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Abstract

We provide su�cient conditions for the validity of the �rst-order approach for two period dy-

namic moral hazard problems, where the agent can save and borrow secretly. We show that in

addition to the concavity requirements for the standard moral hazard problem, non-increasing ab-

solute risk aversion (NIARA) utility functions and Frisch elasticity of leisure less than one imply

that the agent's problem is jointly concave in e�ort and asset decisions when facing the optimal

contract. We also characterize the optimal contract in detail. One of the key observation is that

when preferences are of the HARA class, the possibility of hidden asset accumulation makes the

supporting tax-transfer system more regressive (or the optimal compensation scheme more convex)

compared to the standard model with observable and fully contractable assets/consumption.
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1 Introduction

This paper has two targets. First, we provide su�cient conditions for the validity of the �rst-order

approach (FOA) for two period dynamic moral hazard problems where the agent can save and bor-

row secretly, and we characterize the optimal contract. Second, we study the implications of hid-

den/anonymous access to the credit market (or of the availability of a storage technology) for optimal

income taxation.

Recently, dynamic principal-agent models became very popular instruments to study several di-

verse issues such as design of optimal social insurance schemes (e.g. unemployment insurance, and

disability insurance), bank-�rm �nancing relationships, e�cient compensation contracts, and optimal

capital taxation. Most of these models assume that the agent's consumption-savings decision is ob-

servable (and fully contractable) by the principal. However, it is also well-known that this assumption

is potentially very dangerous, because if the agent is given a hidden (or not contractable) opportu-

nity to save then he would deviate from the optimal contract by saving (and possibly exerting less

e�ort) (Rogerson, 1985a). Therefore, the possibility of hidden asset accumulation will lead to a dif-

ferent optimal contract. This problem is also relevant empirically, as in most of the above-mentioned

applications, the contractability and observability of asset accumulation cannot be guaranteed.

The FOA consists of replacing the incentive compatibility constraints of the agent by the corre-

sponding �rst-order necessary conditions from the agent's decision problem. Since the seminal works

by Mirrlees (1971) and Holmstr�om (1979) it became obvious that the study of the moral hazard models

is much easier if one can rely on the �rst-order condition approach (FOA). The simpli�cation of the

incentive compatibility constraint becomes even more important in a dynamic environment when the

principal faces an additional information problem because the agent has secret access to the credit

market. Rogerson (1985b) and Jewitt (1988) provide conditions for the validity of the FOA for the

static principal-agent model. Their strategy is to show that when facing the optimal contract, the

agent's problem is concave hence the �rst order conditions are actually not only necessary but also

su�cient for the optimality of the agent's decisions.

It is not known under what conditions the FOA can be applied to multi-period principal-agent

problems with hidden asset accumulation. In fact, Kocherlakota (2004) �nds cases (linearity of both

the e�ort cost and the e�ort's impact on output) where - although the standard conditions that

guarantee the validity of the �rst-order approach in the static model are veri�ed - the agent's problem

is not concave when he is allowed to enter the credit market. Intuitively, the non-concavity is a

consequence of potential bene�ts from jointly decreasing e�ort and increasing savings. The necessary

�rst-order conditions may not capture these second-order gains. In this paper, we provide su�cient

conditions for the two-period model under which the agent's problem is concave when facing the
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optimal contract and therefore the incentive compatibility constraint for the agent's decisions can be

replaced by its necessary and su�cient �rst-order conditions. In particular, we show that within the

family of non-increasing absolute risk aversion (NIARA) utility functions in consumption, a strong

concavity condition on the distribution function together with the `spanning condition with dominance'

proposed by Grossman and Hart (1983) guarantees that the FOA is applicable. We also show that the

concavity condition we impose on the probability distribution is essentially equivalent to a requirement

on the utility function of leisure such that the Frisch elasticity of leisure is less than unity. Our

conditions imply that most of the (additively separable) utility functions and many e�ort speci�cations

used in applications allow for a �rst order condition representation of the problem. Further, empirical

studies seem to con�rm both the NIARA and the Frisch elasticity condition.

We provide three main characterization results. First, we show that as opposed to hidden infor-

mation moral hazard models (see Allen, 1985 and Cole and Kocherlakota, 2001) self-insurance is not

optimal in this environment. This result is general in the sense that it does not even require the validity

of the FOA. Second, we show that, similarly to the pure moral hazard case with observable assets, un-

der the standard monotone likelihood ratio condition, consumption is monotone increasing in income

whenever preferences are NIARA. Third, and more importantly, we study extensively the curvature of

the optimal consumption allocation as a function of income. This is particularly important, because

the curvature determines the progressivity of the supporting tax-transfer system. Our main conclusion

is that, under preferences of the linear risk tolerance class (HARA), the possibility of the hidden asset

accumulation makes the optimal consumption a more convex function of income, hence, under hidden

asset accumulation, the optimal tax system becomes more regressive (or less progressive) compared to

the case where asset accumulation is observable. Intuitively, the principal would like to discourage

the agent form using hidden savings and exerting smaller e�ort. To discourage savings, not only con-

sumption has to be more backloaded (second period consumption needs to increase) compared to the

case when savings are observable. We also �nd that whenever the coe�cient of absolute risk aversion

is decreasing and convex (HARA utility functions), the optimal distribution of these consumption

increases across income levels makes consumption more convex. To the best of our knowledge, this is

the �rst paper that studies the implications of hidden savings for optimal (labor) income taxation.1

In addition to allowing a sharp characterization of the optimal contract, �nding conditions for the

validity of the �rst order approach is important for at least two other reasons. First, as explained

in �Abrah�am and Pavoni (2008), Werning (2001, and 2002), and Kocherlakota (2004), the �rst order

approach is crucial for being able to write the problem in a tractable recursive form. Second, it can

1Two papers use this class of models to study the implications for optimal capital income taxation (Golosov and

Tsyvinski, 2007; and Gottardi and Pavoni, 2008).
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be shown that whenever the �rst order approach is valid the optimal tax on asset holdings takes a

simple form. In particular, imposing linear taxes on savings which are uniform across ex-post shocks

is optimal.2

Unfortunately, our analytical results for the two period model cannot be easily extended to a

framework with more than two periods. In �Abrah�am and Pavoni (2008), we propose a recursive

reformulation of the multi-period (or in�nite horizon) problem based upon the �rst-order condition

representation and verify the validity of the �rst-order condition approach ex post, numerically. This

paper constitutes a �rst step toward the analytical study of this class of dynamic moral hazard models,

which already provides important insights about the problem. In fact, virtually all existing papers

that study the moral hazard problem with hidden asset trade or storage analytically, either use very

special closed form solutions or use two period models.3

To the best of our knowledge, there is only one other paper which studies systematically the

issue of the validity of the �rst-order approach in this class of models. Williams (2006) gives su�cient

conditions for the validity of the FOA for a large set of continuous time principal-agents models. There

are few important di�erences between our approach and that of Williams that make the two papers

complementary to each other. First, although his conditions are stated for a very large set of models

and for any time horizon, they are not satis�ed in a context where there is a linear return/storage

technology for assets such as assumed here. Second, Williams focuses on the dynamic aspects of

the problem and - as in most of the literature in continuous time models - considers a stochastic

production technology with normally distributed shocks (the Brownian model). We focus on the two

period problem with shocks on a bounded support but allow for virtually any distribution function

2This observation is almost implicit in Kocherlakota (2005), and it has been shown to be true for a wide set of assets

by Gottardi and Pavoni (2007). In the latter, it is also shown that this simple tax system implies a positive (expected)

tax on capital.
3In a two period principal agent relationship, Bizer and DeMarzo (1999) show that hidden access to the credit market

reduces total welfare with respect to the no asset market case. They focus on the possibility of increasing welfare by

allowing the entrepreneur to default on the debt. Bisin and Rampini (2006) study the e�ect of bankruptcy provision, in a

two period model similar to that of Bizer and DeMarzo, where agents have hidden access to insurance contracts and can

default on the principal insurer as well. In addition to no-default, we do not allow agents to secretly trade assets other

than a risk free bond. Chiappori et al. (1994) and more recently Park (2004) analyze the optimal contract with discrete

e�ort. They �nd that - under some conditions - a renegotiation-proof contract always implements the minimum level of

e�ort. We consider a continuous-e�ort model, where the planner can commit not to renegotiate the contract ex post.

Kocherlakota (2004) characterizes the optimal UI transfer scheme in an in�nite horizon two-output moral hazard model

with hidden savings, where agents' preferences are linear in e�ort, and e�ort a�ects linearly job-�nding probabilities.

Werning (2002) solves analytically a similar two-output model with multiplicative separable CARA utility. We consider

a two period model which allows for both a general class of preferences and a much more general production technology.
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and any pattern for the likelihood ratios over the support.4 This dimension of generality is of some

importance to us as we are mainly interested in characterizing the pattern of consumption/taxes across

income levels (e.g., see Proposition 4 below).

