we will interpret this problem as one where a sequence

of endowments (y, y, ...) has to be divided between two agents in such a way, that the

discounted value of the consumption stream of the first one (1a) is maximized, subject

to a technological feasibility condition (1b) and the constraint that the discounted value

of the consumption stream of the second household never falls below b/(1 − β) (1c).

Throughout the paper we will refer to the first consumer also as planner or principal

and to the second one as agent.6

Given the linearity of the utility functions of both individuals and the simple form

of the technological feasibility constraint, the problem is rather trivial and no specific

techniques are required to characterize the set of its solutions. The set of optimizing

sequences, which we denote by A∗, is given by all sequences {at} which satisfy the

following conditions:

at ∈ [0, ā] ∀t, (2a)
∞∑

t=0

βtat =
b

1− β
, and (2b)

b
t−1∑

n=0

βn −
t−1∑

n=0

βnan ≥ βt(at − b) ∀t ≥ 0. (2c)

5Notice that throughout we stick to the notation of MM in order to facilitate the comparison.
6In the terminology of optimal contracting one can interpret our problem also as one where a planner

maximizes his discounted returns subject to the constraint that the agent should have no incentive to

’default’(condition (1c)).
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The second condition simply requires that the agent receives a discounted utility

exactly equal to b/(1−β) in period zero. The third condition instead says that optimal

consumption plans of the agent have to be ’backloaded’: Transfers to the agent can

exceed b only by the accumulated (and appropriately discounted) amount by which the

payments in the periods up to t have fallen short of b.7 Notice that the value generated

by any sequence in A∗ is (y − b)/(1− β).

Since the programm (1a)-(1c) is concave, each element of A∗ corresponds to a

solution of the saddle point problem

inf
{λt}∈R∞+

sup
{at}∈[0,ā]∞

∞∑

t=0

βt

[
y − at + λt

( ∞∑

n=0

βnat+n − b

)]
. (3)

In particular one can easily verify that {at} belongs to A∗ if and only if ((1, 0, 0, ...), {at})
is a solution of (3).

3 Characterizing the set of solutions using the MM ap-

proach

In this section we characterize the set of solutions to our problem with the help of the

method developed by MM.8 Essentially, their approach consists in transforming the

saddle point problem associated to the original sequential maximization problem into

a recursive form. In our case, this yields the following recursive saddle point functional

equation:9

W (µ0, µ1) = sup
a∈[0,ā]

inf
γ0,γ1≥0,

µ0′ ,µ1′≥0

µ0 (y − a) + γ0 (y − a−R) + µ1a + γ1(a− b

1− β
) + βW (µ0′ , µ1′)

s.t. µ0′ = µ0 + γ0

µ1′ = µ1 + γ1 (4)
7Combining this last condition with (2b) yields again the no-default constraint (1c).
8Notice that our problem is indeed contained in the class of problems addressed by MM. Properties

A1 and A2 (see page 19 of MM) of MM are trivially satisfied, as our problem is deterministic and in

its original sequential form does not include a state variable. Also, since both the objective function as

well as the constraint are linear, they are not only continuous, but also quasiconcave. The boundedness

requirements in A3 and A4 are not an issue here since we can always define both the return of the

planner and the utility of the agent on [0, y]. Moreover, the space of the sequences {at} which satisfy

technical feasibility is a convex set as it is the Cartesian product of convex sets. Finally, any constant

transfer stream {a, a, ...} with b < a < ā satisfies the interiority condition A5.
9For more details on how to derive this recursive saddle point functional equation from the sequential

saddle point problem see Section 2 of MM.
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As in MM we have introduced the constant R, which can be any number which bounds

the planner’s per period payoff from below. Since in our case the principal’s consump-

tion can never be negative (ā < y), we can set R = 0.

Suppose W ∗ solves problem (4) and φa and φγ are the corresponding policy cor-

respondences. MM argue that any sequence of transfers generated with these policy

correspondences when starting with the initial condition µ0
−1 = 1 and µ1

−1 = 0 belongs

to A∗ and vice versa.

