
Optimal Unemployment Insurance, with Human Capital

Depreciation, and Duration Dependence∗

Nicola Pavoni†

September 29, 2008

Abstract

This paper introduces the possibility of a deterioration in job opportunities during unemployment
into the standard optimal unemployment insurance (UI) design framework, and characterizes the
e�cient UI scheme. The optimal program may display two novel features, which cannot be present
in stationary models. First, UI transfers are bounded below by a minimal assistance level that arises
endogenously in the e�cient contract. Second, the optimal scheme implies a wage subsidy for long-
term unemployed workers. Numerical simulations based on the Spanish and US economies suggest
that both assistance transfers and wage subsidies should be part of the UI scheme in these countries.

Keywords: Unemployment insurance, human capital depreciation, duration dependence, wage
subsidies, moral hazard, recursive contracts, envelope theorems.

JEL Classi�cation: C61, D63, D82, D83, J24, J31, J38, J64, J65.

SHORTENED TITLE: Optimal UI and Human Capital Depreciation

∗First submission: July 2006. Main revision: November 2007.
†I thank Antonio Cabrales, Per Krusell, Matthias Messner, Kjetil Storesletten, Fabrizio Zilibotti, and two anonymous

referees for helpful comments. The paper bene�ts from a pro�table discussion with Philippe Aghion and Gianluca Violante,
during the preliminary stages of the work. I wish to thank conference and seminar participants at the Duke University,
the LSE, the Northwestern University, the University of Iowa, the IIES in Stockholm, and the CERGE-EI in Prague. This
research was supported by Marie Curie Fellowship MCFI-2000-00689.



1 Introduction

Unemployment insurance (UI) programs are an important ingredient of social welfare policies in devel-

oped economies. Public expenditures devoted to UI and assistance programs in the OECD countries

exceed 2% of GDP (Martin, 2002). These programs have been widely criticized because of the adverse

e�ects they can have on workers' incentives to search for a new job. This criticism has stimulated

extensive research into optimal insurance schemes that take these perverse e�ects into account.

A series of papers use the dynamic moral hazard model to analyze the trade-o� between (unemploy-

ment) insurance and (search) incentives.1 In these models, the key features of the environment are that

the probability of �nding a new job depends only on the (unobservable) search e�ort exerted by the

agent and that the available gross wages distribution is constant throughout unemployment spells. It

is, however, well documented that job opportunities deteriorate during unemployment.2 In fact, many

OECD countries propose and apply active labor market policies such as wage subsidies for long-term

unemployed workers, mainly because of this adverse change in job opportunities.3 Human capital de-

preciation and hazard rate duration dependence are hence important elements that need to be included

in the study of an optimal UI designing problem.

In this paper, we extend the basic model of unemployment insurance with moral hazard to allow for

both the gross wages and the probabilities of re-employment to depend on the length of the worker's

unemployment spell. Although we do not analyze how the UI designing problem interacts with other

welfare or labor market policies, we do allow the planner to impose history-contingent wage taxes or to
1We brie�y review this literature below in this section.
2Many authors consistently �nd that displaced US workers face a large and persistent earnings loss upon re-employment

in the order of 10-25% compared with continuously employed workers (Bartel and Borjas, 1981; Ruhm, 1987; Jacobson,
LaLonde and Sullivan, 1993; for a survey, see Fallick, 1996). Keane and Wolpin (1997) estimate structurally an annual
human capital depreciation rate for white US males during unemployment of between 9.6% and 36.5% (for blue and white
collars respectively). Note that in this literature, unemployment duration is often found to have an independent negative
impact on re-employment earnings, beyond job-speci�c and occupation-speci�c skill losses (e.g., Addison and Portugal,
1989; Neal, 1995). Second, a common feature of the data is the negative duration dependence in the unemployment hazard
(e.g., Machin and Manning, 1999, for a survey). In particular, several studies (e.g., van den Berg and van Ours, 1994 and
1996; Bover, Arellano and Bentolila, 2002) continue to �nd a rapidly declining hazard even after explicitly controlling for
unobserved heterogeneity.

3There are at least eight OECD countries that have actually introduced major welfare-to-work programs: the United
States, Canada, the United Kingdom, Ireland, Denmark, France, the Netherlands and Sweden.
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pay wage subsidies upon re-employment.

First of all, our study con�rms one important result of most previous studies with stationary models:

Bene�ts should decrease with unemployment duration. In fact, this behavior characterizes virtually all

existing UI schemes in OECD countries. Perhaps more interestingly, we also observe that very simple

schemes, de�ned by a low constant bene�t payment b and a higher time-invariant wage w, can never

be optimal. This result holds for any reasonable range of parameters (no restrictions on the worker's

utility function, other than concavity and additive separability, are required) and regardless of the

characteristics of the human capital depreciation process. We emphasize, instead, a simple necessary

characteristic of any optimal unemployment insurance program which can be used as a `back-of-the-

envelope' test of optimality. For each unemployment duration t, by using today and next period bene�t

payment levels b and b′ and next period net wage w′, it is always possible to draw a triangle such as that

in Figure 1. Given a reliable point estimate of the hazard rate πt associated with unemployment spell of

length t, one can easily check whether the two parts that form the segment connecting w′ to b′ satisfy

the conditions A = w′ − b = (1 − π)(w′ − b′) and B = b − b′ = π(w′ − b′). When this is not the case

and logarithmic utility is a good approximation for the agent's risk preferences, the trade-o� between

insurance and incentives is not exploited optimally, and there is room for a budget-saving reform.

The introduction of human capital depreciation and duration dependence also generates two main

novel features in the optimal program, which are not present in stationary models. First, provided that

human capital depreciates su�ciently rapidly during unemployment, the optimal path for unemployment

bene�t payments is initially decreasing and then becomes completely �at. The idea is simple: For low

levels of human capital, the planner does not �nd it worthwhile to induce the worker to search intensively

for a new job. Hence, UI bene�ts eventually stop decreasing and remain constant forever since the (long-

term) unemployed worker is fully insured. The presence of a minimal, assistance level of UI bene�ts

generates an endogenous lower bound on a worker's expected discounted utility. This feature of the

optimal contract creates an important link between the characteristics of the e�cient UI scheme and

the speed of skills depreciation in the economy, which can also be used for positive analysis.

Second, recall that in our model the planner can impose history-contingent wage taxes upon re-

employment. A key �nding of the stationary model is that - due to consumption smoothing - the

optimal wage tax should increase with the length of the previous unemployment spell (Hopenhayn and

Nicolini, 1997a-b). In our nonstationary model, at least three new forces are at work that contrast with
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the tendency towards the wage tax increase. First, since the planner tends to insure agents against

wage depreciation, a reduction in the gross wage received by the worker decreases the optimal wage tax.

Second, in our model, low human capital levels imply a low e�ectiveness of the search activity, which

increases the incentive costs. This latter e�ect tends to widen the di�erence between unemployment

bene�ts and net wage, decreasing both the UI transfers and the wage tax upon re-employment. As long as

the optimal scheme contemplates the emergence of an assistance state, these characteristics are reinforced

by a third e�ect, which is strictly related to the exogenous minimum bound analysis of Pavoni (2007).

The (now endogenous) presence of a lower bound on a worker's expected discounted utility shortens

the e�ective time-horizon of the problem. This reduces the possibility of giving dynamic incentives and

forces the planner to design a scheme biased toward the `static' component of the incentives. During

the unemployment period before the assistance state, the planner optimally increases the within-period

gap between the unemployment insurance bene�t and the net wage, further reducing the wage tax.

In the second part of the paper, we perform two quantitative exercises. We calibrate our model to the

Spanish and US labor markets and compute the optimal UI schemes. Our numerical simulations suggest

that in both these economies, the optimal UI scheme should contemplate an assistance state for workers

with su�ciently long unemployment spells. Moreover, during the transition period towards assistance,

the optimal level of wage taxes decreases with the length of the worker's previous unemployment spell

and becomes a wage subsidy for long-term unemployed workers.

In both countries, the e�cient provision of dynamic incentives implies optimal UI payments that are

more generous than existing replacement ratios. This �nding is consistent with most previous studies

(for stationary models) with history-dependent taxes. We also �nd that the optimal US scheme involves

a more substantial use of the wage subsidy instrument with respect to the optimal scheme for Spain.

Interestingly, both assistance programs and wage subsidies are common characteristics of most OECD

unemployment insurance and welfare programs.4 The possibility of an e�cient wage subsidy to long-

term unemployed workers is the second key normative prediction of our nonstationary search model with
4Examples of social assistance programs are the Temporary Assistance for Needy Families (TANF) and Food Stamps

in the US, the Renta Minima de Insercion (or Renta Minima) in Spain, and the Revenu Mininum d'Insercion (RMI)
in France. The Earned Income Tax Credit (EITC) is a major wage subsidy program in the US. This program has a
structure similar to the Working Families' Tax Credit (WFTC) in the UK. Spain and France have much smaller wage
subsidy programs, named Renta Activa de Insercion and Prime pour l'Employ respectively. Canada, Australia, and the
Scandinavian countries have similar income assistance and wage subsidy programs.
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moral hazard. Notice that this policy advice does not come purely from equity considerations,5 nor is

it induced by the presence of `institutional' labor market imperfections such as the minimum wage. In

our model, �rms pay the workers according to their productivity, and the optimality of a wage subsidy

crucially arises from e�ciency (and incentive) considerations. When a previously unemployed worker

�nds a job, the planner saves the cost associated with the UI bene�ts. Whenever the wage subsidy costs

are considerably lower than the costs of paying the UI transfers, the planner �nds it pro�table to induce

the agent to search actively for a job, which will then be subsidized.

In their seminal work on UI, Shavell and Weiss (1979) establish that, because of moral hazard,

bene�ts must decrease throughout the unemployment spell and approach zero in the limit. Hopenhayn

and Nicolini (1997a) extend the analysis of Shavell and Weiss by introducing the possibility of contingent

wage taxes after re-employment, and con�rm the forever decreasing bene�ts result. The analysis of

Hopenhayn and Nicolini also suggests that the tax on the wage the agent receives after re-employment

should typically increase with the length of the previous unemployment spell. Our analysis shows that

both these features may disappear once the stationarity assumption is relaxed.

As a by-product of our analysis, we develop a systematic approach suitable for studying the properties

of the value function associated with a wide range of dynamic moral hazard problems, and other models

with similar characteristics.

The literature on optimal UI is relatively new, yet quite extended. The summaries by Karni (1999)

and Fredriksson and Holmlund (2003) report most of the relevant literature.6 Virtually all these papers

consider stationary models. Usami (1983) proposes a �nite-horizon model with moral hazard, where the

probability of re-employment conditional on search depends on the previous employment history. Usami

con�rms the aforementioned decreasing bene�ts result and �nds that the worker compensation should

be nondecreasing during the employment period. Although our model permits employment history

dependence, most of our �ndings are induced by skill depreciation during unemployment. Moreover,

Usami studies the problem choosing an `inconvenient' state variable which prevents a complete analysis.