The next section presents the model and derive minimal conditions for optimality. Then we

introduce the �rst-order condition approach and provide conditions for the concavity of the agent's

problem in the optimum in Section 3. In Section 4, we study the curvature of consumption and its

implications for optimal income taxation in the presence of hidden savings. Section 5 concludes and

discusses some possible extensions.

2 Model

Consider a relationship between a risk neutral principal/planner and a risk averse agent, that lasts for

two periods: t = 0; 1. The model builds on the typical dynamic moral hazard problem and assumes

that consumption occurs at the beginning of each period (together with the e�ort decision).5

Preferences The agent derives utility from consumption ct � c � �1 and e�ort 1 � �e �
et � 0 according to: u(ct) � v(et); where both u and v are strictly increasing and twice continuously
di�erentiable functions, and u is strictly concave whereas v is convex. We normalize v(0) = 0. The

agent's discount factor will be denoted by � � 0:

Production and endowments At date t = 0; the agent has a �xed endowment y0: At date

t = 1; there are N possible output levels Y := fy1; :::; yNg with yi < yi+1: The realization yi 2 Y is

publicly observable, while the probability distribution over Y is a�ected by the agent's unobservable

e�ort level e0 that is exerted at t = 0. The conditional probabilities are de�ned by the smooth

functions:6 pi(e0) := Pr fy = yi j e0g : As in most of the the optimal contracting literature, we assume
full support, that is pi(e0) > 0 for all i = 1; :::; N; and all e0: There is no production or any other

action at t � 2:
4Schattler and Jaryoung (1997) discuss how removing the assumption of Brownian motion in the standard principal-

agent model in continuos time changes the properties of the optimal contract. Schattler and Jaryoung (1997) also con�rm

the �nding in Mirrlees (1975) and show that for any `discretization' of the continuous time model, the problem with

normally distributed shocks is not well de�ned. In particular, the optimal contract approximates arbitrarily well the �rst

best allocation by imposing extreme punishments and rewards upon events with very small probability.
5This timing is very common, for example, in the optimal unemployment insurance literature (e.g., Hopenhayn and

Nicolini, 1997).
6In particular, we require the function p : E ! �N to be continuous and continuously di�erentiable. Here,

�N :=
�
x 2 <N j x � 0 and

P
i
xi = 1

	
.
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Markets At each date, the agent can buy or (short)-sell a risk-free bond bt which costs q con-

sumption units today and pays one unit of consumption tomorrow. The agent has no access to any

other insurance market other than that delivered by the planner (exclusivity). We assume that asset

decisions and consumption levels are private information to the agent.

Given the structure of the problem, the agent will never be able to borrow at t = 1 hence b1 � 0:
Monotonicity of preferences will guarantee that the agent does not want to leave any positive amount

of assets at date 1 either. So b1 = 0 for all states i. Similarly, since v is strictly increasing, e1 = 0 at

all i:

Contracts A contract W := (� ;�) is constituted by a transfer scheme � :=
�
�0; f�igNi=1

�
where

�0 and �i represent the transfers the individual receives in period t = 0 and in period t = 1 conditional

on realization yi, respectively. To simplify the analysis, we separate the planner's transfer plan from

the components of the allocation under the agent's control, which are � := (e0; b0). Given W; the
agent's utility is

U(e0; b0; � ) := u(y0 + �0 � qb0)� v(e0) + �
NX
i=1

pi(e0) [u(yi + �i + b0)] : (1)

Recall that a key assumption in our model is that the planner cannot observe how the agent allocates his

income y0+�0 between consumption c0 and asset accumulation qb0: As usual, to guarantee solvency of

the agent for every contingency, we impose the `natural' borrowing limit: b0 � c�mini=1;::N fyi + �ig :7

The risk neutral planner faces the same credit market as the agent, therefore her discount rate is

q. Her preferences/pro�ts are

V (e0; b0; � ) := ��0 + q
NX
i=1

pi(e0) (��i) : (2)

E�ciency An optimal contract is the contract that solves8

V (U0) := maxW
V (e0; b0; � ); (3)

subject to the participation constraint

U(e0; b0; � ) � U0; (4)

7The enforceability of the repayment of debt obtained through anonymous credit lines is an important and delicate

issue, which is common to many environments and that we do not address here. With minor modi�cations to the

analysis, one could just impose b0 � 0; which could be enforced in an anonymous credit market. In this this case, asset
accumulation could also be interpreted as a private storage technology. At the end of the paper, we will consider the

case with liquidity constraints more in detail.
8Existence can be shown, for example, by a simple extension to Grossman and Hart (1983).
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and the incentive compatibility constraint

(b0; e0) 2 arg
�
max
e;b

U(e; b; � ) s.t. e � 0; y0 + �0 � c � qb � �qmin
i
fyi + �i � cg

�
: (5)

We will denote this problem as (P). In order to make the problem of some interest, we assume that

U0 > �1:
Note, that there is indeterminacy in the contract between �0 and b0. The planner can imple-

ment the same allocation to the agent with a contract
n
�0; f�igNi=1 ; e0; b0

o
and with the contractn

�0 � "; f�i + "=qgNi=1 ; e0; b0 � "=q
o
: In other words, since the planner and the agent face the same

return in the credit market there are a continuum of optimal contracts. In this paper, without a loss

of generality, we will study the one speci�c optimal contract which implements b0 = 0: Because of

these observations, we will sometimes refer to the combination of e0 and ci := yi + �i; i = 0; 1; 2; :::N

as a contract.

In this paper, we will focus on optimal taxation, where the previously described principal-agent

relationship is interpreted as an optimal tax/transfer provision problem (social insurance). The prin-

cipal is a benevolent social planner whose objective is to maximize the welfare of the citizens. The

(small open) economy contains a continuum of ex ante identical agents who face the above contract

and can in
uence their date 1 income realizations by working hard or shirk. The planner o�ers a

tax/transfer system to insure them against idiosyncratic risk and, at the same time, provide them

appropriate incentives for working hard. In this case, setting U0 such a way that V (U0) = 0 would be

the socially optimal allocation. The objective (2) can be interpreted as the social planner's dynamic

budget constraint, by the law of large numbers V (U0) = 0 is equivalent to an (intertemporal) balanced

budget requirement. In what follows, we will take the value of ex-ante utility U0 as given and derive

the optimal tax/transfer scheme by minimizing expected discounted costs.

We can interpret this setup in several other di�erent ways. For example, this framework may

describe a private insurance relationship, where y0 is the agent's (veri�able) initial net wealth and

he can a�ect future outcomes by his action e0. The insurance company is the principal, who o�ers

a contract, which will imply an initial fee (�0) and a (net) insurance payment (�i) dependent on the

realized state. In this case, if we set U0 such a way, that V (U0) = 0; the insurance contract will deliver

zero pro�ts to the insurance company. When designing the conditions of the contract, the insurer has

to take into account that the agent can in
uence the likelihood of the di�erent events. In addition,

in our environment, the insurer cannot observe the agent's consumption either, therefore the optimal

insurance contract has to take into account that the agent is able to transfer resources intertemporally

through the credit market.

Another interpretation is a two-period compensation contract, where yi is the surplus which can

be divided by a risk-neutral owner/shareholder and a risk-averse worker/manager. In this case, yi+ �i
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is the wage of the worker in a given state and date, while V (U0) is the pro�t of the owner. Here

again, the wages have to provide the right incentives for the agent to exert high e�ort. Moreover, high

punishments (low wages) for low second period surpluses may not be incentive compatible because the

worker can save against them at date t = 0:

The main implications of this framework are known when hidden borrowing and lending are not

allowed. We will brie
y review them below. However, Rogerson (1985a) has shown that in this setup,

the agent is left with incentives to save in the optimal contract. That implies that the optimal allocation

of this model is di�erent from the ones where asset accumulation is observable and contractable or not

allowed. Moreover, in all of the three above examples private (non-observable, non-contractable or non-

taxable) savings are empirically relevant. Neither insurance companies nor shareholders/owners can

control the agent's consumption saving decision, however their wealth level a�ects the e�ectiveness of

the incentive scheme. Also, typically governments cannot have a full control over agents' consumption

saving decisions either, because agents can keep their savings in low-interest (and not observable)

instruments such as local and foreign currency or they can have access to foreign accounts. Finally,

it will be clear below that all our analysis will carry over to the case where the agent has a private

storage technology that allows q units of consumption at time 0 to be transformed into one unit of

consumption at time 1 (see Section 5).

2.1 Preliminary Characterization and Self-insurance

Under very general conditions (in particular without requiring that the �rst order approach is valid)

one can prove that transfers �i cannot uniformly increase with yi:
9

Proposition 1 (Minimal Insurance) If u is unbounded below or above, and c > �1; then �i
cannot be monotone increasing (not even weakly increasing) with yi for all i.

The intuition is as follows. A transfer scheme that has the property of �i increasing for all i cannot

be optimal since the planner could twist the scheme so that to decrease �i in states with large yi

and increase it in bad states (states with low yi). Since the agent is risk averse and the planner is

risk neutral, we expect the planner to gain by absorbing some of the income risk the agent faces. In

particular, the planner should be able to provide more insurance to the agent that he can achieve

without the planner's participation.