Proposition 1. The function W ∗ : R2 → R defined by

W ∗(µ0, µ1) =





µ0 y − b
1− β

+ µ1 b
1− β

if µ0 ≥ µ1

µ0 y − ā
1− β

+ µ1 ā
1− β

if µ0 < µ1

solves the functional equation (4).10 The corresponding policy correspondences φa :

R2
+ → P([0, ā]) and φγ : R2

+ → R2
+ satisfy

φa(µ0, µ1) =





ā if µ0 < µ1

[max {0, (b− βā)/(1− β)} , ā] if µ0 = µ1

[max {0, (b− βā)/(1− β)} , b] if µ0 > µ1

and

φγ(µ0, µ1) =

{
(0, 0) if µ0 < µ1

(0, µ0 − µ1) if µ0 ≥ µ1.

Proof. We simply have to show that for the given value function W ∗, the policies φa

and φγ solve the saddle point problem in (4) and that plugging these solutions back

into the saddle point problem returns again W ∗.

Given W ∗ the saddle point problem can by rewritten with the help of the constraints

as:

sup
a∈[0,ā]

inf
γ0,γ1≥0

µ0 (y − a) + γ0 (y − a) + µ1a + γ1(a− b

1− β
) + βW ∗(µ0 + γ0, µ1 + γ1) (5)

Observe, that (5) is strictly increasing in γ0, regardless of the values of γ1 and a and also

independently of whether µ0 ≥ µ1 or µ0 < µ1 (remember, that ā < y by assumption).

Therefore, as claimed, the unique optimal value for γ0 is zero.

Next, suppose µ0 < µ1. We have to show that in this case the unique solution of

the saddle point problem in (5) is given by γ1 = 0 and a = ā. In order to do so, notice

first, that for all γ1 ≥ 0 the objective function is strictly increasing in a. Therefore,
10Notice, that, consistently with the results of MM, the value function W ∗ is both continuous and

homogeneous of degree one (see Proposition 4 of MM).
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setting a = ā is the unique optimal choice. Conversely, if a = ā, the slope of (5) in γ1

is

ā− b

1− β
+ β

ā

1− β
=

ā− b

1− β
.

Since ā > b, it follows that the unique minimizing value for γ1 is zero.

Finally, consider the case µ0 ≥ µ1. We first argue, that the only candidate for the

choice of γ1 is µ0 − µ1. The slope of (5) in γ1 is given by11

a− b

1− β
+ β





b
1− β

if γ1 ≤ µ0 − µ1

ā
1− β

if γ1 ≥ µ0 − µ1.

Hence, in order for a finite minimizer to exist (for γ1), a must be chosen greater

than (b − βā)/(1 − β). This, together with technological feasibility, requires that a ∈
[max {0, (b− βā)/(1− β)} , ā]. Values of γ1 strictly larger than µ0 − µ1 require a =

(b−βā)/(1−β) (only for this value of a (5) is constant in γ1). But for all γ1 > µ0−µ1 (5)

is strictly increasing in a and hence a would have to be set equal to ā; a contradiction.

On the other hand, for all values of γ1 from the interval [0, µ0 − µ1) the objective

function is strictly decreasing in a, implying an optimal value of a equal to zero. For

a = 0 though, the Lagrange multiplier would have to be at least as large as µ0 − µ1 as

the slope of (5) over this range is −b for a = 0. This again leads to a contradiction. It

follows therefore that γ1 = µ0 − µ1 is the unique candidate for the saddle.

If γ1 equals µ0 − µ1, a cancels from (5) and hence, all technically feasible values

would be maximizers. It remains to be determined for which subset of [0, ā] γ1 = µ0−µ1

is a minimizer. We have already seen in the previous paragraph, that a must satisfy,

a ≥ (b − βā)/(1 − β) as this guarantees that the objective function is non-decreasing

for γ1 > µ0−µ1. This is the only relevant condition if µ0−µ1 = 0. Hence, in that case

any a in [max {0, (b− βā)/(1− β)} , ā] is admissible. If instead, µ0 − µ1 > 0 then we

also have to impose a condition that assures that (5) is non-increasing for γ1 < µ0−µ1

(this is required in order to avoid that γ1 = 0, which we know cannot be part of a

saddle point). As can be seen by inspection of the slopes of the objective function, this

condition will be satisfied whenever a ≤ b.