Our recursive formulation generates a manageable value function, which allows us to characterize in
5Diamond (1980) and more recently Saez (2002) use static models of adverse selection with workers of di�erent produc-

tivity and derive conditions for the optimality of income subsidies to low-skilled employed individuals. Di�erently from us,
in this framework the sign of the tax (i.e., whether there is a positive wage tax or a subsidy) is solely determined by the
Pareto weight attached to low-skilled workers. Incentive e�ects only determine the magnitude of the subsidy/tax.

6Most of the remaining papers address questions and/or use approaches that cannot be directly related to our own.

4



detail the optimal scheme, both qualitatively and quantitatively.

The paper is organized as follows. The next section presents the general formulation of the model.

In Section 2.1, we then summarize the main characteristics of the optimal scheme under stationarity. In

Section 2.2, we introduce human capital depreciation in a partially parameterized speci�cation of the

model, and provide su�cient conditions for the optimality of assistance programs. In Section 3, we brie�y

describe our approach to solving the general problem and provide the key qualitative characteristics of

the optimal contract. In Section 4, we calibrate the model with both the US and Spanish economies,

and simulate the e�cient schemes for these cases. Section 5 concludes.

2 Model

Consider a risk-neutral planner who must design an optimal unemployment compensation scheme for

a risk-averse worker. Both the planner and the worker discount the future at a rate β−1 − 1, with

β ∈ (0, 1). The worker has time-invariant preferences (over �ows) of the following separable form:

u(c)− v(a)

where c is consumption and a is the search e�ort. We assume u (·) to be strictly increasing, strictly

concave and continuously di�erentiable, with bounded inverse function u−1.7 In any period, the worker

can be either employed (e) or unemployed (u). If the worker is employed, he produces the quantity S(h)

(his gross wage) which is assumed to be a continuous, increasing and bounded function of the worker's

human capital endowment, h. Moreover, we assume that h follows the following stochastic law of motion:

h′ = mz(h), z = u, e; with mu(h) ≤ h ≤ me(h); and mz(·) continuous, (1)

where h′ is the next-period human capital level and z is the worker's employment state. The idea is

that during unemployment (z = u) h depreciates, while during employment there can be human capital

accumulation due, for example, to on-the-job training.

While unemployed, the worker can either search (a = 1) or not search (a = 0) for a new job, i.e.,

a ∈ A = {0, 1}. The search activity is costly: v(1) = v > v(0) = 0, and a a�ects the transition probability

between employment states according to a hazard rate function π(a, h), with π(0, h) := π̂(h) ≥ 0 and

1 > π(1, h) := π(h) > π̂(h).
7This latter assumption is merely a technical one. It allows us to simplify considerably the proof of Proposition 7.
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The situation where the planner asks the agent to stop searching actively for a job can be interpreted

as that of `social assistance' (or `early retirement'). The analysis that follows will be considerably

simpli�ed by the assumption that the assistance state is irreversible. In order to have a simple tractable

recursive formulation, we also introduce an aggregate variable denoted `human capital', h, which a�ects

both the worker's productivity and his re-employment probabilities. In a more general setup, h can be

multidimensional, capturing - for example - di�erent degrees of human capital speci�city. In fact, the

variable h should be considered more broadly than mere skill or ability. Since we do not study remedies

for skill depreciation (such as training programs), our analysis will not be a�ected by the speci�c nature

of h.

The timing of the model during unemployment is as follows. At the beginning of period t, the worker

receives the unemployment bene�t bt and is required to supply the costly job-search e�ort at. If at the

beginning of the following period the worker is employed, he receives a net wage wt+1 = S(ht+1)− τt+1,

where τt+1 represents the wage tax (or subsidy if negative); otherwise, the worker receives the UI bene�t

transfer bt+1; and so on.

The crucial assumption of the model that we keep throughout the paper is that the planner cannot

observe the worker's search e�ort, a. Thus, during unemployment there is a moral hazard problem. This

means that unemployment bene�ts are not paid only as insurance, but must also play the role of giving

incentives for search. We assume there are no informational problems related to h.8

Following the recursive contracts literature, we characterize the optimal scheme by using the following

formulation. Let U and h be the discounted utility promised to the agent in period t and his/her human

capital endowment respectively. Given (U, h), the planner's value function in the unemployment state

V is de�ned as follows:

V (U, h) = max
a∈{0,1}

{Va(U, h)} . (2)

The function V0 describes the planner's value in the case where the agent is not required to search
8Since the laws mz are known, and the realized employment states z are perfectly observable, this is equivalent to

assuming that the planner knows the initial endowment, h0, i.e., the pre-displacement wage.
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(a = 0). In this case, the planner's value is de�ned as

V0(U, h) = sup
b,Uu,Ue

−b + β
[
π̂ (h) W (U e, h′) + (1− π̂ (h))V0(Uu, h′)

]
(3)

s.t. :

U = u(b) + β [π̂ (h) U e + (1− π̂ (h))Uu] (4)

h′ = mu(h).

Equation (4) is commonly called the `promise-keeping' constraint and requires the contract to deliver

the promised level of discounted utility to the worker. It also plays the role of law of motion for the state

variable U . It is easy to see that - because of its absorbing nature - during assistance we have Uu = U,

and the planner fully insures the worker by paying a constant transfer forever.

The planner's value associated with the case where the worker is required to actively search for a job

is de�ned by V1, and it solves

V1(U, h) = sup
b,Uu,Ue

−b + β
[
π(h)W (U e, h′) + (1− π(h))V (Uu, h′)

]
(5)

s.t. :

U = u (b)− v + β [(1− π(h))Uu + π(h)U e] , (6)

U ≥ u (b) + βUu, and (7)

h′ = mu(h).

In addition to the promise-keeping constraint (6), the problem de�ning V1 also includes the incentive

compatibility constraint (7) which ensures the agent is willing to deliver the amount of e�ort called for

in the contract.

The function W (U, h) denotes the planner's net return in the employment state, when the worker is

entitled to receive a level U of expected discounted utility and is endowed with human capital stock h.

During this state, the planner satis�es the promise-keeping restriction

U = u (w)− l + βU e (8)

by transferring a net wage w, after imposing the tax (or paying the subsidy) τ = S(h)−w on the gross

wage S(h). The parameter l ≥ 0 denotes the e�ort cost of working. In the model, jobs are permanent,

and we assume that there are no informational asymmetries during employment. The assumption that
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employment is an absorbing state is made, as in Hopenhayn and Nicolini (1997a-b), to focus the analysis

of the optimal dynamic contract to the unemployment experience. This assumption has no bearing on

the qualitative characterization of the optimal program during unemployment.

While employed, the worker is hence fully insured, and from (8) one can easily verify that the

planner's value is

W (U, h) =
Se(h)− w(U)

1− β
=

Se(h)− u−1((1− β)U + l)
1− β

, (9)

where Se(h) is the average discounted gross wage and can be computed recursively as follows:

Se(h) = (1− β)S(h) + βSe (me(h)) .

The properties of u and S guarantee that W is bounded, strictly decreasing, strictly concave and

continuously di�erentiable in U .

From (3), it is easy to see that the function V0 takes a separable form similar to that of W , and it

satis�es all properties we just mentioned for W .

2.1 The Stationary Benchmark

In order to understand the role played by human capital depreciation and duration dependence in shaping

the optimal unemployment compensation scheme, it is useful to �rst analyze the stationary version of

the model. Let's assume that the re-employment probabilities are constant [π (h) , π̂ (h)] := [π, π̂] with

π > π̂ ≥ 0 and that the gross wage S (h) := S > 0 does not depend on the level of human capital h.

Similarly to the general case, the value of unemployment V is de�ned as

V (U) = max {V1(U), V0 (U)} ,

where V1, V0 are the stationary analogs to (3)-(4) and (5)-(7), and W (U) = S − u−1((1−β)U+l)
1−β .

Proposition 1 (The Stationary Case) Assume that at U0 in period t = 0 the planner decides to

implement a∗0 = 1. Then (i) the agent will never be required to stop searching actively for new jobs, i.e.,

a∗t = 1 for all t; (ii) Ut, bt and wt are all strictly decreasing during unemployment; and (iii) for any level

of utility U > u(0)
1−β , there exists a �nite unemployment spell duration T such that UT < U .

All proofs are reported in the Appendix.
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Since u is concave, when U0 is very large even compensating the agent for the search e�ort cost

becomes too expensive, and the planner implements a∗0 = 0. For more moderate levels of initial lifetime

utility, the worker is required to search intensively for a new job (a∗0 = 1). In this case, because of dynamic

incentive provision, both the worker's UI payments and lifetime utility decrease during unemployment.

Since lower lifetime utilities imply lower incentive and e�ort compensation costs, in a nontrivial stationary

problem there is no role for social assistance: The worker is always required to search for a job, and the

UI transfers never stop decreasing. Result (i), the monotonicity of search e�ort during unemployment,

has never been emphasized in the literature before. Result (ii) is more standard and constitutes a key

�nding in the analysis of Hopenhayn and Nicolini (1997a): Because of consumption smoothing, the

wage tax τt = S − wt upon re-employment increases with unemployment duration. This way, worker

consumption is uniformly reduced during unemployment, in both employment and unemployment states.

The fact that, in order to spread out incentive costs, the planner reduces the agent's expected

discounted utility Ut through time is a property always true in stationary models, and sometimes has

unpleasant consequences. Result (iii) shows that the optimal contract implied by the repeated moral

hazard model creates a weaker form of the `immiseration result': When u is unbounded below, e�ciency

requires that the worker's expected discounted utility falls, with positive probability, below any arbitrary

negative level. The in�nite punishments result is questionable in some circumstances. For example, it

may be impossible for the planner to enforce, ex-post, such punitive plans because these would imply

excessive social con�ict costs. Similarly, excessive punishments may induce the worker to opt out of the

insurance scheme (e.g., see Pavoni, 2007). Below, we show that when human capital depreciates rapidly

enough, misery is avoided since the optimal scheme generates an endogenous lower bound on payments,

and hence on lifetime utilities.

2.2 Introducing Human Capital Depreciation: E�cient Policy of Assistance

Human capital depreciation clearly has the e�ect of reducing the planner's returns from the search

activity for any given level of worker's lifetime utility. On the other hand, the analysis of the stationary

model shows that because of dynamic incentive provision, the worker's expected discounted utility is

decreasing during unemployment, and low lifetime utilities imply lower incentive and e�ort compensation

costs. Obviously, which one of these two forces - human capital depreciation or decrease in lifetime utility

- dominates in a nonstationary model is in part a quantitative issue.
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We now partially parameterize the model and show a su�cient condition on the speed of human

capital depreciation that guarantees the presence of an endogenous lower bound on worker's lifetime

utility due to the emergence of an assistance state in the optimal program.