Proposition 1 has a somewhat important consequence. Allen (1985) and Cole and Kocherlakota

(2001) study the e�ect of hidden asset accumulation in a hidden information moral hazard model. They

�nd that the constrained e�cient allocation does not di�er from that in a `pure bond economy,' i.e.,

9All the the proofs not shown in the main text can be found in the Appendix.
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the allocation the agents could obtain by insuring themselves through borrowing and lending, without

the planner's provision of additional insurance. In terms of our optimal taxation interpretation, this

result would imply that the planner have no role in enhancing welfare as the only incentive compatible

allocation will provide no additional insurance to the agents compared to a pure bond economy.

Note that a pure bond economy would correspond to a situation of constant �i = � for i = 1; 2; ::N:

Proposition 1 shows that this is cannot be the case for our `hidden action' moral hazard model.

Corollary to Proposition 1 (Impossibility of Self-Insurance) Under the assumptions in Propo-

sition 1, the optimal contract never delivers the self insurance allocation.

Since the contract �i � � is available to the planner, an equivalent way of stating the result is

as follows. If we let U0 be the utility value obtainable by the agent under self-insurance, we have

V (U0) > 0. What is then the key di�erence between the hidden information and the hidden action

moral hazard models that generates these contrasting implications? As it is clear from our line of

proof, the full support assumption plays a major role in the result. Under this condition, the agent

has incomplete control over the realizations yi: Hence, the planner can implement schemes that impose

a tax payment in some states and a transfer in others in such a way that the agent is not able to avoid

paying the taxes with certainty. Clearly, this result extends to any multi-period setting.10

Unfortunately, one cannot characterize the optimal contract much further analytically without

the use of the �rst-order approach. In the next section, we will introduce this approach and provide

su�cient conditions for its validity. In Section 4, we then use the �rst order approach to characterize

the optimal contract in greater detail and discuss the implications of hidden savings for optimal income

taxation.

3 The First-Order Approach

It is not di�cult to see that condition (5) describes a complicated set of constraints: it is equivalent to

a bidimensional continuum of inequalities. The �rst order approach replaces the incentive constraint

(5) for the corresponding stationary points of the agent's maximization problem with respect to e0

and b0: This strategy brings the number of inequality constraints down to only two.

In what follows, we will assume interiority of the optimal contract, that is we assume that the

original problem (P) has a solution such that all consumption levels are strictly above c in both dates

and for all states and that e0 > 0. It is easy to see that the moral hazard problem is not interesting if

10Moreover, consistently with the previous intuition, in �Abrah�am and Pavoni (2006) we show that, in fact, the full-

support assumption is not required. It su�ces to exclude the possibility of distributions over Y which are degenerate at

one state i for some e.
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the optimal e�ort is the minimal e�ort.11 We will follow Rogerson (1985b) and replace the incentive

constraint with the following necessary conditions for optimality of the decisions for e0 and b0(= 0) :

Ue(e0; 0; � ) � 0

and (6)

Ub(e0; 0; � ) � 0:

The intuition for the above conditions is simple. There are two key restrictions we impose on the

contract. First, we guarantee that the agent is not willing to reduce his e�ort level or shirk. The

second condition is the usual inequality version of the Euler equation: we require the agent not willing

to save.

Notice, that both above constraints depend on the agent's equilibrium choices of consumption and

e�ort alone. Given our normalization on b0 = 0; it will indeed be convenient to describe the principal-

agent relationship as one where the planner decides directly the consumption level of the agent at each

state. We de�ne c := fcigNi=0 and rewrite the planner problem as

max
e0;c

V (e0; 0; c)

subject to ci � c; e0 � 0; the relaxed incentive constraint (6), which can be written as follows:

v0(e0) + �
X
i

p0i(e0)u(ci) � 0 (7)

qu0(c0)� �
X
i

pi(e0)u
0(ci) � 0; (8)

where ci := yi + �i; and the participation constraint (4), or

U(e0; 0; c) � U0:

The expressions V (e0; 0; c) and U(e0; 0; c) have the obvious meaning.
12 This problem will be denoted

by (R). We refer to this second problem as relaxed, because the set of contracts that satisfy the

11Interiority may be required for a more technical reason. As emphasized by Mirrlees (1975), when the solution to

the original problem is at the corner then the �rst order approach might fail to deliver even necessary conditions for

an optimum. In our case, we could guarantee interiority in e�ort by assuming that e is taken within an open set as in

Jewitt (1988). Alternatively, we could avoid the complications due to the corner solution by assuming that v0 (0) = 0:

In this case, it is very easy to see that for e0 = 0 both the optimal contract and the solution obtained using the FOA

will deliver full insurance. Interiority with respect to consumption can be guaranteed by imposing that consumption is

chosen within an open interval (as in Grossman and Hart, 1983), or by requiring that limc!c u
0(c) = �1:

12They are the analogous to V (e0; 0; � ) and U (e0; 0; � ) : For example, we have

U (e0; 0; c) := u(c0)� v(e0) + �
X
i

pi(e0)u(ci):
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constraints of (R) contains the set of contracts that satisfy the constraints of the original problem

(P). The remaining of this section is devoted to provide conditions under which the solution to the

relaxed problem (R) is identical to the solution of the original (unrelaxed) problem (P) given by

equations (3) to (5).

Until now, there were not known conditions for discrete time models under which the above �rst-

order conditions are necessary and su�cient for incentive compatibility. In �Abrah�am and Pavoni

(2008), we approach this issue by a numerical ex post veri�cation procedure for generic multi-period

problems. However, that procedure requires a numerical solution of the problem.13

Williams (2006) provides su�cient conditions for concavity for a class of continuous time models

with and without hidden savings. The key distinction between his approach and the one followed

here, is that he provides su�cient conditions for the cases where either the price of the bond q is not

constant but a convex function of b; or q is constant but the agent's utility directly depends on wealth

in a strictly concave way.

We will �nd su�cient conditions for concavity in two steps. First, we will characterize the `relaxed'

optimal contract (R) by imposing the agent's �rst-order conditions instead of (5). Then, we prove

that, under appropriate conditions, date 1 consumption (ci) of the agent is changing monotonically

with his income (yi): Finally, we will show that under somewhat stricter conditions, monotonicity of

consumption implies that the agent's problem is concave in the relaxed optimal contract. This will

imply that under this set of stricter conditions our use of the �rst-order condition approach is actually

justi�ed as the solution to (R) also constitutes a solution to (P).

3.1 Monotonicity of Consumption

We start by analyzing the properties of consumption based on the relaxed problem (R). We need

to �rst introduce some well known properties of the probability shifting functions p and the utility

function, which we will use extensively later. We will make use of the following assumptions.

NIARA. The utility function u exhibits non-increasing absolute risk aversion, that is, the ratio

With this notation, the constraints in (6) can also be written as

Ue(e0; 0; c) � 0;

Ub(e0; 0; c) � 0:

13There, we also consider the case u (c; e) = � exp f��c+ g (e)g ; with g increasing and convex. These preferences
are not additive separable and therefore we cannot directly apply our approach, however it is easy to see that the �rst

order approach is valid under even less restrictive assumptions in this case, and that the validity of the FOA in this case

extends to any multiperiod setting. For further details, we demand the reader to that reference.
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�u00(c)
u0(c) := a(ci) is non-increasing in c:

MLR. The probability shifting functions p has the monotone likelihood ratio property, that is, for

each e � 0 the ratio p0i(e)
pi(e)

is non-decreasing in i.

We can now state our second characterization result.

Proposition 2 (Monotonicity) Assume NIARA and let (c; e0) be a solution to (R). (i) Either

ci = c or ci moves together with the likelihood ratio
p0i(e0)
pi(e0)

. (ii) Under MLR, ci increases with i

for i = 1; 2; ::; N:

Proof. Consider problem (R), and denote by �; � and � the Kuhn-Tucker multipliers associated

to the constraints (7), (8), and (4) respectively. By standard conditions, they are all nonnegative. The

necessary conditions for optimality (with respect to c0 and ci) are:

1

u0(c0)
� �+ � qu

00(c0)

u0(c0)
with equality if c0 > c; (9)

Moreover, for i = 1; ::; N we either have ci = c; or:

q

�u0(ci)
= �+ �

p0i(e0)

pi(e0)
� � u

00(ci)

u0(ci)
= �+ �

p0i(e0)

pi(e0)
+ �a(ci): (10)

Note that from (10) and � � 0, the expression q
�u0(ci)

� a(ci)� must move together with the
likelihood ratio

p0i(e0)
pi(e0)

. By concavity of u and NIARA, both 1
u0 and �a(ci) =

u00

u0 increase with ci: Since

� � 0 consumption must move with i in the same direction as p
0
i(e0)
pi(e0)

. Q.E.D.