This completes the part of the proof regarding φa and φγ . It is a simple algebraic

exercise to show that plugging the corresponding values of the policies back into (5)

returns the correct expression for W ∗.

Remember, that the initial values for µ0 and µ1 are 1 and 0, respectively. These

initial conditions together with the above stated policies imply that in the first period
11The slopes in γ1 = µ0−µ1 given in the following expression should be interpreted as the righthand

and lefthand derivatives respectively.
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a has to be chosen from [max {0, (b− βā)/ (1− β)} , b], while γ1 is to be set equal to

µ0−µ1 = 1. From the second period on the state will remain constant, since according

to φγ , γ1 must be zero whenever µ0 = µ1. Consequently, we also have a fixed set of

admissible choices for the control a from the second period onwards, which is equal to

[max {0, (b− βā)/(1− β)} , ā].

Summarizing, the set of transfer sequences {at}, that satisfy the optimality condi-

tions of the MM approach, AMM , is characterized by

at ∈ [0, ā] ∀ t, (6a)

a0 ∈ [(b− βā)/(1− β), b] and (6b)

at ∈ [(b− βā)/(1− β), ā] ∀ t ≥ 1. (6c)

A first inspection of these conditions immediately reveals that they do not specify

any intertemporal link between the controls. This is in clear contrast to the defining

conditions of A∗. Both (2b), which requires the agent to get a utility of exactly b/(1−β)

and (2c), which restricts possible solutions to backloaded paths, define intertemporal

relations between the controls.

In order to highlight the consequences of this divergence between (2a)-(2c) and

(6a)-(6c), suppose that b < βā. According to (6a)-(6c), in this case the sequence of

zero-transfers, at = 0 ∀ t, also belongs to AMM . But of course, such a sequence is

not (incentive) feasible in the sequential problem and hence does not belong to A∗, as

it implies a zero lifetime utility for the agent in each period, while by hypothesis he

should receive at least b/(1− β) (see (1c)). So we have to conclude that the recursive

saddle point approach allows for ’wrong’ solutions.

The zero sequence, is of course only one of many wrong solutions. In fact, with

the sequences contained in AMM one can generate any payoff for the planner that lies

between y/(1 − β) − b − βā/(1 − β) and y. Hence, some of the MM-solutions yield

the planner a lower payoff than the truely optimal transfer schemes. While not being

optimal some of those sequences satisfy feasibility (take the sequence (b, ā, ā, ...)).

Notice finally, that all sequences that satisfy (2a)-(2c) also satisfy (6a)-(6c).12 In

other words, the conditions (6a)-(6c) derived with the help of the MM method are only

necessary but not sufficient conditions for the true set of solutions.
12Technical feasibility is obviously satisfied. Moreover, setting t = 0 in (2c) gives a0 ≤ b as required

in (6b). From the same condition follows that one must have at ≥ max{0, (b − βā)/(1 − β)} for all

t ≥ 0: For any a smaller than (b − βā)/(1 − β), not even continuing with the maximal transfers ā in

all future periods would allow to satisfy the no-default condition (2c).
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4 Discussion

4.1 Why suboptimal and/or unfeasible solutions?

Why is the MM-approach not able to isolate the truly optimal solutions? In order to

understand the reasons underlying this failure, let us consider the conditions (6a)-(6c),

that characterize AMM in some more detail. They tell us, that in every period we must

have a ≥ (b− βā)/(1− β), or equivalently a + β ā
1− β

≥ b
1− β

. The left hand side of

this last expression is nothing else but the agents utility, if he is given a today and ā in

every period from tomorrow onwards. We can therefore interpret the whole condition

as the recursive form of the no-default condition in (1c): a is an admissible choice

today as long as there is at least one (technically) feasible future stream of transfers,

which together with a guarantees the agent a payoff (from today onwards) no lower

than b/(1− β).