Consider the following relationship between gross wage and human capital endowment: S(h) =

ωh > 0.9 Clearly, the stationary case can now be replicated by assuming that h remains constant (i.e.,

mu(h) = h = me(h)). In this case, when the utility of the agent takes the logarithmic form (i.e.,

u(c) = ln(c)) and π̂ = 0,10 it can be shown that the following solutions to the functional equations

(2)-(9) describe the `true' planner value functions:11

V1(U) =
ωhΛ
1− β

− Γ exp {(1− β)U}
1− β

if U ≤ M, (11)

V0(U) = −exp {(1− β)U}
1− β

if U ≥ M ; and (12)

W (U) =
ωh

1− β
− exp {l} exp {(1− β)U}

1− β
for all U. (13)

It can be veri�ed directly by computing the optimality conditions that during unemployment (when

a = 1) the worker's lifetime utility decreases according to12

Uu(U) = U − ln Γ
β

, with Γ > 1. (14)

Notice that consistently with Proposition 1 (iii), since ln(0) = −∞ lifetime utility goes to minus in�nity

as t →∞ in the stationary version of the model.

Human Capital Depreciation. Now assume that, during unemployment, h depreciates according

to

ht+1 = mu(ht) = (1− δ) ht, with δ ∈ (0, 1] .
9In a world where the aggregate production technology uses skill units h, which are perfect substitutes, ω is the skill's

marginal product.
10A similar closed form can also be obtained for the case where π̂ > 0.

11The values for the constants are as follows: M =
ln(Λωh

Γ−1 )
1−β

, Λ = βπ
1−(1−π)β

, and Γ solves

ln
[
Γ

1
β − (1− π)Γ

]
= ln π +

1− β

β

v

π
+ l. (10)

The reader can verify directly that the proposed functions are a solution of the functional equations. The proof that they
actually represent the `true' values for the planner is available upon request.

12We also have Ue(U) = U +
v
π
−ln Γ

β
and u (b(U)) = (1− β)U + lnΓ. Moreover, the employment state policy consists of

a constant utility �ow of u (w(U)) = (1− β)U + l.
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We retain the assumptions that, during employment, ht remains constant (i.e., me(h) = h) and that

π > π̂ = 0 invariant in h.

Let a∗t and U∗
t be the optimal search e�ort and continuation utilities in period t. It is easy to see that

if a∗t = 1 for all t (as would be the case for the stationary model), the planner would otherwise insure

the agent against gross wage depreciation and the ratio between V1(U∗
t , ht) and V0(U∗

t ) would satisfy

V1(U∗
t , ht)

V0(U∗
t )

=
ωh0Λ

(
1−δ
1−γ

)t
− Γ exp {(1− β)U0}

− exp {(1− β)U0} (15)

where we used (14) and 1 − γ = Γ−
1−β

β . Whenever (1− γ) > (1− δ) , for t → ∞ the right-hand side

of (15) tends to −Γ < −1. Hence, there must exist a T < ∞ such that V0(U∗
T ) > V1(U∗

T , hT ), and the

conjecture that a∗t = 1 for all t is false. We have just shown the following result.13

Proposition 2 (Assistance) Consider the log-utility speci�cation of the model, with π(h) = π, S(h) =

ωh, me(h) = h and mu(h) = (1− δ) h. If (1− δ) < Γ−
1−β

β then the optimal scheme contemplates an

assistance program.

The discrete e�ort choice is important for the previous result. This assumption is coherent with a

long tradition in labor economics and macroeconomics which stresses the importance of �xed costs and

the extensive margin in participation decisions (e.g., Cogan, 1981; Eckstein and Wolpin, 1989).

It turns out that the value of Γ depends very little on π, while it is quite sensitive to the parameters

describing the e�ort costs. Assuming v = l, i.e., that work and search e�ort costs are of comparable

magnitude, one can numerically compute the rate of human capital depreciation δ required to satisfy

the condition of Proposition 2 for the least favorable value of π, within an empirically relevant range.14

Depending on the e�ort cost,15 we �nd that depreciation rates between 3% and 5% su�ce to generate

the presence of an assistance state.

In Section 4, we will discuss more extensively the empirical evidence for the Spanish and US labor

markets. For comparison, note that virtually all empirical �ndings for the US report an annual rate of
13It is not di�cult to extend the proposition to the case where π̂ > 0. Moreover, a similar su�cient condition can be

derived in the case of time-changing hazard {π(ht)} . Details are available upon request.
14In our computations, we interpret one period as one month and set β = .996 accordingly. We then consider values for

the monthly hazard rate, π, between .4 and .03, corresponding to average unemployment durations of between 2.5 and 33

months.
15We consider e�ort cost levels between .5 and 1, which are well within the range of empirical relevance, as we will

discuss in the quantitative section.
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wage depreciation above 10%. The evidence on wage depreciation for Spain is rare and sometimes shaky.

The lowest estimate for this country is as low as 3%, implying a violation of the su�cient condition for

some values of the parameters. We postpone to Section 4 a more accurate quantitative analysis of the

Spanish case.

3 Characterization of the Optimal Contract

We now study our model in its general speci�cation. It is well known that hidden-action moral hazard

models do not typically describe concave problems (Grossman and Hart, 1983; Phelan and Townsend,

1991).16 There are three main reasons why a nonconcave problem may prove to be problematic to solve,

especially in a dynamic environment. First of all, nonconcavity might also cause issues of nondi�erentia-

bility. Second, even assuming di�erentiability, �rst-order conditions may no longer be su�cient for local

or global maxima. Finally, and more importantly, the usual envelope theorems cannot be applied,17 and

this may reduce considerably the usefulness of our recursive formulation.

In this paper, we develop a systematic approach that allows for these complications. First, we

somewhat con�rm the above-mentioned di�culties, since we �nd that `in most cases' the associated

value function is neither concave nor di�erentiable. However, we derive a positive result as well: The

optimal contract can still be characterized to a great extent by using the familiar �rst-order conditions.

The idea of our approach is as follows.18 The complication involved by the recursive study of the

dynamic moral hazard problem comes from the incentive constraint. This prevents a direct approach

to the study of the concavity and di�erentiability of the value function V. We thus �rst reformulate

the problem to make it suitable for such analysis. We de�ne a collection of concave and continuously

di�erentiable functions (the conditional functions), of which the value function V is the upper envelope.

We then apply the extended envelope theorem of Daskin (1967) to this problem to show that V is almost

everywhere di�erentiable.

Our successive step is to study the `switching points,' that is, the utility levels at which the upper

envelope function V switches between two di�erent conditional functions of the above-mentioned class.
16Clearly, these complications arise both in the case where e�ort is discrete and when there is a continuum of e�ort

levels (see also Pavoni, 2000).
17By envelope theorems we mean theorems that describe conditions under which the value function of a parameterized

optimization problem is a di�erentiable function of the parameter.
18The formal derivation of the results is in the Appendix.
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Those points are indeed the only problematic ones. Given the characteristics of our class of functions,

however, each switching point possesses a very nice characteristic: Either the V function is in fact

di�erentiable at this point or the point is never reached in equilibrium. The fact that the points of

nondi�erentiability cannot be reached in equilibrium allows us to disregard them while characterizing

the optimal contract.

The use of the Daskin envelope result is not new to the economic literature.19 The contribution here

is to show that it can be applied to study the properties of the dynamic moral hazard problem, and

how. In particular, we demonstrate that some of the key characteristics of the value function generate

important new advantages in dynamic recursive models, where the value function enters in the objective

of the problem. The most useful one is perhaps the possibility of using the standard �rst-order conditions

to characterize the optimal contract.

Sequence of E�orts Formulation. Consider the space A of all the sequences of e�orts a = {an}∞n=0 ,

an ∈ A, implementable during unemployment. For any human capital endowment h ∈ H, e�ort sequence

a ∈ A and utility level U ∈ U ⊂ IR, we can de�ne

V (a, U, h) = sup
b,Ue,Uu

−b + β
[
π(a, h)W (U e, h′) + (1− π(a, h))V (1a, Uu, h′)

]
(16)

s.t. (1), and

if a = 1, (6) and (7); if a = 0, U = u(b) + βUu.

The functional V (a, U, h) represents the planner's optimal payo�s conditional on a given sequence of

e�orts, when the worker is unemployed. The symbol 1a = {an}∞n=1 stands for the `one-step-ahead'

continuation of a.

It is easy to show that the value function of the original (fully-sequential) problem satis�es (16).20 In

Proposition 7 and 8 in the Appendix, we show that the converse is also true, that the (true) conditional

function V is continuous, and that for all a and h the functions V (a, ·, h) are concave and di�erentiable

in U. The problem (16) of implementing optimally (minimizing costs) a given sequence of e�orts a is

indeed concave, with linear constraints. The associated value function V (a, ·, h) is thus concave. Given
19It was �rst discovered by Kim (1993), Sah and Zhao (1998) and Milgrom (1999); and it has recently been extended

by Milgrom and Segal (2002). They all consider static problems, however.
20Notice that we do not have measurability problems because there are only �nitely many possible outcomes.
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concavity, di�erentiability can be shown by applying the Benveniste and Scheinkman (1979) Lemma in

the standard way.

The Shape of the Value Function. In the Appendix, we show that the value function V (U, h) can

be seen as the upper envelope of the collection of the conditional functions V (a, U, h). The approach

we propose exploits this interpretation for V (U, h). In order to eliminate the possibility of complicated

behaviors at the in�nite due to the nonstationarity of the problem, we �rst make the following assump-

tion:

Assumption A1 For any endowment h, there is a time-horizon T (h) < ∞ such that ∀ t ≥
T (h) both S

(
mt

u (h)
)

= S and π
(
mt

u (h)
)

= π, where mt
u is the tth iteration of mu.

Assumption A1 can be seen as a restriction on the law m, or on the functions S(·) and π(·), or on both.

It should be noted that the above conditions allow T (h) to be arbitrarily large (provided that it remains

�nite).

Proposition 3 Consider a pair (U, h), with U interior,21 and assume that A1 is satis�ed. Then V (U, h)

possesses both right and left derivatives in the �rst argument, with V+(U, h) ≥ V−(U, h). Moreover, V (·, h)

is almost everywhere di�erentiable for all h, and where it is di�erentiable we have

V ′(U, h) = V ′(a, U, h) for all a ∈ A∗(U, h), (17)

where A∗(U, h) is the nonempty set of optimal e�ort sequences when the initial conditions are (U, h)

(i.e., the set of plans solving the maximization (28) de�ned in Proposition 9).

Proposition 3 is based on a version of the Daskin's envelope theorem for the case where the number

of conditional functions is �nite. This version of the theorem requires V ′(a, U, h) to exist and to be

continuous in U . This is shown in the appendix in Proposition 8. In the Appendix, we also show that

under Assumption A1 our model can be reduced to the case where the relevant set of e�ort sequences

is �nite.

Remark 4 The crucial step in the proof of the last proposition uses the fact that the set of relevant

action plans A is �nite. It is easy to show - using exactly the same lines of proof - that the results of
21See Proposition 8 for details.
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Propositions 3-5 remain valid for any �nite horizon version of the dynamic moral hazard model, as long

as there are �nitely many outcomes and the set of feasible actions A is �nite.