The previous proposition replicates a standard result in the contract theory literature with no (or

observable and fully contractable) access to the credit market.14 In terms of our second example,

this result says that the wages are increasing with the observed output of the agent. More generally,

the �rst part of Proposition 2 emphasizes that in our environment consumption varies across states

in proportion to
p0i(e0)
pi(e0)

alone. That is, consumption only responds to the informational content of

the outcome realization yi on the e�ort level e0. We will discuss the implications of these results in

Section 4 in more detail. Note that this contrasts the self-insurance allocation where - since taxes

� are constant across states - ci moves one to one with yi regardless of the informational content of

income levels. All the above properties are strict as long as both � and � are strictly positive. The

next Lemma establishes this latter fact when e0 > 0:

Lemma 1 Assume NIARA and let (c; e0) be a solution to (R). Then (i) If ci > c for i = 1; 2; :::N

then Ue = Ub = 0, that is, constraints (7) and (8) are both satis�ed with equality. (ii) If

14Note that the properties of the optimal contract in the case when the agent have no access to the credit market can

be recovered from the above optimality conditions assuming � = 0:
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both ci > c for all i and e0 > 0; then both � > 0 and � > 0. (iii) If u satis�es the Inada

condition limc!c u0(c) =1; then (i) holds under NIARA without the interiority requirement on
consumption.

Of course, if u is unbounded below or c = �1 the interiority condition ci > c can be guaranteed

a priory. Lemma 1 shows that whenever we are using the �rst order approach, under mild regularity

conditions we can in fact (without loss of generality) impose (6) with equality. If in addition we are

looking for interior solutions for e�ort then the multipliers associated to the incentive constraints are

positive. The following remark shows that the multiplier associated to the participation constraint is

positive whenever we have an interior solution for c0.

Remark It is easy to see that whenever c0 > c we have � > 0. This is so since whenever U(e0; 0; c) >

U0 the planner could always reduce c0: This modi�cation to the contract does not a�ect the

e�ort incentive constraint, relaxes the Euler equation, and increases the planner's net returns.

We now move to the issue of concavity of the agent's problem.

3.2 Su�cient Conditions for Global Concavity

Lemma 1 guarantees that condition (6) in (R) is satis�ed with equality. Whenever the solution to

problem (P) is interior, a necessary condition for incentive compatibility is to have (6) satis�ed with

equality. Since (R) solves a relaxed problem, the value associated to it cannot be lower than that

associated to (P). Therefore, if we show that the contract solving (R) is actually incentive compatible,

then we have in fact derived the optimal contract. We hence say that the �rst order approach is justi�ed

whenever a solution to the relaxed problem (R) delivers a correct solution to the original problem (P).

If the agent's problem is globally jointly concave in b and e when facing the optimal transfer scheme

� ; the use of the �rst-order approach is justi�ed as the �rst order conditions of the agent's problem

become su�cient conditions for incentive compatibility. Recall, that given � ; the utility of the agent

for each combination (e; b) is

U(e; b; � ) := u(y0 + �0 � qb)� v(e) + �
X
i

pi(e)u(yi + �i + b): (11)

Global concavity is obviously guaranteed if the associated Hessian matrix is negative de�nite for

all e and b; where the Hessian is given by

H :=

24 �v00(e) + �PN
i=1 p

00
i (e)u(ĉi) �

P
i p
0
i(e)u

0(ĉi)

�
P
i p
0
i(e)u

0(ĉi) q2u00(ĉ0) + �
P
i pi(e)u

00(ĉi)

35 : (12)
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In the previous expression, we have denoted ĉ0 := y0+ �0� qb; and ĉi := yi+ �i+ b for i = 1; 2; : : : ; N:
This notation emphasizes that the consumption levels in H can di�er from those delivered by the

optimal contract (which are denoted simply as ci): Note importantly, that since the bond pays equal

amounts in each state i > 0; if in the optimal contract ci change monotonically with i then ĉi will

keep this property. In fact, for all i and j, we have that ĉi � ĉj = ci � cj .
By the concavity of the utility function u, it is easy to see that problem is concave in b alone.

Rogerson (1985b) shows that if the distribution function is concave (CDF)15 the problem is also concave

in e alone, whenever the optimal consumption scheme is monotone in output (which is guaranteed by

MLR and NIARA). Unfortunately, the CDF and MLR conditions will not guarantee the concavity of

the agent's problem jointly in (e; b) ; that will require a stronger assumption. Joint (strict) concavity

requires that the Hessian is negative de�nite. This is not true in general, not even under CDF and

MLR.16 The previous discussion however guarantees that, under NIARA, CDF and MLR, both entries

in the main diagonal of H are negative. H is hence negative de�nite if and only if detH > 0.17 Now,

observe the o�-diagonal elements: �
P
i p
0
i(e)u

0(ĉi): They measure the gains from joint deviations of

postponing consumption and reducing e�ort (saving and shirking) and vice versa. Intuitively, the

problem is concave if the gains from these joint deviations are su�ciently small compared to the loss

induced by moving away from the optimal levels of e0 and b0 in the main diagonal. Our assumptions

so far are able to deliver the following result:

Lemma 2 (i) If u satis�es NIARA, we have
P
i p
0
i(e)u

0(ĉi) � 0: (ii) Under NIARA, MLR and CDF,
we have

PN
i=1 p

00
i (e)u(ĉi) < 0 and

detH >

 
NX
i=1

p00i (e)u(ĉi)

! X
i

pi(e)u
00(ĉi)

!
�
 X

i

p0i(e)u
0(ĉi)

!2
:

The last line of the lemma indicates that - since u is concave - we can focus on the second period

e�ects of the deviations. In order to be able to provide simple su�cient conditions for detH > 0, we

now impose further structure on the probability shifting functions.

15The de�nition is standard. The functions fpi(e)gNi=1 satisfy the CDF condition if F
00
I (e) is non-negative for every e

and I � N; where FI(e) =
PI

i=1
pi(e) = 1�

PN

i=I+1
pi(e):

16Kocherlakota (2004), provides an additive-separable `linear-linear' counter-example where he assumes that p00i (e) =

v00(e) = 0, and therefore

detH = �

 X
i

p0i(e)u
0(ĉi)

!2

< 0:

17Obviously, if the latter inequality is weak H is negative semi-de�nite.
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SPAND. We assume that there exists an increasing function 0 � �(e) � 1 such that

pi(e) = �(e)�ih + (1� �(e))�il (13)

with
P
i �ik = 1 for k = h; l and with

�ih
�il non-decreasing in i.

This requirement is called the spanning condition with dominance, and it has been used in the

literature in order to guarantee monotonicity of the consumption scheme in the standard moral hazard

model with observable asset accumulation (see Grossman and Hart, 1983; and Atkeson, 1991). The

intuition is simple: we have two base distributions given by the vectors �l and �h; in such a way that

the distribution given by �h �rst-order stochastically dominates �l: Intuitively, by exerting higher

e�ort the agents shifts the probability distribution of future outcomes towards the `better' distribution.

Note that probability shifting functions given in (13) will satisfy the MLR and the CDF condition

as long as � is increasing and concave. Therefore, we know from our previous results that, if u is

NIARA and � is increasing and concave, then consumption is monotone and the agent's problem is

concave in e0 and b0 individually. The following main result will establish a su�cient condition for

joint concavity.

Proposition 3 (FOA) Assume u is NIARA, SPAND, and that the function �(e) in (13) is such

that f�(e) :=
(�0(e))2

��00(e)(1��(e)) � 1 for all e � 0. Let (� ) be a transfer scheme solving (R). Then
the agent's problem is concave when facing (� ). As a consequence, the �rst order approach is

justi�ed: A contract (e0; c) solves (R) if and only if it solves the original problem (P).

Proof. First, for i = 1; 2:::N let us denote ��i := �ih��il, ui := u(ĉi), u0i := u0(ĉi) and u00i := u00(ĉi).
Also notice that (13) implies that p0(e) = �0(e)��i and p00(e) = �00(e)��i. Then, the determinant of

the Hessian is given by the following expression:

detH =

 
�v00(e) + ��00(e)

X
i

��iui

!�
q2u

00
(ĉ0) + �E

�
u00i
��
�
 
��0(e)

X
i

��iu
0
i

!2
:

Statement (ii) in Lemma 2 can be written as detH > (�00(e)
P
i��iui) (E [u

00
i ]) � (�0(e)

P
i��iu

0
i)
2 :

After writing E [u00i ] as (
P
i �ihu

00
i � (1� �(e))

P
i��iu

00
i ) and getting rid of the term

P
i �ihu

00
i < 0; we

obtain18

detH > �00(e)
X
i

��iui

 
�(1� �(e))

X
i

��iu
00
i

!
�
 
�0(e)

X
i

��iu
0
i

!2
: (14)

18We are entitled to make the simpli�cation since �00(e) < 0 and
P

i
��iui > 0: For the latter result, note thatP

i
��i = 0 and SPAND implies that there is an index k such that ��i � 0 if and only if i � k. Then, obviously,Pk�1

i=1
��i = �

PN

i=k
��i. Since ui is increasing in i, this implies

P
i
��iui > 0:

14



Now, we rearrange the expression in (14) as follows:

detH

��00(e)(1� �(e)) (
P
i��iu

0
i)
2 >

P
i��iui

P
i��iu

00
i

(
P
i��iu

0
i)
2 � (�0(e))2

��00(e)(1� �(e)) :

The last term of the previous expression is precisely f�: Hence, the assumption f�(e) � 1 implies that
detH is positive whenever Ru :=

P
i
��iui

P
i
��iu

00
i

(
P

i
��iu0i)

2 � 1. Now, we need to only prove that NIARA

utility functions will have the property Ru � 1: Note that
P
i��i = 0 and - since

�ih
�il is non-decreasing

in i - there is an index k such that ��i � 0 if and only if i � k. Moreover, previous results imply that
since �0 (e) > 0; ĉi always increases with i.