This condition per se makes perfectly sense. The problem is simply that the MM-

approach fails to ’enforce’ it. As we have already pointed out in the previous section,

there is nothing in the MM-optimality conditions which links the choices of the controls

across different periods. Instead, the set of admissible choices is constant throughout

time,13 and so the method is not able to guarantee that a low transfer payment in

the current period will be followed by sufficiently high payments in the future. The

zero-transfer example of the previous section demonstrates this most clearly. In each

period t, the payment at = 0 is ’acceptable’ since the overall payoff equal to b/(1− β)

would be guaranteed, for example, by the continuation path (b/β, b/β, b/β, ....).

As we have already remarked in the introduction, it is useful to compare the MM-

method with classical dynamic programming in order to understand its failure better.14

As in many economic applications the appropriate state variable which allows us

to set up the optimization problem (1a)-(1c) in the form of a Bellman equation is the

agent’s continuation utility from period t onward Ut =
∑∞

n=0 βtat+n. It satisfies the

following (implicit) law of motion:

Ut = at + βUt+1. (7)

It is well known that the value of our optimization problem (1a)-(1c) is given by
13Only in the initial period the set of admissible choices is different from [max{0, (b−βā)/(1−β), ā}].
14For a more detailed discussion of what follows see Stokey et. al. (1989).
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V (b/(1− β)), where the function V solves the following functional equation

V (U) = sup
a∈[0,ā],U ′∈

h
b

1−β
, ā
1−β

i y − a + βV (U ′) (8)

s.t. a + βU ′ ≥ b

1− β
(9)

U = a + βU ′. (10)

One can easily verify that the set of solutions generated by this method coincides

with A∗.

Notice, that the law of motion of the state variable U enters as a constraint in

the Bellman equation. Hence, with every admissible value for the control a today, one

chooses also the unique discounted value of the sequence of controls to be followed in the

future, U ′. Since U ′ in turn will define the constraint for the next period, the consistency

of the choice throughout time is guaranteed, that is, if in the current period (a, U ′) are

chosen, U ′ is indeed the utility that the agent will receive in the future periods.

The distinguishing feature of the MM-approach as opposed to classical dynamic

programming is that it does not set up the problem in terms of the planners objec-

tive. Instead it transforms the original optimization program into a recursive welfare

maximization problem, where the welfare weights attached to the principal (µ0) and to

the agent (µ1) serve as state variables. Hence, in the MM method, the continuation

utility of the agent is not chosen directly but is controlled by fixing corresponding wel-

fare weights. In this sense, the MM-states provide an ’indirect’ or ’dual’ description

(as opposed to the ’primal’ states used in dynamic programming) of the state of the

system.

This ’indirect’ approach works fine as long as we can associate to each dual state

a unique primal state, but it generates wrong solutions as soon as a one-to-one rela-

tionship between the two types of states fails to exist. This is exactly what happens

in our example: Due to our linearity assumptions, the frontier of the set of technically

feasible continuation utilities is decreasing at the constant slope of −1. Therefore, any

point on this frontier corresponds to a solution of the welfare maximization problem if

the welfare weights of both agents are the same.

The consequences of this are very clear: If a single pair of welfare weights corre-

sponds to all possible divisions of the joint welfare of the two individuals from the

current period onwards, this simply means that the MM approach does not allow for a

sufficiently ’sharp’ description of the state. Fixing a dual state does not imply a specific

promise about how to divide the pie in the future. Instead, all possible divisions which

correspond to the given pair of welfare weights might be followed.

9



It is interesting to notice, that choosing a solution in AMM − A∗ does not imply,

that we calculate a wrong value for the planner. Evaluating W ∗ at the point (1, 0)

gives (y − b)/(1 − β), which is indeed the value of the original optimization problem

as we have already seen in Section 2. The intuition for this is that in a recursive

welfare maximization problem, the value in period zero does not depend on how the

welfare is distributed between the two individuals from the second period onwards. All

what matters is that in every period the µ-weighted sum of the two agents welfare

is maximized. For (µ0, µ1) = (1, 1) this condition is satisfied by all points on the

linear utility possibility frontier and so shifting welfare between the two agents in any

non-initial period has no influence on the (period 0) value of W ∗ at (1, 0).