Using the First-Order Conditions to Characterize the Optimal Contract. Clearly, the char-

acteristic V ′
+(U, h) ≥ V ′−(U, h) we derived above is not a property of concave functions. In fact, when

the directional derivatives di�er, V (U, h) cannot be concave in any interval containing U . However,

this same characteristic implies that the `kink' has a particular nature: It is an `inward' one. This

implies that the optimal choice of the continuation utility Uu will never be at a switching point. The

problem (5) is hence di�erentiable at all relevant points, and the usual �rst-order conditions are still a

necessary characteristic of an e�cient contract. This is our main result and is presented in the following

proposition:

Proposition 5 Assume A1 and interiority. The optimal contract necessarily satis�es (with the asterisks

denoting optimality)

−V ′(U, h) =
1

u′(b∗)
(18)

−W ′ (U e∗, h′
)

=
1

u′(b∗)
+ µ

π(a∗, h)− π(â, h)
π(a∗, h)

µ ≥ 0 (19)

−V ′ (Uu∗, h′
)

=
1

u′(b∗)
− µ

π(a∗, h)− π(â, h)
1− π(a∗, h)

, (20)

with µ = 0 if either a∗ = 0 or (7) is satis�ed with strict inequality. Moreover, (18) can possibly fail only

in the �rst period. In addition, we have

V ′(U, h) = π(a∗, h)W ′ (U e∗, h′
)

+ (1− π(a∗, h))V ′ (Uu∗, h′
)
.

The implications for the optimal scheme are not yet transparent. By rearranging the �rst-order

conditions and using the envelope theorem, we get the following:

Corollary 6 Under the conditions of the previous proposition, we have the following:

1
u′(b∗t )

= π(a∗t , ht)
1

u′(w∗t+1)
+ (1− π(a∗t , ht))

1
u′(b∗t+1)

. (21)

Moreover, (i) w∗t+1 ≥ b∗t ≥ b∗t+1; and (ii) either w∗t+1 > b∗t > b∗t+1 or w∗t+1 = b∗t = b∗t+1.

15



Equation (21) is the same as that in Rogerson (1985), who uses a variational approach. Notice

importantly that the �rst-order conditions (18)-(20) provide a stronger characterization of the optimal

contract than (21). Incidentally, this becomes particularly evident in dynamic moral hazard models

with more than two outcomes. In this case, equation (21) alone does not allow much to be said about

the monotonicity of the payments. In contrast, the obvious generalization of our �rst-order conditions

together with the envelope theorem (which one can easily show to be both true under very general

conditions) will, for example, allow us to link punishments and rewards to the likelihood ratios, formally

establishing in a multiperiod environment one of the key properties of the optimal contract in the static

moral hazard model.22

Result (i) in Corollary 6 con�rms, in a general, possibly nonstationary framework, one key �nding

of Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997a) for the stationary model: The optimal

unemployment insurance scheme requires the UI bene�ts to decrease with the duration of unemployment.

However, notice that the wage tax behavior remains indeterminate. In Section 4, we take advantage

of the recursive formulation to perform computer simulations of the optimal contract for the US and

Spanish economies. We anticipate that in our numerical exercises we will �nd that an optimal scheme

typically generates a plan of wage taxes τ∗t = St − w∗t that decrease with the length of the previous

unemployment spell. This of course contrasts the result of the stationary model of Section 2.1, where

the optimal re-employment wage tax, τ∗t , increases during unemployment.

The second part of Corollary 6 has another interesting implication for policy. In many studies, un-

employment insurance programs are modelled in a very simple way. Only two parameters are used to

de�ne the scheme. There, it is assumed to be a time-invariant unemployment bene�t payment b, which

- usually because of job-search incentives - is strictly lower than a time-invariant wage payment w. We
22Consider, for example, an extended version of our model with a more general wage distribution. Assume there are

N potential jobs above the reservation value. If we denote by πi (ht) the probability of �nding job i = 0, 1, 2, ..., N (with
i = 0 meaning no job is found) when a = a∗t = 1 and by π̂i (ht) the same conditional probability for a = 0, we obtain

1

u′
(
ci

t+1

) =
1

u′ (bt)
+ µ

πi (ht)− π̂i (ht)

πi (ht)
,

where ci
t+1 represents the worker's period t + 1 consumption, conditional on the ith realization. In the case of the worker

�nding a job (i.e., i > 0), his consumption corresponds to the net wage wi
t+1 in job i, while c0

t+1 = bt+1 denotes the
consumption in the case of no job being found. The analogy to the classical `modi�ed Borch condition' for optimal risk
sharing in the (static) moral hazard model is transparent.
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can then ask the following question. Could this simple scheme be optimal, for some combination of wage

depreciation and duration dependence? Part (ii) gives a clear negative answer to this question. The

intuition is simple. If we had wt+1 > bt+1 but bt+1 = bt, the planner could reduce wt+1 and bt+1 by

(di�erent) small amounts so as to keep the dispersion in utilities in the two states, u (wt+1)− u (bt+1) ,

constant. This uniform reduction in next-period utilities would continue to satisfy the incentive compat-

ibility constraint. In addition, the expected discounted utility of the agent could be kept constant by an

increase in bt of magnitude 1
β times the reduction in bt+1. The planner would gain by this perturbation,

however, because the concavity of u implies that the reduction in wt+1 would be larger than β times the

increase in bt.

Intuitively, the reduction of wt+1 (compensated by an increase in bt) is more attractive to the planner

the higher the re-employment probability π(a∗t , ht) is. This simple argument can be used to make our

results ready to use for policy purposes. If we rearrange condition (21) and choose logarithmic utility

(u = ln), we obtain the following relationship between the optimal payments:

b∗t − b∗t+1 = π(a∗t , ht)
[
w∗t+1 − b∗t+1

]
. (22)

According to (22), for small π(a∗t , ht), optimality suggests almost �at UI schemes with a relatively large

di�erence between net wage and unemployment insurance bene�ts; and vice versa for high hazard rates.

This gives to (22) a quite appealing economic interpretation. According to this condition, workers facing

relatively low hazard rates should be motivated to search for new jobs mainly through rewards: If

they �nd a new job, they should receive a high net wage w∗t+1. In contrast, those workers facing high

probabilities of re-employment are mainly given search incentives by the use of punishments: If they fail

to �nd a job they should face considerable drop in the unemployment bene�t payment, b∗t+1.23

Because of its graphical representation, shown in Figure 1, we may name the above equation as

the triangle rule. Figure 1 reports an example of a possible existing UI scheme, where the lowest-level

dotted line represents UI bene�t payments, bt, while the solid line represents a possible path for the net

wage wt, as a function of unemployment duration t. The triangle rule can be used as a very simple,

`back-of-the-envelope' test of optimality for an unemployment insurance scheme as follows: For each

length t of unemployment, using today and next period bene�t payment levels b = bt and b′ = bt+1

and next period net wage w′ = wt+1, one can easily draw a triangle such as that in Figure 1, where
23Notice that this simple argument about relative di�erences in consumption dispersion does not require knowledge of

the likelihood ratio, which is an object quite di�cult to observe since it includes the `o�-the-equilibrium' value π̂ (ht).
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Figure 1: An Example of the Triangle Rule. In the �gure, the lowest-level dotted line represents UI bene�t

payments, bt, while the solid line represents the net wage, wt, as a function of unemployment duration. Given a UI scheme, by using

the level of UI bene�t payments in two successive periods (say, t and t +1, denoted in the �gure as b = bt and b′ = bt+1 respectively)

and period t + 1 net wage w′ = wt+1, it is always possible to draw a triangle such as that in the �gure. Given an estimate of the

hazard rate πt associated to unemployment duration t, one can check whether the two parts that form the segment joining wt+1 to

bt+1 have the proportions required by equation (22). Namely, if the UI scheme is e�ciently designed the segments A joining bt to

wt+1 and C joining bt to bt+1 should have lengths (1− πt)(wt+1 − bt+1) and πt(wt+1 − bt+1) respectively.
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the segment jointing wt+1 to bt+1 has been divided in two parts by the perpendicular height (the short

dotted horizontal line). The test also needs a reliable point estimate of the (equilibrium) hazard rate

πt associated with unemployment duration of length t. Then, by using πt, one veri�es whether the two

parts that form the segment have the proportions required by equation (22). Namely, the segments A

and C must have lengths (1 − πt)(wt+1 − bt+1) and πt(wt+1 − bt+1) respectively. When this is not the

case, the trade-o� between insurance and incentives is not exploited optimally, and there is room for a

budget-saving reform.

Alternatively, one could consider condition (22) as a valuable tool for deriving an optimal unemploy-

ment insurance scheme. In that case, however, the policymaker would need full knowledge of the hazard

rate functions, π(·, ·). A further quantitative assessment concerns the degree of approximation - towards

the fully optimal scheme - that use of the triangle rule involves for utility functions di�erent from the

logarithmic one. This analysis is left for future research.24

4 Quantitative Analysis

We now perform a couple of quantitative exercises. First, we calibrate our model with the Spanish

economy and compute the optimal program. In order to have a more standard reference point for our

quantitative results, we also perform a simpler calibration exercise based on the US economy.

We �rst of all aim to study the emergence of policies of social assistance and wage subsidies, for a

coherently calibrated, empirically relevant set of parameters. Second, we attempt to characterize the

quantitative aspects of such programs. In particular, we will measure the percentage of the wage subsidy

and study how this number changes with the rate of human capital depreciation and the search e�ort

cost.

Our numerical methodology is based on value function iteration. We approximate the value function

with Chebyshev polynomials.25 Value function iteration involves a maximization step. Although �rst-
24The log-utility case seems, however, to be a good approximation for an average level of relative risk aversion. For

example, Attanasio andWeber (1993) use UK cohort data to estimate the intertemporal elasticity of substitution. Assuming
CRRA preferences, their results imply a constant risk aversion parameter between 1.3 and 1.5 (where 1 corresponds to the
log case). This is also consistent with several other previous studies.

25Chebyshev polynomials have several mathematical and practical advantages as discussed in Judd (1998). In order
to capture the nonsmoothness of the value function, we considered a relatively high order of approximation (and several
zeros). Given the simplicity of the model, the computational burden remained well within reasonable values (even for
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order conditions were successfully used to characterize qualitatively the contract, given the nonconcavity

of the problem, we use a global maximization algorithm in order to determine the optimal choices at

each value function iteration.

4.1 The Spanish Case: Calibration

Preferences. We assume log-utility preferences over consumption (i.e., u(c) = ln c) and we set the

search cost equal to the cost of labor (i.e., v = l). Our calibration of the search cost is based on

studies regarding the cost of participating to the labor market. Eckstein and Wolpin (1989) structurally

estimate such a cost for women to be 62% in consumption equivalent terms, which in our formulation

corresponds to v = .97. Keane and Wolpin (1997) estimate the same parameter for men to be 50% in

consumption equivalent terms, which corresponds to v = .69.26,27 Since these estimates are for the US

economy, we implicitly assume stationarity of preferences across the two countries. We use a benchmark

level of v = l = .83, which corresponds to the arithmetic average of the two values. The unit of time

is set to one month. We hence pick a value for the discount factor of β = .996, in order to match an

annual interest rate of 5%.