Lemma 3 If u exhibits the NIARA property then

P
i
�iui

P
i
�iu

00
i

(
P

i
�iu0i)

2 � 1 for every vector of weights

� such that
P
i �i = 0 and changing sign only once, and for each consumption plan fĉigNi=1

non-decreasing in i: Conversely, if u is concave and such that Ru � 1 for all vectors of weights
summing up to zero and changing sign only once, and for all non-decreasing consumption plan,

then u is NIARA.

Q.E.D.

In order to understand better the condition f�(e) � 1; note, on the one hand, that by concavity
and strict monotonicity of �, f�(e) > 0 for all e�ort levels. On the other hand, a linear � would clearly

violate this requirement because there f�(e) = 1. Therefore, our restriction requires that there is
enough concavity in the probability shifting function. It should be also clear from our analysis that the

concavity condition on the function � can be relaxed by imposing some strong convexity conditions

on v(e): When v is strongly convex, one can make appropriate change in variables and relax the

requirements on �. More formally, the �rst order approach is justi�ed for any couple of functions �̂

and v̂ (de�ned over values of h); such that the change in variable e := v̂ (h) and � (e) := �̂
�
v̂�1 (e)

�
leads to a function � de�ned on the set E that has the required properties: it is increasing and

f�(e) � 1:
Following this same line of reasoning, we can explain our condition on � in terms of the cost function

v. Suppose we have a function � that satis�ed our condition and v is linear. If we make the change in

units so that to obtain a linear �̂ : �̂ (h) = h := � (e) ; hence v̂ (h) := ��1 (h) ; we can ask what are the

properties on v̂ which are implied by the condition f� � 1: Given a linear relationship between h and
the (expected) earnings we can interpret it as labor supply. We can hence write the agent's problem

using an increasing concave utility function of leisure given by �v̂ (h) := g(1�h) = ���1 (h).19 Taking
19Note that the linearity of �̂ implies that h 2 [0; 1] in this case.
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�rst and second derivatives of these identities, we obtain

g0(1� h) = 1

�0(e)
and g00(1� h) = �00(e)

(�0(e))3
:

Combining these equations and using the de�nition of f�(e) we get

�g
00 (1� h) (1� h)
g0 (1� h) =

1

f�(e)
� 1:

In other terms, f�(e) represents the (intertemporal) elasticity of leisure. One of the most widely used

speci�cations for g is the unit elasticity one: g (1� h) = B ln (� (1� h)) ; which obviously implies
f�(e) = 1: The unit elasticity case is particularly interesting since it can be obtained by inverting the

expression 1 � �(e) = k exp(��e); where � = 1
B and k = 1

� : These results might be quite useful for

applied work. First, typically applied researchers choose utilities of consumption from the NIARA

family and either use �(e) = 1 � k exp(��e) with some convex e�ort cost function, or they use a
linear function for � and a constant elasticity function for leisure. Our results suggest that for these

cases, the �rst-order condition approach tend to be valid under hidden savings as well, so the optimal

allocations can be characterized in greater detail. Second, empirical evidence suggests that both of

our conditions are likely to be satis�ed in the data. Virtually all empirical estimates of labor supply

elasticity for men �nd it between 0 and 0:5: Heckman and MaCurdy (1980) �nd higher estimates for

women, but their estimates are still below one. One of the most recent structural estimations is done

by Domeij and Floden (2006) who �nd values for the Frisch elasticity of labor supply between :3 and

:56. To our best knowledge, all estimations for u reveal NIARA, for example Guiso et al. (2001) �nd

decreasing and convex relative risk aversion.

Finally, notice that the result stated in Lemma 3 has its own independent interest as it provides

a new characterization for the class of concave and NIARA utility functions. CARA utilities are

examples of utility function satisfying the condition as we have Ru = 1; regardless of the risk aversion

parameter. In order to get a more intuition about this result, assume that N = 2, hence y2 > y1 and

��1 = � = ���2. Then

Ru =
�u�u

00

(�u0)2
;

where �u(n) = u(n) (c2)�u(n) (c1) : If we divide both the numerator and the denominator by (c2 � c1)2 >
0 and take the limit for c2 ! c1; we get

u0u000

(u00)2
. That is Ru � 1 is just a di�erence counterpart of

u0u000 � (u00)2 which is a de�ning property of NIARA utility functions. Therefore, intuitively, our con-
dition expresses the requirement of non-increasing absolute risk aversion in di�erence terms instead of

di�erential terms.
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4 Optimal Income Taxation

So far, we established two characterization results. Transfers cannot increase with output for all i,

while consumption typically does (at least under MLR). We have emphasized that these characteristics

of the cross sectional consumption distribution are common to both the standard moral hazard model

and the model with hidden assets we consider in this paper. In this section, we characterize the

curvature of the optimal consumption scheme.

Clearly, the curvature of c is closely related to the progressivity of the tax/transfer system. Recall

again, that we can �x b0 = 0 without loss of generality. We say that the transfer scheme � is progressive

(regressive) if ci+1�ciyi+1�yi is decreasing (increasing) in i. As expected, the self-insurance allocation will have
ci+1�ci
yi+1�yi = 1 for all i: This de�nition implies that whenever consumption is a convex (concave) function

of income we have a regressive (progressive) tax system supporting it. In terms of our �rst period taxes

and transfers �i, in a progressive tax system taxes (�i < 0) are increasing faster than income does. At

the same time, for the states when the agents is receiving a transfer (�i > 0), transfers are increasing

slower than income decreases. The opposite happens when we have a regressive tax-transfer scheme. If

the scheme is progressive, incentives are provided more by imposing \large penalties" for low income

levels, since consumption is decreasing more for low income/output levels. On the other hand, if

the scheme is regressive, then incentives are provided by larger rewards for high output realizations

because consumption is increasing more for high output realizations. If the scheme is proportional

these rewards and punishments are balanced. The next proposition provides su�cient conditions for

the progressivity and regressivity of the optimal transfer scheme.

Proposition 4 Assume the FOA is justi�ed, that the optimal contract is interior and that the like-

lihood ratio is increasing and convex20 (concave) and that 1
u0(c) is concave (convex) in c and

that the absolute risk aversion a(c) is decreasing and convex (constant).21 Then � is regressive

(progressive).

20That is, for each e > 0; i � 2 we have

p0i+1(e)

pi+1(e)
� p0i(e)

pi(e)

yi+1 � yi
�

p0i(e)
pi(e)

� p0i�1(e)

pi�1(e)

yi � yi�1
:

21Notice that a function cannot be positive, decreasing and concave everywhere.
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Proof. By taking the di�erence of equation (10) in two adjacent states and dividing both sides by

yi+1 � yi, we obtain h
q

u0(ci+1)
� q

u0(ci)
� � (a(ci+1)� a (ci))

i
yi+1 � yi

=
�

�
p0i+1(e)

pi+1(e)
� p0i(e)

pi(e)

�
yi+1 � yi

: (15)

By assumption, the right hand side increases (decreases) with i. Since the functions on the left

hand side are increasing and concave (convex) in ci and ci+1 and - by Proposition 2 - ci increases with

i; it must be that the ratio ci+1�ci
yi+1�yi > 0 increases (decreases) with i. Q.E.D.

Notice that CARA utilities with concave likelihood ratios lead to progressive schemes. Also note,

that in this case the progressivity of the payment scheme is not in
uenced by the presence of hidden

savings since a(ci+1)� a (ci) = 0. When the likelihood ratio is convex, CRRA utilities with 0 < � � 1
induce regressive schemes since a(c)(= �

c ) is strictly convex and
1

u01(c)
= c� is concave. Interestingly,

this case includes the logarithmic utility case, which - in the observable assets case with linear likelihood

ratios - would lead to proportional schemes. From (15), in that case we get that ci+1�ci
yi+1�yi = �k

where k =

�
p0i+1(e)

pi+1(e)
� p0i(e)

pi(e)

�
=(yi+1� yi): This implies that consumption is a linear function of income.