4.2 Recursive vs. sequential saddle points and the role of concavity

MM link the solutions obtained with their method only in an indirect way with the

true set of solutions of the underlying optimization problem. Their strategy can be

described as follows: After defining a class of optimization problems they characterize

the relationship between the solution sets of those problems and the saddle points of the

corresponding Lagrangeans. Using standard arguments they show that the Lagrangean

method always yields sufficient conditions for a solution which are also necessary in case

the problem under consideration is concave.

In a second step they then go on to develop their main result. They show that

any sequential saddle point problem associated to an optimization problem from their

class, can be transformed into a recursive saddle point problem which under rather

weak conditions gives rise to the same set of solutions as the former. In fact, they argue

that whenever the underlying optimization problem is concave no further conditions

are required. For non-concave problems, recursively calculated saddle points solve the

corresponding sequential saddle point problem only if the sequence of the recursively

generated Lagrange multipliers satisfies a boundedness condition (while again for the

other direction no additional conditions are necessary).

Combining the two results, MM conclude that their method not only yields a full

characterization of the set of solutions of a concave optimization problem but that it

also gives sufficient conditions (though not necessary ones) for non-concave problems

(subject to the above mentioned boundedness condition).

We have already pointed out in Section 2, that for any solution of our concave

problem there is a corresponding saddle point of the associated Lagrangean and vice

versa. The fact that the MM method yields wrong solutions for our problem tells us

therefore, that concavity alone cannot be a sufficient condition for equivalence between

sequentially and recursively calculated saddle points.
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Figure 1: The case of a non-concave utility possibility frontier

Given that concavity does not guarantee that the MM approach works correctly one

has to expect that the method fails also in the nonconcave case. In the appendix we

provide a worked out example which shows this formally. In order to get an intuition for

why in the nonconcave case the same problems arise as in our linear example consider

Figure 4.2. Suppose a nonconcave optimization problem gives rise (at some state) to a

(nonconvex) utility possibility set as depicted in this figure. Assume that the (unique)

true solution of the problem is to choose in each period ÛA as continuation utility for

the agent. As one can see from the figure, the relative welfare weight corresponding

to this point on the utility possibility frontier, µ̂1/µ̂0 supports also the choice of ŨA.

Hence, again there are multiple continuation utilities corresponding to one and the

same relative welfare weight. Not being able to discriminate between the two points

the the recursive saddle point method will admit for wrong solutions.

This discussion suggests that the MM method can work only if the sets of contin-

uation utilities of the optimization problem are strictly convex, for only in that case

any pair of welfare weights supports exactly one pair of continuation payoffs. Unfor-

tunately, strict convexity of the utility possibility frontiers can only be guaranteed by

imposing strict concavity assumptions on the problem under consideration. Obviously

such a requirement is very costly, in that it reduces substantially the class of economic

problems to which the approach might be applied. In fact MM themselves point out

that problems which include incentive constraints often have a nonconcave structure.

These observations are most relevant for the literature mentioned in the introduc-

tion. As we have already remarked there, in most of those articles (Attanasio and

11



Rios-Rull, 2001, are an exception) the MM approach is applied to non-concave opti-

mization problems. Our results show though that the application of the method to

such problems is not very advisable.

It should be clear that the main argument of the present paper does not rely on

the specificity of the example we are analyzing. Nevertheless, we would like to mention

that the linear case is a very relevant one for two main reasons. First, economists very

often use randomized allocations in order to convexify the utility possibility set of non-

concave problems. Therefore a utility possibility frontier containing linear pieces is all

but a degenerate situation.15 In fact, the strategy to use randomized allocations has

already been applied in papers using the MM technique. For instance, we can mention

here the work of Ezra Friedman (1998). Second, in dynamic optimization problems the

time dimension provides an ’implicit’ instrument for the convexification of the utility

possibility set. Hence, non concave problems may exhibit linear pieces in the utility

possibility frontier even without explicit randomizations.