Wage and Wage Depreciation. Similarly to the analysis of Section 2.2, we consider a very simple

linear relationship between human capital endowment and gross wage: S(ht) = ωht, and assume a

geometric depreciation rule mu for human capital: ht+1 = (1 − δ)ht, where the pre-displacement value

is normalized to S(h0) = 100. Notice that in our speci�cation, human capital and wage depreciation

rates coincide; hence we can �x ω = 1 without loss of generality. In order to calibrate the depreciation

rate parameter δ, we follow Alba-Ramirez and Freeman (1990), one of the few studies that attempt such

measurement for Spain. Their analysis is based on the ECVT labor force activity data-set (the Encuesta

de Condiciones de Vida y Trabajo) for the period 1981-85. They �nd that a year of joblessness reduces

Matlab).
26The mapping between these estimates and our value for v is done according to the formula ln ((1− x) c) = ln c− v.
27Eckstein and Wolpin (1989): see Table II for the sample means, Table IV for the estimated coe�cients and equation

(6) for the speci�cation of the utility function. Keane and Wolpin (1997): see Tables 8 and 9 for estimated participation
costs and Table 4 for sample means. Using a static model of labor supply, Cogan (1981) estimates a value for the
participation cost as low as 41% in consumption equivalent terms. Static models, however, are likely to generate estimates
for the participation cost that are biased downwards, since they ignore the cost from nonparticipation due to the forgone
accumulation of experience.
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workers' earnings by about 3%. It is very likely that 3% represents a lower bound on the true wage

depreciation rate.28 Given that our �rst target is to verify quantitatively the emergence of the assistance

state and wage subsidies, we use such a precautionary rate for the benchmark case, and then consider

higher rates in the sensitivity exercise. We furthermore assume that wage depreciation only lasts for

three years: After 36 months, the gross wage remains constant. For simplicity, we assume that when

the worker is employed, his human capital endowment remains constant (i.e., me (h) := h).

Hazard Rate. Our calibration of the hazard rate paths {π(a, ht)}T
t=0 for a ∈ {0, 1} is based on

Bover, Arellano and Bentolila (2002) (BAB). Since the search e�ort level a is not reported in the study,

we performed the following simple `identi�cation' exercise. BAB use data from the Spanish Labor

Force Survey for the period 1987-94 to estimate the Spanish hazard rates both for workers receiving

unemployment insurance bene�ts and for those who do not receive any UI bene�t transfer.29 As expected,

at all levels of unemployment duration, the former hazard rates (those relating to workers receiving UI

bene�ts) are always lower than the latter ones. Moreover, the di�erence between the two functions

decreases considerably with unemployment duration, and approaches zero after one year (see Figure 5

in BAB). Any reasonable structural model would typically imply that workers not receiving bene�ts

supply a higher e�ort level than workers receiving bene�ts. We need to assume that this is the case

at any level of unemployment duration. These considerations induce us to interpret, in our two-e�ort

framework, the decrease in the di�erence between the hazard rates of the two groups of workers as a

decrease in the e�ectiveness of the search activity. We hence calibrate the hazard rate paths {π(1, ht)}T
t=0

by using directly - month by month - their estimates, as reported by BAB in Table A6 and Figure 6, for

workers not receiving bene�ts. We restrict attention to the group of unemployed aged 18-45, which is

very homogeneous in the data. Since at the end of the period the hazard function has not yet levelled

out, we linearly extrapolate two further periods, obtaining a �nal value of π(1, hT ) = .03 for T = 17 and

over. Table 1 gives more detail.30
28In particular, the lack of data on pre-displacement wage prevents Alba-Ramirez and Freeman from estimating the

initial wage loss. Rosolia and Saint-Paul (1998), for example, �nd that during unemployment, workers' wages might drop
on average by up to 32%. Those authors, however, �nd that their results are not robust to di�erent speci�cations of the
statistical model.

29Notice that the pool of workers not receiving bene�ts includes those who received bene�ts in some previous period.
30Note that the hazard rate displays a nonmonotonic duration dependence. This phenomenon seems to be best explained

by the so-called `stock-�ow approach' to search and matching (e.g., Coles and Smith, 1998; Gregg and Petrongolo, 2002).
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Table 1: The Hazard Function (from BAB)

Duration (months) π (1, ht) Duration (months) π (1, ht)

1 .1175 10 .1125

2 .16 11 .10

3 .225 12 .075

4 .20 13 .065

5 .15 14 .07

6 .14 15 .045

7 .144 16 .0375

8 .111 17 and over .03

9 .108 - -

For simplicity, we postulate a constant level for the `passive' hazard rate for all unemployment

durations, which is set to π(0, ht) := π̂ = .017. This choice is consistent with both our interpretation of

the data and the approximate stationarity of the estimated lower hazard rate function of the workers

receiving bene�ts. The value has been chosen by looking at the hazard rates of the older generation

(aged 45-60) since this is the group with the lowest search incentives (see BAB, Table 6 and Figure 6).

The Initial Level of Utility, U0. The initial level of a worker's utility, U0, is computed backwards

in accordance with the existing scheme. The current insurance system can be represented by a contract

that has no duration-dependent taxes or transfers when employed and pays a �rst bene�t level b1 of

70 for the �rst six months of unemployment; from the 7th to the 24th month, the bene�t level b2 is set

equal to 60; and from the 25th onwards, we assume the worker receives a subsistence level of bene�ts

b3 equal to 20.31 The corresponding expected discounted utility value U0 for an unemployed worker can
31In Spain, the replacement ratio is equal to 70% during the �rst six months of unemployment and 60% thereafter,

subject to a �oor of 75% of the minimum wage. Bene�t duration is one-third of the last job's tenure, with a maximum
of two years. The assistance system pays, for up to two years, 75% of the minimum wage to (unemployed) workers, with
dependant, whose average family income is precisely below that amount. In 1998, the minimum wage was around 70, 000

pesetas ($280) (Guia Laboral y de Asuntos Sociales, 1998). The amount of the noncontributory assistance level of transfers
varies across di�erent Autonomous Communities between 30, 000 and 45, 000 pesetas ($150-$180), is means-tested and has
no �xed duration (see López, 1996). The Bulletin of Labor Statistics (1999) reports as 300, 000 pesetas ($1, 200) per
month the 1998 average wage in nonagricultural activities. Following the common assumption that workers subject to
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be calculated backwards as follows. According to the existing Spanish UI scheme, when a worker �nds

a job, his lifetime utility is Uwork(h) = ln(S(h))−l
1−β , which represents the utility of working forever and

receiving the gross wage S(h). Moreover, note that from period T = 36 onwards, the worker's problem is

stationary. The unemployment bene�ts, the probability of �nding a job and the gross wage are at their

minimum levels. The value of his expected discounted utility UT at period T can hence be computed as

follows:

UT = max

{
ln(b3)− v + βπUwork(h)

1− β(1− π)
,
ln(b3) + βπ̂Uwork(h)

1− β(1− π̂)

}

where b3 = 20 is the noncontributory assistance level of unemployment bene�ts and π = π(1, hT ) = .03

is the bottom value for the high-e�ort hazard rate. For any 0 ≤ t ≤ T, we can now de�ne the value

UT−t recursively by

UT−t(ht) = max
at∈{0,1}

ln(bt)− v(at) + β
[
π(at, ht)Uwork(ht) + (1− π(at, ht))UT−(t−1)(ht+1)

]
,

where the period t bene�t level bt ∈
{
b1, b2, b3

}
is computed according to the three-step scheme described

above.

4.2 The Spanish Case: Results

The results of our benchmark simulations of the e�cient scheme are reported in Figure 2. Three

lines are displayed in this �gure as a function of unemployment duration t: the UI bene�t payments, bt

(represented by the dotted, lowest-level line); the gross wage, St = ht (represented by the homogeneously

decreasing solid line); and the net wage, wt = St − τt (the dash-dotted line).

The interested reader can �rst of all verify that the scheme obeys the triangle rule.32 Second, observe

that the optimal path for unemployment bene�t payments is initially decreasing and then becomes

completely �at. Note that the incentive constraint can be written as follows:

U e ≥ Uu +
1

β (π(h)− π̂)
. (23)

severe unemployment risk face a wage that is two-thirds of the average national wage, we consider the assistance level of
bene�ts to be 40

200
= .2 (20%) of the pre-displacement wage, S0.

32Using the payment levels of two consecutive periods of unemployment, one can draw a triangle such as that in
Figure 1 and verify that the segments have the `right' proportions. For example, consider the fourth and �fth periods
of unemployment, which relate to π (1, h4) = .20. Consistently with equation (22), the drop in UI payments b4 − b5

(roughly .919− .909 = .01) is one-�fth of the gap between next-period payments in the two states: w5− b5 (approximately
.962− .909 = .053).
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Figure 2: The Spanish Benchmark Case. The �gure represents the simulation results for our benchmark calibration

with v = .83 and an annual wage depreciation rate of 3%. The dotted, lowest-level line represents UI bene�t payments, bt, and the

dash-dotted line represents net wage, wt = S(ht)− τt, as a function of unemployment duration. In the 13th 14th and 15th months,

wt > S(ht), i.e., the optimal program contemplates a wage subsidy upon re-employment.
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When π(h) decreases, incentive costs increase since, in order to widen the di�erence between U e and Uu,

the planner is forced to impose additional uncertainty on the worker's consumption. In addition, the

expected returns from the search activity, π(h)S(h)
1−β , decrease as well. Hence, if human capital depreciates

rapidly enough during unemployment, for long durations the planner does not �nd it pro�table to induce

the agent to search actively for a new job, and the UI payments eventually stop decreasing because the

agent is fully insured. Third, notice that the net wage wt is �rst decreasing, then roughly constant and

then it actually increases with unemployment duration. After 14 months of unemployment, the worker

enters the assistance program, and the net wage displays a remarkable drop since there is no more need

for incentive provision.

The intuition for the behavior of the net wage before the assistance state is as follows. In a multiperiod

setting, the optimal incentive scheme is shaped by the tension between within- and between-period

consumption smoothing. The planner can improve within-period consumption insurance, i.e., reduce

the di�erence between bt and wt, by relegating part of the punishment burden to the future. That is

why the lifetime utility Ut and UI payments bt decrease during unemployment. The emergence of a

lower bound on a worker's lifetime utility shortens the e�ective time-horizon of the problem, forcing the

planner to design a scheme biased toward the static component of the incentives. That is, the planner

is forced to widen the di�erence between UI payments and net wage. Clearly, this e�ect tends to reduce

the steepness of the net wage schedule wt. However, it would also be present in a stationary model with

an exogenous minimum bound on U . And, as is shown in Pavoni (2007), this force alone cannot induce

the net wage schedule to increase with unemployment duration, i.e., it cannot induce a wage subsidy

to long-term unemployed workers when S is constant.33 Recall, however, that from (23) when π(h)

decreases the planner is forced to generate a larger wedge between U e and Uu because of the incentive

constraint. It is this additional e�ect on wt, together with a moderate wage depreciation, that leads to

the wage subsidy result in this case.