This particular case sheds light on a more general pattern under convex a(c): the allocation with

hidden savings has a more a convex relationship between output and consumption than the one with

observable savings. In terms of the supporting tax/transfer system, hidden asset accumulations calls

for a more regressive tax scheme. In terms of providing incentives, regressive schemes are putting more

emphasis on rewards for high output levels than punishments for low output levels: More insurance

for low income levels and less insurance for high income levels. Also notice that whenever a(c) is

convex, �(a(ci + �) � a (ci)) is decreasing in i for any � > 0. This implies that in order to keep

��(a(ci+1)�a (ci)) constant the planner need to increase consumption more for a higher level of income
(recall that ci+1 > ci). Therefore, for all HARA utilities this e�ect due to hidden asset accumulation

always imposes an additional regressivity to the curvature dictated by 1
u0(c) .

22

Proposition 5 (Regressivity) Assume FOA is valid with monotone and interior consumption, and

u is HARA. Let c and ĉ be interior optimal contracts for our model with hidden asset accumu-

lation and the pure moral hazard model, respectively, implementing e�ort level e0. If ĉ changes

with i in a convex way, than c does as well.

22The HARA (or linear risk tolerance) class of utility functions is de�ned by a coe�cient of absolute risk aversion

a (c) =
1

� + 
c
;

with � + 
c � 0: This class includes CARA (for 
 = 0), quadratic utility (for � > 0 and 
 = �1); and CRRA (for

� = 0 and 
 > 0): In the latter case, 
 represents the intertemporal elasticity of substitutions, i.e., the inverse of the risk

aversion parameter.
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In order to obtain a clearer intuition of this result we examine condition (10) further. This ex-

pression equates discounted present value (normalized by pi (e0)) of the planner's costs and bene�ts

of increasing the agent's utility by one unit in state i > 1. This increase in utility costs the planner

q=�u0(ci) in consumption terms. In terms of bene�ts, �rst of all, since the participation constraint

is relaxed, the planner receives a return of �. Further, increasing the agent's utility also relaxes the

e�ort incentive compatibility constraint generating a return of �p0i(e0)=pi(e0).
23 Notice that these

e�ects are present in the standard moral hazard model as well. In the hidden asset case (� > 0), there

is an additional gain though: by increasing u(ci), the planner also alleviates the saving motives of

the agent. This gain is measured (in consumption terms) by �a(ci), and it implies that the planner,

certeris paribus, increases consumption for every income state i: Since consumption is increasing in

i; decreasing absolute risk aversion implies that these gains are getting smaller as income is getting

higher, implying that the additional consumption increases due to hidden asset accumulation are de-

creasing. Note, however, that the di�erence in these gains across income levels i and i+ 1 determines

the exact e�ect of hidden asset accumulation on the progressivity of the tax scheme. Under convex

absolute risk aversion this di�erence is shrinking, hence, the consumption plan becomes more convex

than in the standard moral hazard case.

Since Proposition 5 depends on the validity of the FOA and on consumption being monotonic,

one might wonder whether the result is e�ectively true only for NIARA utilities. This is not the case,

although each speci�cation needs an independent analysis. Here is an example.

Quadratic Utility A quite commonly used speci�cation for u is the quadratic one: u (c) =

��
2 (B � c)

2 with � > 0 and B >> 0: This utility function does not belong to the NIARA class since

�u
00

u0 =
1

B�c ; which increases with c: Most of the previous results however extend to this case. Note in

particular, that this utility function belongs to the HARA class, so Propositions 4 and 5 apply in full

whenever the FOA can be applied and consumption is monotonic.

The optimality conditions for problem (R) when u is quadratic are

q � ���
��(B � ci)

= �+ �
p0i (e0)

pi (e0)
:

It might hence be interesting to notice that since q � ��� > 0;24 the movements in the likelihood

23Of course, if the increase in the payment is done in a state with a negative likelihood ratio, this represents a cost

since the incentive constraint is in fact tightened.
24If q � ��� < 0; ci would decrease with i when p0i(e0)

pi(e0)
increases and vice versa. Hence:X

pi (e0)
p0i (e0)

pi (e0)
u (ci) =

X
p0i (e0)u (ci) < 0 � v0 (e0) ;

which violates the incentive compatibility constraint for e0.
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ratio are re
ected in the optimal contract in the same way as in the standard moral hazard model.

In particular, under MLR, consumption is monotone increasing in i (as in the benchmark case with

NIARA utility). A su�cient condition for the validity of FOA in this case is f�(e)(1 � �(e)) � 1+q
2

for e � 0, which is implied by f�(e) � 1+q
2 since 1� �(e) � 1.25

5 Discussion and Extensions

This paper studies the two period version of the dynamic moral hazard model when agents can

borrow and save on a risk-free bond market and their asset accumulation decisions are not observable.

We provide su�cient conditions under which the �rst-order approach (FOA) is applicable in this

environment. In addition to the conditions which are required in the static and in the observable

savings case (MLR, CDF) we need to impose some further concavity on the problem. First of all,

non-increasing absolute risk aversion (NIARA) with respect to consumption is imposed. Second, the

way e�ort e�ects the probability distribution has to be concave enough or the disutility of e�ort has

to be convex enough. This last requirement is guaranteed by the Frisch elasticity of leisure being less

than one. One nice property of these set of su�cient conditions is that these restrictions on preferences

are validated by empirical research. Another attractive aspect of them is that most popular functional

forms used in applied research will satisfy these conditions. As a by-product of our analysis we identify

an interesting characterizing property of the NIARA utility functions, which might have a broader

applicability.

With the help of the �rst order condition approach, we also characterize the optimal contract in

this environment. We focus on how consumption depends on output. Similarly to the standard case,

under the assumptions needed for the validity of the FOA, the optimal consumption is monotonic in

output. We also study extensively the progressivity of the tax-transfer scheme supporting the optimal

25Assume without loss of generality that v (e) = e; and for simplicity that � = q: After few simpli�cations, on the

Hessian matrix

H :=

"
��
P
p00i (e)

�
2
(B � ci)2 �

P
p0i (e)� (B � ci)

�
P
p0i (e)� (B � ci) ��� [q + 1]

#
;

we obtain

detH = �2�2
�
�00 (e)

hX
��i (B � ci)2

i
(q + 1)

2
�
�
�0 (e)

�2 �X
��i (B � ci)

�2�
which implies that detH > 0 whenever �

�
P
��i (B � ci)2

��P
��i (B � ci)

�2 (q + 1)

2
>
(�0 (e))

2

��00 (e) :

Finally, one can show that - since ci and ��i move together (and
P
��i = 0) - we have that

P
��i(B�ci)2�P
��i(B�ci)

�2 � 1.

Q.E.D.
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allocation. We identify a key force in the model which makes consumption more convex and hence

the supporting tax system more regressive due to the possibility of hidden asset accumulation under

decreasing and convex absolute risk aversion (HARA) utility functions.

In addition to these main results, we investigated few further properties of the optimal contract

that we do not report in full detail for brevity. For example, we show that some of the previous results

about the value of information in the standard case also hold in our model. Assume that the planner

receives an observable and veri�able signal s 2 S; and suppose that the su�cient conditions for FOA
are valid in both the original and the new environment with the signal s. Then there is a new contract

fcisgs2Si=0;N that strictly dominates c if and only if s is informative about e0 in the sense of Holmstr�om

(1979). This result represents an interesting distinguishing feature of our model with respect to the

self-insurance framework where further insurance possibilities are not available for the agent. In that

case, consumption always moves with both i and s as long as yis changes with them, regardless of the

informational content.

Second, we investigated how e�ort and consumption insurance compare to the observable asset

case. Assume again FOA is valid. Taking the �rst order conditions with respect to e0, we obtain

q
X
i

p0i (e0) (yi � ci) + �Ue (e0; 0; c)� �Uee (e0; 0; c) + �Ueb (e0; 0; c) = 0:

Clearly, Ue (e0; 0; c) = 0. Moreover, it is not di�cult to see that whenever the agent's problem is

concave in e0 then ��Uee (e0; 0; c) + �Ueb (e0; 0; c) < 0:26 This implies that q
P
i p
0
i (e0) (yi � ci) =

q
P
i p
0
i (e0) (yi � ci) + �Ue (e0; 0; c) > 0: If we consider � as an exogenous parameter de�ning the

relative Pareto weight of the agent, this can be interpreted as an ine�ciency result. Because of the

informational problems, the planner implements an e�ort level which is lower than that dictated by

production e�ciency. This result is similar to the standard moral hazard case (see Rogerson, 1985b).