5 Conclusion

In this paper we have applied the recursive saddle point method developed by Marcet

and Marimon (1999) to a simple concave dynamic optimization problem. Our results

show that for problems which are not strictly concave, the conditions delivered by the

MM method are not sufficient for optimality. It is interesting to notice that in the case

of our example it turns out that the MM conditions are necessary.16

Given our findings it is natural to ask whether the reliability of solutions obtained by

the MM approach could be guaranteed by ex-post checks of optimality and feasibility.

Unfortunately, in general that seems to be hardly a viable procedure. In our example,

for instance, that would require to check an infinite countable number of constraints.

Moreover, to the unique optimal value W ∗(0, 1) there corresponds a continuum of

possible returns for the principal.
15There is a long list of references here. One of the earlier papers which proposes the use of lotteries

in dynamic contracting is perhaps Phelan and Townsend (1991). Among the most recent contributions

that have been using appropriate randomizations to convexify the problem one can name Ligon, Thomas

and Worral (2000), Phelan and Stacchetti (2001), Albuquerque and Hopenhayn (2002), Clementi and

Hopenhayn (2002). Ligon et. al. (2000) and Albuquerque and Hopenhayn (2002) are of particular

interest, as their models fall into the MM-class, although they use the primal method.
16We do not know though how general this result is. We guess that the MM conditions are in general

necessary for sequential saddle points. This would imply that they are also satisfied by every optimum

whenever the problem under consideration is concave. On the other hand we can not draw such a

conclusion for nonconcave problems since the conditions characterizing the set of sequential saddle

points are only sufficient for a solution.
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On the other hand, sometimes there might be specific situations where the feasibility

check can be done - at least in an approximate way - in a finite number of steps.

For example, consider the case where it is known that the optimal plan tends to a

stationary set which is easy to identify and lies in the interior of the feasibility set.17

Assume furthermore that the outcome of the MM procedure converges to the mentioned

feasible stationary set. In this situation, one might expect that after a possibly large

but finite number of periods feasibility is guaranteed, since the system is sufficiently

‘close’ to the feasible stationary set. As a consequence, one could restrict the check of

feasibility to the initial periods of the transition.

Unfortunately, finding a general approach for the ex-post check of optimality seems

even harder than the check for feasibility. The main reason of concern is that - as

our example emphasizes - the MM procedure might lead to a continuum of possible

candidates for the optimum.

17This seems to be the case of the ‘unrestricted’ steady state in the imperfect enforceability model

of Marcet and Marimon (1992).
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7 Appendix

In this appendix we show that the problem which arises in our linear example might

be present also in the nonconcave case. In particular, we will consider again problem

(1a)-(1c) and assume that u(a) = a2, ā = 1 and b = βn, where n is some natural

number.

Before we proceed to solve this problem with the MM method, we would like to

point out, that its unique ’true’ solution is given by a stream of transfers which are

equal to zero for the first 2n periods and equal to one afterwards. It is also important

to notice that this optimal stream together with the sequence of Lagrange multipliers

(1, 0, 0, ...) constitutes a saddle point of the problem’s associated Lagrangean (hence

the failure of the MM method does not derive from non-existence of a sequential saddle

point).

The recursive saddle point functional equation corresponding to the modified prob-

lem is given by

W (µ0, µ1) = sup
a∈[0,ā]

inf
γ0,γ1≥0,

µ0′ ,µ1′≥0

µ0 (y − a) + γ0 (y − a−R) + µ1a2 + γ1(a2 − b2

1− β
) + βW (µ0′ , µ1′)

s.t. µ0′ = µ0 + γ0

µ1′ = µ1 + γ1 (11)

We will show in the following that the solution to this problem is given by

W ∗(µ0, µ1) =





µ0 y − b2

1− β
+ µ1 b2

1− β
if µ0 ≥ µ1

µ0 y − 1
1− β

+ µ1 1
1− β

if µ0 < µ1
.

Furthermore, we will prove that the corresponding policy correspondences are

φa(µ0, µ1) =





1 if µ0 < µ1

{0, 1} if µ0 = µ1

0 if µ0 > µ1

and

φγ(µ0, µ1) =

{
(0, 0) if µ0 < µ1

(0, µ0 − µ1) if µ0 ≥ µ1.