When unemployment duration is 12− 15 months, it is optimal to pay a wage subsidy to the worker

upon re-employment. The planner �nds it pro�table to induce the agent to search actively for a subsi-

dized job since the wage subsidy cost is considerably lower than the cost of paying the UI bene�ts. As

described above, human capital depreciation and hazard rate duration dependence are key to generating
33The reason is consumption smoothing. Since Ut decreases with t and wt is (weakly) increasing in Ut, the net wage

cannot increase during the unemployment spell.
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a policy paying a wage subsidy to long-term unemployed workers as part of an optimal UI program. In

fact, we have already mentioned that this policy implication contrasts with that of stationary models à

la Hopenhayn and Nicolini.34 Although this qualitative phenomenon is of some importance per se, in

the benchmark case the wage subsidy is relatively small, as it never goes beyond 2% of the gross wage.

In Figures 3 and 4, we report the results of our sensitivity analysis. Figure 3 is generated by simulating

the optimal scheme for di�erent rates of human capital depreciation. Notice that the consumption

patterns are very similar, despite the relatively large variability in wage depreciation rates. There are

indeed two contrasting e�ects. Human capital depreciation reduces planner returns at higher durations.

At the same time, a high depreciation rate implies a lower initial utility U0 for the worker under the

existing scheme, and this reduces incentive and e�ort compensation costs at all durations. This latter

`wealth e�ect' is responsible for the emergence of the assistance state at long durations when the wage

depreciation rate is actually high. When the depreciation rate is at 7%, for example (gross and net wages

for this case are represented by the two solid lines), the assistance policy is postponed by one period

with respect to the benchmark case of 3%. Moreover, since between durations of 14 and 15 months the

hazard rate drops from .07 to .045 (see Table 1), the incentive constraint induces an important spike in

the optimal net wage schedule for this case, implying a wage subsidy upon re-employment of slightly

higher than 10%.

In Figure 4, we depart from our benchmark by considering two further levels of the search e�ort cost,

v, which correspond to the estimated values for men and women we mentioned above. In this case, the

wealth e�ect is negligible and the assistance state emerges at higher durations for lower search costs.

The result is a nonmonotonic relationship between the level of the wage subsidy and v. For v = .69, for

example, the wage subsidy reaches 5.1% at the 16 months duration.

Comparing the optimal program with the existing Spanish scheme we described in footnote 31,

an important di�erence emerges: The optimal UI payments are much more generous than existing

replacement ratios. This �nding is consistent with most previous �ndings for stationary models and it is

the consequence of the more e�cient use of dynamic incentives. By partially back-loading punishments,

the optimal program is able to reduce the within-period consumption dispersion imposed on the worker

by the existing scheme.

We performed a number of further sensitivity exercises (which are available upon request). For
34For an application of the stationary version of our model to the Spanish economy, see Hopenhayn and Nicolini (1997b).
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Figure 3: Sensitivity Analysis I. The optimal

UI scheme for di�erent human capital depreciation

rates. All other exogenous parameters at their bench-

mark levels.
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Figure 4: Sensitivity Analysis II. In this �gure,

we vary the search e�ort cost between .69 and .97.

Wage depreciation is at the benchmark level of 3%.

example, we studied the e�ect of modifying the `passive' hazard rate, π̂. We �nd that increasing this

parameter shortens the initial part of the program, i.e., the assistance state and wage subsidy emerge

at lower unemployment durations. An increase in π̂ also tends to increase the magnitude of the wage

subsidy. This is very intuitive since from (23) a higher π̂ increases incentive costs. For values of the

parameter not too far from the benchmark case, however, the overall e�ect on the wage subsidy turns

out to be relatively small.

4.3 The US Case

We conclude the quantitative section by performing a simple calibration exercise based on the US

economy.

Calibration. We adopt the same preferences speci�cation as that chosen for Spain: u(c) − v(1) =

ln c− v, with v ranging between .69 and .97. The unit of time is also set at one month, and β = .996.

Several estimates of the depreciation rate parameter δ are available for the US, with an important

degree of dispersion. For example, Keane and Wolpin (1997) use NLSY data and (structurally) estimate

an annual human capital (wage) depreciation rate for white US males of between 9.6% (for blue collars)

and 36.5% (for white collars). Jacobson, LaLonde and Sullivan (1993) use plant closing data and �nd

wage depreciation rates between 10% and 25%. We set our monthly benchmark level at δ = .0144, which
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corresponds to an annual depreciation rate of 16%. We furthermore assume again a depreciation period

of three years.

For simplicity, we assume that the hazard rate does not vary with unemployment duration, i.e.,

π(1, h) = π and π(0, h) = π̂ for all h. Using the results in Meyer (1990), we set the monthly US hazard

rate corresponding to intensive search slightly higher than π = .291, so as to replicate a weekly value of

8.5%.35 To identify the `passive' hazard rate, we discount the average weekly rate by 7% as suggested

by the estimates of Meyer reported in Table VI for the 45-54 age group, obtaining the value π̂ = .039.

In summary, our benchmark choices for the US labor market are

 ω π π̂ δ

1 .291362 .039 .0144




Finally, we compute the initial level of a worker's utility, U0, in a way similar to that of the previous

example. According to Meyer (1990), the average level of UI bene�ts received in the sample is 66% of the

average value of the pre-unemployment wage S(h0) = 100, and lasted - again on average - 8.5 months

(see Meyer, Table I). To have a �nite value for U0 with log utility, we assume that after 9 months of

UI bene�t payments, the worker continues to receive 10% of his gross wage. Such a �gure is roughly

consistent with the presence of basic assistance programs such as Food Stamps.36

Results. The results of our simulations are reported in Table 2, where we summarize our �ndings for

three di�erent levels of the search/work e�ort cost.

Qualitatively, the optimal path for unemployment bene�t payments bt presents the same character-

istics as the Spanish case: It is initially decreasing and then it becomes completely �at. Notice that in

this example both π and π̂ are constant; hence, the spread in lifetime utilities required to implement

the high e�ort level is constant. The planner's expected returns are, however, decreasing, since the

gross wage, S(h), decreases with unemployment duration. The resulting e�ect is similar to that of the

previous case: Eventually, the planner `releases' the agent from the search duty (i.e, the worker enters

the assistance state). Also in this case, the optimal UI payments are more generous than the existing

ones at all durations.
35Looking at Table II and Figure 3, the hazard rate seems pretty stable during the period 1978-83 considered by Meyer

in his study.
36The maximum allotment of Food Stamps in 2005 was $290 per month while, according to the US Bureau of Labor

Statistics, the median male labor earnings in 2005 was $731 ∗ 4 = $2, 924.
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Table 2: The US Case

E�ort cost v = .69 v = .83 v = .97

Months of UI before assistance 35 33 32

Initial replacement ratio (RR) 93.84% 93.78% 93.72%

RR after 1 year of unemployment 90.83% 89.91% 89.10%

RR after 2 years of unemployment 87.17% 85.73% 84.01%

RR at social assistance 79.22% 76.77% 74.52%

Wage subsidy after 1 year of unempl. 8.93% 8.33% 7.86%

Wage subsidy after 2 years of unempl. 24.93% 23.30% 21.75%

There are two main di�erences between the Spanish and US optimal schemes. First, in the latter

the assistance state emerges at much higher durations than for Spain. Moreover, the optimal US scheme

involves a considerable use of the wage subsidy instrument. The wage tax, τt = S(ht) − wt, becomes

negative (hence a subsidy) for unemployed durations as low as 6-8 months (depending on the e�ort

cost). We also have large values for the optimal wage subsidy in this case. After approximately one

year of unemployment, the worker should receive an average wage subsidy of 8.4%. Despite the sizeable

depreciation rate for human capital, the assistance state only emerges for relatively high durations. This

is so since π is quite high, both in absolute terms and relative to π̂, implying high returns to search

at relatively low incentive costs. At durations of around two years, this pattern of payments generates

wage subsidy levels between 22% and 25% (depending on the e�ort cost).

Also in this case, we performed a number of sensitivity exercises, with parametric e�ects qualitatively

similar to those for Spain. In the benchmark case (with v = .83), for depreciation rates around 8% and

below, the optimal US program does not contemplate the emergence of an assistance state.

5 Conclusions

In the present paper, we extended previous studies on optimal unemployment insurance to incorporate

the e�ects of human capital depreciation and duration dependence in the mechanism-design problem.

Our results partially con�rm those obtained with stationary models, namely that bene�ts should

(weakly) decrease with unemployment duration. The introduction of human capital depreciation and

duration dependence also generates two key novel features of the optimal program. First, we derive
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analytical conditions on the speed of human capital depreciation during unemployment under which the

planner eventually loses the incentives to induce the agent to supply high search e�ort. Consequently,

unemployment bene�t payments are initially decreasing and eventually become completely �at, since the

long-term unemployed worker is fully insured by the planner. Second, we �nd that the increasing wage

tax result of the stationary models à la Hopenhayn and Nicolini is not robust to this extension. Our

simulations for the US and Spanish economies both show that although it is optimal to impose a wage tax

after re-employment on short-term unemployed workers, the optimal level of wage tax should decrease

with the length of the worker's previous unemployment spell, eventually becoming a wage subsidy for

the long-term unemployed. The comparison with the standard (stationary) model emphasizes that the

possibility of a transition from an insurance regime to an assistance regime, and the optimality of a wage

subsidy, are the key policy implications of our nonstationary search model with moral hazard.

The results of our benchmark simulations for Spain - based on an annual wage depreciation rate of

3% - suggest that the optimal wage subsidy should never be above 2%. Wage subsidies above 10% can

be generated as well, for human capital depreciation rates of around 7%. Our simulation results for the

US case indicate a much more considerable use of the wage subsidy instrument for this country. This

is for two main reasons: First, the US wage depreciation rate is higher than that of Spain. Moreover,

since the US hazard rate is considerably higher than that of Spain, despite the higher depreciation the

optimal scheme requires the worker to actively search for a job for much longer durations in the US. At

durations of around two years, the wage subsidy can get as large as 25%.

Our analysis has an independent theoretical interest. We develop a new approach that allows us

to study recursively the properties of the dynamic moral hazard model in a systematic way. We �nd

that the associated value function is in general nonconcave and nondi�erentiable. In spite of these

nonsmoothness problems, we show that the optimal contract can be characterized by using the usual

�rst-order conditions. The technique we developed in this paper uses Daskin's envelope theorem, and

can be easily extended both to a more general class of moral hazard problems and to other problems

with similar characteristics. Abreu, Pearce and Stacchetti (1990) and Spear and Srivastava (1987)

discuss conditions under which the value function of the dynamic model with a continuum of outcome

realizations is concave.37 Our approach allows systematic study of the case with a �nite number of
37The presence of a continuum of possible outcomes essentially convexi�es the problem in a similar fashion to the use of

lotteries (e.g., Phelan and Townsend, 1991).
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output realizations, which is an inherent characteristic of the unemployment insurance designing problem

studied in this paper.