A further natural question is whether the optimal scheme under hidden savings induces more or less

consumption dispersion on the agent, given an e�ort level e0. We realized that this question does not

have an easy answer. Intuition might suggest that since reducing consumption dispersion relaxes the

savings incentives under NIARA, we might expect a reduction of consumption dispersion. In fact,

in �Abrah�am and Pavoni (2006), we document numerically that in the two output case (N = 2) the

in�nite horizon version of the model, consumption is typically more dispersed in the hidden asset

case. As similar result can be shown analytically here: For each �xed pair (U0; e0) ; the consumption

26In particular, by rearranging the necessary conditions of optimality one can show the multipliers � > 0 and � > 0

are related as follows (details are available upon request): �Ueb = �Ubb. Hence, the condition detH > 0 is equivalent to

(Ueb)
2 < UeeUbb , ��UbbUeb < �

2UeeUbb , �Ueb < �Uee:
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dispersion is larger in our model than in the standard case.27 Given that the same e�ort level requires

higher consumption dispersion, hence higher costs to the planner, we conjecture that - given U0 -

hidden savings will induce a lower optimal level of e�ort compared to the standard case. Note that

if this were indeed the case, combining this conjecture with the results in Proposition 4, we get that

Proposition 5 is likely to hold unconditionally on e�ort as long as the curvature of the likelihood ratios

becomes uniformly more concave as e0 increases.

Finally, we would like to discuss the relevance of some assumptions in the model.

Liquidity Constrained Agents and Shallow Pockets. Suppose that the agent is liquidity

constrained. Although the set of implementable levels of asset holdings b0 might be restricted by

the presence of liquidity constraints, all our characterization results remain valid. First, it is obvious

that given any implementable b0; the planner is able to generate the same allocation to the agent by

implementing b00 > b0 and adjusting transfers accordingly at no cost. Interestingly, Lemma 1 implies

that whenever the FOA is valid the planner will never be able to gain by implementing a low b0 so

that to make the agent liquidity constrained. In contrast, when both the agent and the planner faces

liquidity constraints (or shallow pockets), it might be the case that Lemma 1 fails as Ub > 0.

More General Conditions on p: In this paper, we looked at conditions for the validity of the

�rst order approach, which allowed simple economic interpretation. Looking at the expression of part

(ii) in Lemma 2, one can notice that the key su�cient condition for the validity of the �rst-order

approach is that the expression below is concave in (e; b):

W (e; b) :=
X
pi (e)u (ci + b) :

An alternative route is hence to look at a new set of conditions, jointly on u and p that use more

heavily the shape of the optimal contract c in i: So far, we have only used monotonicity (implied

by NIARA and MLR). In the standard moral hazard model, Jewitt (1988) derives necessary and

su�cient conditions for c to change in a concave way with i: It then uses and extends results from

total positivity28 to �nd minimal conditions on p so that the agent problem is concave in e: The full

derivation of minimal conditions on the concavity of the agent problem jointly in (e; b) is however a

task we leave to future research.29

27Since e0 is �xed across the two models, when N = 2 we need to keep �u constant across the two models. If c0 were

�xed as well, in order to satisfy the Euler equation in our model, we need to decrease � (e0)u
0 (c2) + (1� � (e0))u0 (c1)

compared to the standard moral hazard model. The implication is that we must increase both c2 and c1 so that to keep

�u constant. Since u is concave, �c must increase. Now, allow for the possibility of changing c0: As long as both U0 and

e0 are �xed, the principal perhaps decreases c0, but again in order to keep �u constant, both c1 and c2 must increase

compared to the original contract, otherwise the agent's participation constraint would be violated.
28E.g., see Karlin (1968).
29Sebastian Koehne is currently working on the issue, with some interesting results for the CARA utility case. A draft
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Appendix: Proofs

Proof of Proposition 1 The proof is based on Propositions 4 and 5 in Grossman and Hart (1983).

In order to make the analogy explicit between these results and ours, we now show in detail the part

of the proof related to Grossman and Hart's Proposition 5 which regards our Corollary to Proposition

1: The sub-optimality of self-insurance. It should then be easy to see how the proof of Proposition 4

in that paper can be adapted to our environment. Further details are available upon request.

Consider a transfer scheme � that is optimal and it is such that �i � � is constant for all i >

0: We show that this transfer scheme cannot be optimal, by constructing an incentive compatible

transfer scheme, which satis�es the agent's participation constraint and increases the planner's surplus.

Without loss of generality, assume that u is unbounded below and recall that �N = �1. Consider the

following modi�cation of the scheme: leave unchanged both �̂0 (") = �0 and �̂i(") = � for i = 2; :::; N�1,
while modify �1 and �N as follows: set �̂1(") = � + "; and �̂N (") = � � �""; with " > 0: For any "; the
value �" is chosen so that the agent is indi�erent between the original plan � and the new one �̂ (")30,

that is

max
e2E; b��B(")

u(y0 + �0 � qb)� v(e) + �
NX
i=1

pi(e)u (yi + �̂i(") + b)

= max
e2E;b��B(")

u(y0 + �0 � qb)� v(e) + �
N�1X
i=2

pi(e)u (yi + � + b)

+� [p1(e)u (y1 + � + "+ b) + pN (e)u (yN + � � �""+ b)]

= u(y0 + �0)� v(e0) + �
X
i

pi(e0)u (yi + �) :

where for each "; B(") := mini fyi + �̂i(")� cg ; and we stick to the particular optimal contract where
b0 = 0: Such a �" > 0 exists by the Maximum Theorem. Notice indeed that both u and p are

continuous and by convexity and strict monotonicity, e will lie in a compact interval. Moreover, since

the transfers are constant in i, and utility is unbounded below we can always choose " in a way that

b0(") 2 B("; �) where B("; �) :=
h
c�min fy1 + � + "; yN + � � �"g ; y0+�0�cq

i
is a non-empty and

compact set (recall that c > �1). Finally, note that for each " > 0, for � = 0 the utility of the

agent must be strictly larger than the one in the original contract. Since u is strictly monotone and

unbounded below, and by the full support assumption, by reducing � we can drive the agent's utility

arbitrarily low. Hence, by continuity, there must be a �" that satis�es our requirement.

We want to show that for " small enough the di�erence between the planner's surplus under the

new and original scheme �(") is positive. Denote by ê"0 and b̂
"
0 the e�ort and asset choices of the agent

30When u is unbounded above, we shall modify the original scheme � as follows: �̂0 (") = �0; �̂i(") = � for i =

2; :::; N � 1; and �̂1(") = � + �"" ; and �̂N (") = � � ":
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under the perturbed scheme, and ê00; b̂
0
0 and �

0 are the limit e�ort, asset and �" choices as " ! 0.

The Theorem of the Maximum implies that the optimal correspondence of choices ê"0 and b̂
"
0 is upper

hemi-continuous if considered as a function of ": The consequence is that ê00 and b̂
0
0 are also optimal

under the original scheme, hence for each " > 0 we have

u
�
y0 + �0 � qb̂00

�
� v

�
ê00

�
+ �

X
i

pi(ê
0
0)u

�
yi + �̂i(") + b̂

0
0

�
� u

�
y0 + �0 � qb̂"0

�
� v (ê"0) + �

X
i

pi(ê
"
0)u

�
yi + �̂i(") + b̂

"
0

�
= u

�
y0 + �0 � qb̂00

�
� v

�
ê00

�
+ �

X
i

pi(ê
0
0)u

�
yi + � + b̂

0
0

�
:

Comparing the �rst line with the last one, we have:

X
i

pi(ê
0
0)
h
u
�
yi + �̂i(") + b̂

0
0

�
� u

�
yi + � + b̂

0
0

�i
� 0: (16)

Condition (16) can be rewritten as

"p1(ê
0
0)

h
u
�
y1 + � + "+ b̂

0
0

�
� u

�
y1 + � + b̂

0
0

�i
"

� (17)

��""pN (ê00)

h
u
�
yN + � + b̂

0
0

�
� u

�
yN + � � �""+ b̂00

�i
�""

� 0:

Now taking limits as "! 0 we get

0 � p1(ê00)u0
�
y1 + � + b̂

0
0

�
� pN (ê00)�0u0

�
yN + � + b̂

0
0

�
: (18)

It is now easy to realize that yN + � > y1 + � and strict concavity implies u
0
�
y1 + � + b̂

0
0

�
>

u0
�
yN + � + b̂

0
0

�
hence it must be that pN (ê

0
0)�

0 � p1(ê00) > 0:
Let us now compute the gain for the planner. For each " > 0 we have

�(") = pN (ê
"
0)�

""� p1(ê"0)": (19)

Since �(0) = 0, by showing �0(0) > 0; we show that �(") > 0 for " small enough: Note that if we

divide (19) by " and we take the limit as "! 0 we get

�0(0) = lim
"!0

�(")

"
= pN (ê

0
0)�

0 � p1(ê00) > 0:

Q.E.D.
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Proof of Lemma 1 (i) We �rst show that the solution of the problem (R) must be such that (7)

(the no-shirking condition) is satis�ed with equality. If � > 0 we are done. Consider the case where

� = 0: In this case, the �rst-order conditions are either ci = c for all i; or
q

�u0(ci)
� �a(ci) = � for all

i; hence the planner fully insures the agent in period t = 1 regardless of the value of � � 0. Note

that full-insurance will also be good for incentive compatibility since the convexity of u0 (implied by

NIARA) implies
P
i pi(e0)u

0(ci) � u0 (
P
i pi(e0)ci). That is, the planner will be able to relax the Euler

equation by providing insurance. Since
P
i p
0
i(e0) = 0; a constant u (ci) = �u implies that

P
i p
0
i(e0)�u = 0:

Since v0(e0) � 0; full insurance would imply v0(e0) � �
P
i p
0
i(e0)u (ci) = 0: Combining this with (7)

delivers v0(e0) = �
P
i p
0
i(e0)u (ci) = 0.