Before we continue with the proof, notice that when starting with the initial values

µ0 = 1 and µ1 = 0 the set of solutions generated with the above policy correspondences

is simply the set of all sequences composed of zeros and ones which start with 0.

In particular, this set contains also the zero sequence which of course fails to satisfy

feasibility for any 1 > b > 0. Hence, just as in the linear case the MM method allows

for non-feasible transfer streams as solutions.
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The following proof essentially follows the same steps as the proof for the linear

case contained in the text. That is, we will simply show that the above policy corre-

spondences solve the saddle point problem given W ∗. Showing that W ∗ indeed then

solves the functional equation is a simple algebraic exercise and is therefore omitted.

We start by substituting the constraints in our saddle point problem which yields

sup
a∈[0,1]

inf
γ0,γ1≥0

µ0 (y − a) + γ0 (y − a) + µ1a2 + γ1(a2 − b2

1− β
) + βW ∗(µ0 + γ0, µ1 + γ1).(12)

One can immediately see that the above expression is strictly increasing in γ0, inde-

pendently of a and the welfare weights µ0 and µ1. Hence, γ0 must be equal to zero.

Next consider the choice of a. The only terms of (12) which depend on a are

−µ0a + (µ1 + γ1)a2.

This expression is convex in a. Hence, the only two candidates for a maximizer are

the extreme points of the set of technically feasible transfers (i.e. a = 0 and a = 1).

Which of the two candidates is optimal depends on whether µ0 is larger or smaller than

µ1 + γ1. While in the former case we get a = 0 the latter case implies a = 1 and of

course both candidates are optimal if µ0 = µ1 + γ1.

Suppose now that µ0 < µ1. As γ1 can never be negative we know that in this

case we must always have a = 1 (since the condition µ0 < µ1 + γ1 is always satisfied).

Therefore the slope of the objective in γ1 is given by

1− b2

1− β
+

β

1− β
=

1− b2

1− β
> 0,

which implies that the unique minimizing value for γ1 is zero.

Next, consider the case µ0 > µ1. We have to show that there is only one saddle

point, namely a = 0 and γ1 = µ0−µ1. In order to do so we will first prove that µ0−µ1

is the unique minimizer of the objective in γ1 for a = 0. Since we have already seen

that a = 0 maximiezes (12) for γ1 = µ0 − µ1 it then only remains to show that there

is no saddle point with a = 1.

Notice first that the slope of (12) in γ1 is given by18

a2 − b2

1− β
+ β





b2

1− β
if γ1 ≤ µ0 − µ1

1
1− β

if γ1 ≥ µ0 − µ1.
(13)

Plugging in a = 0 yields

− b2

1− β
+ β

b2

1− β
= −b2 < 0

18Again, the slopes at the point γ1 = µ0−µ1 are to interpreted as lefthand and righthand derivatives

respectively.
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for the range [0, µ0 − µ1] and

− b2

1− β
+ β

1
1− β

=
β − b2

1− β
> 0

if γ1 ≥ µ0 − µ1. Hence, if a = 0 (12) is indeed decreasing in γ1 up to µ0 − µ1 and

increasing afterwards (remember that b = βn).

If instead a = 1 the slopes over the two ranges are

1− b2

1− β
+ β

b2

1− β
= 1− b2

(over [0, µ0 − µ1]) and

1− b2

1− β
+ β

1
1− β

=
1− b2

1− β
(14)

(for γ1 ≥ µ0 − µ1). Both expressions are positive (since b < 1) and hence γ1 would

have to be chosen equal to zero. We have already seen though that γ1 < µ0 − µ1 is

only compatible with a = 0.

Finally, consider the case µ0 = µ1. It is easily verified that µ0 − µ1 = 0 is still the

unique minimizer of (12) if a = 0 (and so a = 0, γ1 = µ0 − µ1 = 0 is a saddle ). But

since in this situation γ1 can never be chosen smaller then µ0 − µ1 (14) implies that

also a = 1 and γ1 = 0 is a saddle point, which concludes the prove.
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