The principal-agent framework permits detailed study of how dynamic incentive provision shapes

the e�cient UI scheme. The model has several weaknesses, however. For tractability, the framework

presents a very stylized demand side of the labor market, and the analysis neglects general equilibrium

e�ects. Although the qualitative characteristics of the pattern of payments should not be a�ected by

these simpli�cations, the inclusion of search externalities in the analysis may in�uence the emergence

of the social assistance program. A priori, it is, however, di�cult to guess the direction of the general

equilibrium e�ects. On the one hand, there are likely to be congestion e�ects in the aggregate, which

might reduce the social value of workers' search e�ort. On the other hand, more intense job-search

activity on the workers' side might enhance �rms' incentives to post vacancies. In the presence of

increasing returns, such a search externality gives additional social value to the search activity. These

issue are all left for future research.

Finally note, that even assuming e�cient demand (such as vacancy creation), our use of the worker

gross compensation as a measure for the total net income surplus generated by the job is - in general -

justi�ed only when �rms make zero pro�ts (in expected discounted terms). If pro�ts were positive, our

analysis would tend to recommend too low search intensities.

Nicola Pavoni, University College London and Institute for Fiscal Studies. Department of Economics,

UCL, Gower Street, London WC1E 6BT. E-mail: n.pavoni@ucl.ac.uk

6 Appendix

6.1 The Shape of the Value Function

We start by showing that the conditional value function V (·, ·, ·) is jointly continuous in its arguments.

Proposition 7 The Bellman operator implied by (16) de�nes a contraction in the space of continuous and
bounded functions with the sup norm. Thus V exists and is unique, and

‖V ‖∞ = sup
y∈Y =A×U×H

|V (y)| < ∞.

31



Proof. First of all, we should de�ne a topology on A. We do a bit more than that. We de�ne the δ-metric
on A as follows:

dδ(a,a′) =
∞∑

n=0

δn |an − a′n| , δ ∈ (0, 1) .

Second, let us simplify the notation by eliminating the h indexation. It will become clear below that the continuity
of mu(·), together with Lemma 9.5 of Stokey and Lucas with Prescott (1989) (SLP), allows us to make this
simpli�cation, at this stage.

Now consider a generic s = (a, U) with a = {a0, a1, a2, ...} := {a0,1 a} ∈ A. The distance between any two
points is ‖s− s′‖ = ‖a− a′‖δ + |U − U ′| . Using the promise-keeping constraint, we rewrite the Bellman operator
T as follows:

(TV ) (s) = sup
Uu,Ue; s.t. (7)

−u−1 (U − v(a0)− β [π(a0)Ue + (1− π(a0))Uu])+β [π(a0)W (Ue) + (1− π(a0))V (1a, Uu)] .

Now we show that the operator T maps bounded and continuous functions into bounded and continuous functions.
From the de�nition of continuity, we must verify that for each given point s and for each ε > 0, there exists a
γ > 0 such that

if ‖s− s′‖ < γ then |(TV ) (s)− (TV ) (s′)| < ε.

To this extent, we rewrite the previous condition using the de�nition of the Bellman operator:

| sup
Uu,Ue; s.t. (7)

{f(U,Uu, Ue, a0) + β (1− π(a0)) V (1a, Uu)}

− sup
Uu,Ue; s.t. (7)

{f(U ′, Uu, Ue, a′0) + β (1− π(a′0)) V (1a′, Uu)} | < ε (24)

where
f(U,Uu, Ue, a0) = −u−1 (U − v(a0)− β [π(a0)Ue + (1− π(a0))Uu]) + βπ(a0)W (Ue)

and
W (Ue) =

S − u−1((1− β)Ue + l)
1− β

.

Now two easy steps. First of all, consider the following two cases.
Case 1: Suppose that a0 = a′0. In this case, we can assume a0 as a parameter of the problem and apply the

Maximum Theorem to the problem

F (U,1 a) = sup
Uu,Ue

f(U,Uu, Ue, a0) + β (1− π(a0)) V (1a, Uu) (25)

s.t. : (7), Uu, Ue ∈ Γ(U)

to show continuity of F in (U,1 a). The auxiliary constraint Γ(U) is imposed in order to guarantee the constraint
correspondence to be compact valued. A possibility is the following. The incentive compatibility constraint (7)
can be expressed as Ue ≥ Uu + k(a0), so we can always choose appropriately two constants k1, k2 > 0, and add
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to (7) the constraints Uu ≥ U − k1 and Ue ≤ U + k2. The continuity of F implies that we can always �nd a γ

such that (24) is veri�ed.
Case 2: Now suppose a0 6= a′0. The idea here is that we do not check for continuity in this case, that is, we

set γ such that, whenever a0 6= a′0, then ‖s− s′‖ > γ. This can always be done since in this case |a0 − a′0| = 1.
In summary, the choice of γ is done according to the continuity properties of F, with the restriction γ ≤ 1.

Since u−1 is bounded, if we start from a bounded V, TV is bounded as well.38

Finally, one can check directly that the operator satis�es the Blackwell's su�cient conditions; thus T de�nes
a contraction in the complete metric space of the bounded and continuous functions with the sup norm, in the
`reduced' space S = A×U . The continuity of the law mu(·) allows us to complete the proof by applying Lemma
9.5 and Theorem 9.6 of SLP, which guarantee that the contraction mapping result is still true in the original
space A× U ×H, with h as exogenous state variable. Q.E.D.

We now show that the conditional value functions V (a, ·, h) are concave and di�erentiable with respect to the
continuation utility U.

Proposition 8 Consider a sequence of e�orts a ∈ A and an endowment level h, together with a law m. (i) The
conditional function V (a, ·, h) is concave in U. (ii) Moreover, if we let

V (a, U0, h) = −b0 + β [π(a0, h)W (Ue
0 , h′) + (1− π(a0, h))V (1a, Uu

0 , h′)]

with U0 in the interior of the e�ective domain of V (a, ·, h), and with b0 belonging to the interior of the domain
of the agent's utility function u. Then V (a, ·, h) is continuously di�erentiable at any such U0, and

V ′(a, U0, h) :=
∂V (a, U0, h)

∂U
= − 1

u′(b0)
< 0. (26)

Proof. (i) Again, the presence of h creates only notational complications, so we �x it and eliminate the h

index in what follows. Following Grossman and Hart (1983) and changing the variable by de�ning z := u(b), the
problem becomes

V (a, U) = sup
z,Uu,Ue

−u−1(z) + β [π(a)W (Ue) + (1− π(a))V (1a, Uu)] (27)

s.t. : z − v(a) + β [(1− π(a))Uu + π(a)Ue] ≥ z − v(â) + β [(1− π(â))Uu + π(â)Ue]

U = z − v(a) + β [(1− π(a))Uu + π(a)Ue]

where a is the �rst element in the sequence a = {an} Notice that the problem satis�es all the conditions
required to apply Theorems 4.7 and 4.8 of SLP. To see why the problem is monotonic, use the promise-
keeping constraint and notice that since u is increasing, the planner's objective function −u−1(z) - where
z = U + v(a) − β [(1− π(a))Uu + π(a)Ue] - is strictly decreasing in U . In particular, notice that interiority

38Note that the boundedness of u−1 is only used here and only in this proof.
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is important here: It guarantees that z can indeed be modi�ed to satisfy promise keeping without a�ecting in-
centive compatibility. Finally, note that if V is concave, the planner's objective function is concave (since u−1

is convex), and the constraints set is convex (linear); as a consequence, (27) is a concave problem. This proves
concavity.

(ii) Di�erentiability can be shown as follows. Given that the value function is concave, we can use Lemma 2
in Benveniste and Scheinkman (1979). For a �xed level of promised utility U0, we are looking for a di�erentiable
and concave function F (a,U) such that it is well de�ned in an interval I around U0 and such that for any U ∈ I

we have F (a,U) ≤ V (a,U) and F (a,U0) = V (a,U0). We claim that

F (a,U) = −u−1 (U + v(a)− β [(1− π(a))Uu
0 + π(a)Ue

0 ]) + β [π (a)W (Ue
0 ) + (1− π (a))V (1a, Uu

0 )]

is the function we are looking for. Indeed, the optimal values Ue
0 and Uu

0 satisfy the incentive compatibility, and
(by interiority) the promise-keeping constraint can always be satis�ed by varying the bene�t transfer b, so the
function F is well de�ned and we have F (a, U) ≤ V (a,U) ∀ U ∈ I, as required. The properties of u imply the
concavity and di�erentiability of −u−1. So F is concave and di�erentiable, and this implies that V is di�erentiable
at U0 and V ′(a,U0) = − 1

u′(b0)
. Since V is concave, it is continuously di�erentiable. Q.E.D.

Finally, we show that the maximization with respect to a is always well de�ned. Hence, the value function
V (U, h) de�ned in (2) can be written as the upper envelope of the collections of conditional functions V (a, U, h).

Proposition 9 The set A of sequences of e�orts is compact and V (·, U, h) is continuous in A for all (U, h).
Thus, a maximum exists for any (U, h), and we can de�ne

V (U, h) = max
a∈A

V (a, U, h). (28)

Proof. Given the continuity result we obtained in Proposition 7, to show the existence result it su�ces to
show the compactness of the set A in the topology we adopted above to show continuity.

Lemma 10 A is compact in the topology induced by the metric dδ for any δ ∈ (0, 1) .

Proof of the Lemma. The set of all in�nite sequences of zeros and ones corresponds to the Cantor set
∆ := {0, 1}IN, which is known to be compact in the topology induced by the metric dδ for δ = 1

3 .39 From this,
we can easily show that the Cantor set is topologically equivalent to the same set endowed with the topology
induced by a dδ with δ ∈ (0, 1) . Finally notice that the set A is a closed subset of such set of sequences; hence it
is compact. Q.E.D.

We now combine the previous results, especially those of Proposition 7, to show the equivalence between the
sequential and the recursive choice of e�orts. We can only present a sketch of the proof since we never introduced
the notation for the fully sequential speci�cation of the problem. Further details are available upon request.

39See, for example, Aliprantis and Border (1994), page 93.
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First of all, note that for each �xed a ∈ A we have V (U, h) ≥ V (a, U, h). This inequality is easy to see since for
each given sequence of e�ort levels, V (a, U, h) solves a constrained version of the Bellman equation de�ning the
unconstrained function V (U, h) where at each node the choice of e�ort is restricted to be a given value, according
to a. This implies that V (U, h) ≥ supa∈A V (a, U, h).

Now, from the previous Propositions we know that there is a contract starting from (U, h) that attains the
value V (U, h). Clearly, the sequence of actions implemented by this contract - call it a∗ - is a feasible one.

We now show that V (a∗, U, h) ≥ V (U, h). Note that, given a∗, the payments associated to the optimal contract
must be feasible according to problem (16). This is so since the feasibility correspondence is exactly the same
in the two cases. If we let (U0, h0) = (U, h) , by iterating on the Bellman equation (16) conditional on a∗,

and using the fact that βT V (T a∗, U∗
T , hT ) goes to zero as T → ∞40 we obtain the desired inequality, namely

V (a∗, U0, h0) ≥ V (U0, h0) because V (a∗, U0, h0) dominates any other feasible contract and V (U0, h0) is just the
sup value among all feasible contracts. Q.E.D.