We now show that if the solution of the problem (R) is interior for ci, it must be such that the

second constraint in (6) (the Euler condition) is satis�ed with equality. Recall that the �rst-order

conditions for c0 and ci are given by (9) and (10). Again, if � > 0 we are done. If � = 0; from the �rst

order conditions we have:

1

u0(c0)
�
X
i

pi(e0)
q

�u0(ci)
� q

�
P
i pi(e0)u

0(ci)
; (20)

where the second inequality is implied by Jensen inequality. In fact, since 1=x is a strictly convex

transformation, this second inequality can be an equality only if the agent is fully insured. Now, com-

paring the �rst and last term in the above expression, we have qu0(c0) � �
P
i pi(e0)u

0(ci): Combining

this with (8) yields qu0(c0) = �
P
i pi(e0)u

0(ci).

(ii) Whenever e0 > 0 by assumption we have v
0(e0) > 0. Therefore, full insurance is not feasible

so ci cannot be constant in i. This implies that � > 0: In this case we also have � > 0: In order to

see this, recall that with � = 0 whenever ci is not constant in i the last inequality in (20) is satis�ed

with strict inequality. This however contradicts the Euler condition qu0(c0) � �
P
i pi(e0)u

0(ci) hence

� cannot be zero either.

(iii) If u is unbounded below, since U0 > �1; from the participation constraint we obviously have

interiority and the previous line of proof applies. So assume u is bounded. If the Inada condition is

satis�ed and ci = c for at least one i > 0; clearly the Euler condition (8) must be satis�ed. If fact, it

must be that c0 = c as well. Since u is bounded, (7) must be satis�ed with equality by the argument

in (i). Q.E.D.

Proof of Lemma 2 (i) We �rst show that under NIARA
P
i p
0
i (e)u

0 (ĉi) � 0: Note that we can
rewrite the expression as

P
i pi (e)

p0i(e)
pi(e)

u0 (ĉi) where
P
i pi (e)

p0i(e)
pi(e)

= 0: Moreover, from the �rst order

condition and NIARA we have that ĉi is either constant at c or it moves together with the likelihood

ratio
p0i(e)
pi(e)

: Therefore, by concavity, u0 (ĉi) and
p0i(e)
pi(e)

are negatively correlated, which proves the result.

(ii) In order to simplify the analysis, we rewrite the expression for the determinant of the Hessian
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as

detH =
�
�vee + �Ûee

� �
q2ucc + �Ûcc

�
�
�
�Ûec

�2
;

where all terms have the obvious meaning. By the concavity of u and convexity of v; we have: �vee < 0;
q2ucc < 0: If we now look at the expression for detH; by making the term by term multiplications

and expanding the quadratic expression, we obtain the following terms. First, q2 (�vee)ucc which is
positive by the concavity of u and �v: Second, we have the expression q2uccÛee��veeÛcc: Both terms
in the expression are positive since the concavity of u implies Ûcc < 0 and the CDF assumption implies

that Ûee < 0: The only remaining terms are �
2ÛeeÛcc � �2Ûec; which are those in the text. Q.E.D.

Proof of Lemma 3 Let k be the index so that � changes sign at k: sgn(�j) = sgn(�k) 8j � k and
sgn(�i) 6= sgn(�k) 8i; k. We aim at showing that NIARA implies thatPN

i=1 �iui
PN
i=1 �iu

00
i�PN

i=1 �iu
0
i

�2 =

PN
i6=k �i�ui

PN
i6=k �i�u

00
i�PN

i6=k �i�u
0
i

�2 � 1 (21)

where �u
(n)
i = u(n)(ĉi)� u(n)(ĉk) and we used the fact that

PN
i=1 �i = 0, hence �k = �

PN
i6=k �i. The

last expression can be re-written as followsPN
i6=k �i�ui

PN
i6=k �i�u

00
i�PN

i6=k �i�u
0
i

�2 =

PN
i6=k

PN
j 6=k �i�ui�j�u

00
jPN

i6=k
PN
j 6=k �i�u

0
i�j�u

0
j

:

Note, that if we are able to show that

�i�j(�ui�u
00
j +�uj�u

00
i ) � 2�i�j�u0i�u0j for 8i; j (22)

then we will be done. Clearly if either �i�j = 0; or ĉi = ĉk; or ĉj = ĉk the condition is satis�ed since

both terms are zero. So assume that �i�j 6= 0; ĉi 6= ĉk; and ĉj 6= ĉk: Now, recall that consumption

increases with i. Assume without loss of generality, that we have that �u0i > 0 if and only �i < 0,

which implies that both �i�u
0
i < 0 and �j�u

0
j < 0.31 We can hence divide by �i�j�u

0
i�u

0
j the

inequality in (22) and it remains to show that 8i; j

Pij �
�ui�u

00
j +�uj�u

00
i

�u0i�u
0
j

� 2: (23)

The key aspect of our proof is to note that, if u is concave, the absolute risk aversion is decreasing if

and only if the agent is more prudent than risk averse. That is, if �u0 is a concave transformation of
u (see Gollier, 2001, pp. 24). In other words, there is an increasing and concave function f such that

�u0(c) = f(u(c)) for all c:
31Alternatively, when �u0i > 0 if and only �i > 0 then both of these terms are positive so the same steps follow.
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Now, note that

u00(c) =
du0(c)

dc
= �d(�u

0(c))

dc
= �f 0(u(c))u0(c) = f 0(u(c))f(u(c)): (24)

If we set u(ĉi) = zi; (23) becomes

Pij =
�zi�

�
fjf

0
j

�
+�zj�(fif

0
i)

�fi�fj
=

(zi � zk) (f 0(zj)f(zj)� f 0(zk)f(zk)) + (zj � zk) (f 0(zi)f(zi)� f 0(zk)f(zk))
(f(zi)� f(zk)) (f(zj)� f(zk))

: (25)

If zl > zk (resp. zl < zk); from the Mean value theorem, for 8l 9z�l 2 [zk; zl] (resp. z�l 2 [zl; zk]) such
that

f(zl)� f(zk) = f 0(z�l ) (zl � zk) : (26)

Substituting (26) into (25) we obtain

Pij =
f 0(zj)f(zj)� f 0(zk)f(zk)
f 0(z�i ) (f(zj)� f(zk))

+
f 0(zi)f(zi)� f 0(zk)f(zk)
f 0(z�j ) (f(zi)� f(zk))

:

Some algebra gives us

Pij =
f 0(z�j )

f 0(z�i )

f 0(zj)
f 0(z�j )

f(zj)� f 0(zk)
f 0(z�j )

f(zk)

f(zj)� f(zk)
+
f 0(z�i )

f 0(z�j )

f 0(zi)
f 0(z�i )

f(zi)� f 0(zk)
f 0(z�i )

f(zk)

f(zi)� f(zk)
:

Now the required result is given by the following two inequalities:

Pij �
f 0(z�j )

f 0(z�i )
+
f 0(z�i )

f 0(z�j )
� 2: (27)

In order to obtain the �rst inequality, notice the following facts for both l = i; j: First, since f is concave

we have that whenever f(zl)� f(zk) > 0 (resp. f(zl)� f(zk) < 0) then f 0(zl) � f 0(z�l ) � f 0(zk) (resp.
f 0(zl) � f 0(z�l ) � f 0(zk)) implying that 0 �

f 0(zl)
f 0(z�

l
) � 1 and

f 0(zk)
f 0(z�

l
) � 1 (resp.

f 0(zl)
f 0(z�

l
) � 1 and

f 0(zk)
f 0(z�

l
) � 1):

This together with the fact that f is negative leads to

f 0(zl)
f 0(z�

l
)f(zl)�

f 0(zk)
f 0(z�

l
)f(zk)

f(zl)� f(zk)
� 1

for l = i; j: This gives the �rst inequality in (27). The second inequality is implied by the simple

mathematical fact that for all a > 0 we have 1
a + a � 2; applied to a =

f 0(z�j )

f 0(z�i )
.32 This completes the

proof, since Pij � 2 for 8i; j � 1 implies Ru � 1:
The proof of the su�ciency part is very easy. Since a concave u is NIARA if and only if �u0 is

more concave than u; if u is not NIARA we can easily �nd a counterexample with some weights with

the required properties and (weakly) monotone consumption allocation where Pij < 2 and therefore

Ru < 1: Details are available upon request. Q.E.D.

32Since (a� 1)2 = a2 � 2a+ 1 � 0; dividing both sides by a > 0 one obtains a+ 1
a
� 2 � 0 as desired.
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