6.2 Proofs of the Propositions in the Main Text

Proof of Proposition 1 (i) If at t = 0 a0 = 1 then we have that V1(U0) ≥ V0(U0). For any n ≥ 0 let us now
de�ne the set of conditional functions as follows:

V (U, n + 1) = max
b,Ue,Uu

−b + β [πW (Ue) + (1− π)V (Uu, n)]

U = u(b)− v + β [πUe + (1− π)Uu]

U ≥ u(b) + βUu,

where the second index in the functions V (·, n) indicates the number of remaining periods of intensive job search,
and V (U, 0) := V0(U). Notice that all functions V are strictly concave and continuously di�erentiable in the �rst
argument (for U > u(0)

1−β ). Using the properties of a contraction, we obtain that also V (U,∞) is concave and
continuously di�erentiable.

We now show the following lemma, which ranks the slope of the functions V (·, n).

Lemma 11 V ′(U, n + 1) ≤ V ′(U, n) for all U and n, with strict inequality at least for some n.

40In the previous expression, T a∗ indicates the continuation of the sequence a∗ after date T, and the limit result is true
since in Proposition 7 we have shown that the conditional functions are bounded.
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Proof of the Lemma. We will follow an inductive argument. Consider �rst the problem for n = 0. If we
set z := u(b), and denote by g = u−1 the inverse function of u, we have

V (U, 1) = max
z,Ue,Uu

−g(z) + β [πW (Ue) + (1− π)V0(Uu)]

U = z − v + β [πUe + (1− π)Uu]

U ≥ z + βUu.

It is easy to see that incentive compatibility is binding in this case (since l ≥ 0 = v (0) implies that W ′(U) ≤ V ′
0(U)

for all U, and the functions are concave, if the incentive compatibility is slack, we have Uu ≥ Ue). Hence from
the �rst-order conditions we have

−g′ (U − βUu) = V ′(U, 1) > V ′
0(Uu) = −g′ ((1− β)Uu) ,

which implies U > Uu. But then U − βUu > (1 − β)U. From the convexity of g, we have that V ′
0(U) =

−g′ ((1− β)U) > V ′(U, 1).

Now, assume that V ′(U, n) ≤ V ′(U, n − 1) for all U and consider the �rst-order conditions of the problems
de�ning V (U, n) and V (U, n + 1). We have

V ′(Uu
n , n− 1) = −g′ (U − βUu

n ) + µn
π

1− π

W ′(Ue
n) = −g′ (U − βUu

n )− µn

V ′(Uu
n+1, n) = −g′

(
U − βUu

n+1

)
+ µn+1

π

1− π

W ′(Ue
n+1) = −g′

(
U − βUu

n+1

)− µn+1,

where µn and µn+1 represent the multipliers associated with the problems de�ning V (U, n) and V (U, n + 1)

respectively. Similarly, Uu
n , Ue

n and Uu
n+1, U

e
n+1 represent the optimal continuation utilities in the two cases. Now

assume µn+1 > µn ≥ 0. Then by the induction argument we must have Uu
n ≥ Uu

n+1 (just assume that Uu
n+1 > Uu

n

and from the �rst-order conditions and the concavity of V one gets a contradiction), and by the incentive
compatibility constraint we have Ue

n ≥ Ue
n+1. But then U − βUu

n ≤ U − βUu
n+1and µn+1 > µn implies that

−g′
(
U − βUu

n+1

)− µn+1 < −g′ (U − βUu
n )− µn , which is in contradiction to the fact that W ′(Ue

n+1) ≥ W ′(Ue
n)

since W is a concave function. It must hence be that µn ≥ µn+1 ≥ 0. But then by the induction argument and
incentive compatibility we get Uu

n ≤ Uu
n+1, and by envelope V ′(U, n + 1) ≤ V ′(U, n). Q.E.D.

By the above inequalities and the fact that V is di�erentiable, the limit function V (U,∞) is such that
V ′(U,∞) ≤ V ′(U, n). Now notice that we have also shown that if a0 = 1 then Uu ≤ U. Lemma 11 hence implies
that if a0 = 1 then it is never optimal to choose at = 0 in the future, and V1(U) = V (U,∞), as claimed.

(ii) The �rst-order conditions at all t such that Uu
t > u(0)

1−β are

V ′
1(Uu

t ) = V ′
1(Ut) + µ

π

1− π
.
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Since V1 is concave and, as we argued above, the incentive constraint is binding (see also Pavoni, 2007, Lemma
1), we obtain that Ut > Uu

t = Ut+1, i.e., Ut is decreasing during unemployment. From the envelope condition
V ′

1(Ut) = − 1
u′(bt)

the UI transfer bt decreases as well. From the incentive compatibility constraint we have that
Ue

t decreases, and from the de�nition of W u (wt+1) = (1− β)Ue
t + l, so wt decreases as well.

(iii) If we let U > u(0)
1−β and δ := minU ≤ U ≤ U0 {U − Uu(U)} then the minimization is well de�ned (by

the Maximum Theorem), and δ > 0. Hence the duration of unemployment T is any natural number satisfying
∞ >T ≥ U0−U

δ . Q.E.D.

Proof of Proposition 3 Our line of proof is based on a version of Daskin's envelope theorem. We �rst need a
couple of de�nitions.

De�nition 12 For each U and h, de�ne the nonempty set A∗(U, h) = arg maxa∈A V (a, U, h); moreover, we

call A∗(h) =
⋃

U A∗(U, h) the set of all possible maximizers.

Now note that, from Propositions 7 and 9, the conditional functions V ′(a, ·, h) are continuous in U , and the
set A∗(h) is nonempty. Moreover, recall that from Proposition 8, V ′(a, U, h) := ∂V (a,U,h)

∂U exists and is continuous
in U.

We now show that A∗(h) is a �nite set for each h. Assumption A1 implies that after period T (h) the

problem becomes stationary. Hence from Proposition 1 and the absorbing nature of the assistance state we know

that the optimal path of actions a∗ can only take two forms: For all t ≥ T (h), we have either at = 0, or at = 1.

In both cases the set of optimal e�orts A∗(h) for the period-zero problem is a subset of the �nite set of all the

sequences of e�orts which end either with the sequence 0 = {0, 0, 0, 0, ...} or with the sequence {1, 1, 1, 1, ...} after

T (h) < ∞. More precisely, the number of sequences of actions in A∗(h) is bounded by 2T (h)+1.

We are now ready for the crucial part of the proof.

Lemma 13 Assume that A∗(h) is nonempty and �nite, and that V (a, ·, h) is continuous. Moreover, assume
that V ′(a, U, h) := ∂V (a,U,h)

∂U exists and is continuous in U . Then, for each given h, the value function V (·, h) has
always both right and left derivatives, and these are given by the formulas

V ′
+(U, h) = max

a∈A∗(U,h)
V ′(a, U, h)

V ′
−(U, h) = min

a∈A∗(U,h)
V ′(a, U, h);

moreover, V (·, h) is almost everywhere di�erentiable in U, and whenever the derivative exists we have

V ′(U, h) = V ′(a∗, U, h) for all a∗ ∈ A∗(U, h).
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Proof of the lemma. In order to simplify the notation we again neglect the dependence to h. Hence A∗(U, h)

becomes A∗(U) and A∗(h) becomes A∗.
Let us show �rst the formula for the right-hand derivative. From our assumptions A∗(U) is nonempty and

�nite, so for each U we can take a(U) ∈ arg maxa∈A∗(U) V ′(a, U). Now consider U ′ > U and write the incremental
ratio

V (U ′)− V (U)
U ′ − U

=
V (a(U ′), U ′)− V (a(U), U)

U ′ − U
≥ V (a(U), U ′)− V (a(U), U)

U ′ − U
; (29)

the last inequality comes from the fact that a(U ′) ∈ A∗(U ′) so any other choice will reduce the value of
V (a(U ′), U ′) = V (U ′). Now, since the conditional functions are di�erentiable, as U ′ → U with U ′ > U the
far right-hand side of (29) converges to the derivative of the conditional function. In other terms, we have that

lim inf
U ′→U
U ′>U

V (U ′)− V (U)
U ′ − U

≥ V ′(a(U), U).

We now want to show that
lim sup

U ′→U
U ′>U

V (U ′)− V (U)
U ′ − U

≤ V ′(a(U), U)

where recall that a(U) is the maximizer of the partial derivative V ′(a, U) over the nonempty and �nite set A∗(U).

So suppose instead that
lim sup

U ′→U
U ′>U

V (U ′)− V (U)
U ′ − U

> V ′(a(U), U)

Then - by the de�nition of lim sup - there is a decreasing sequence {Un} → U, Un > U, and a real number ε such
that

V (Un)− V (U)
Un − U

≥ V ′(a(U), U) + ε for all n ∈ IN.

Recall that de�nition of the unconditional function V and that since each V (a, .) is continuous and the set A∗ is
�nite and non empty, for each n there is at least one an such that V (Un) = V (an, Un). The sequence of a′ns has
a cluster point, call it ā. Hence, there must exist a converging subsequence {Unk

,ank
} −→ (U, ā). Since A∗ is a

�nite set, we can assume without loss of generality that ank
= ā for all nk su�ciently large, hence for all Unk

in
the subsequence with su�ciently large index we must have

V (Unk
) = V (ā, Unk

).

In the limit we hence obtain the contradiction

V ′(ā, Unk
) ≥ V ′(a(U), U) + ε,

(indeed recall that a(U) ∈ arg maxa∈A∗(U) V ′(a, U)). The proof for the left hand derivative is symmetric.
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We now show that V is almost everywhere di�erentiable. Consider the following function g(U) := maxa∈A∗

|V ′(a, U)|. Note that since V ′ exists and is continuous in U and A∗ is �nite the function g is continuous. Consider
now the following sequence of inequalities

|V (U ′′)− V (U ′)| 5 max
a∈A∗

|V (a, U ′′)− V (a, U ′)| 5 max
a∈A∗

∣∣∣∣∣∣

U ′′∫

U ′

V ′(a, U)dU

∣∣∣∣∣∣
5

U ′′∫

U ′

max
a∈A∗

|V ′(a, U)| dU 5
U ′′∫

U ′

g(U)dU,

where the �rst inequality uses the de�nition of V as the max over the conditional functions, the second one uses

the fact that the conditional functions are di�erentiable, the penultimate inequality is obvious, while the last one

is obtained by the de�nition of g above. We have hence shown that V is absolutely continuous hence almost

everywhere di�erentiable. Q.E.D.

Proof of Proposition 5 It is immediate to see that (18), (19) and (20) are the �rst-order conditions for the
proposed problem. Moreover, notice that the existence of V ′(U, h) is justi�ed by Proposition 8. However, we
must show (I) that the di�erentiability conditions for taking the �rst-order conditions are indeed satis�ed, and
(II) that µ ≥ 0, as claimed. Before �nishing the proof we need a simple lemma.

Lemma 14 Assume that f is a continuous function that admits both right and left derivatives in an interior

point U0. If U0 maximizes f we must have f ′−(U0) ≥ f ′+(U0).

Proof of the Lemma. The proof is standard. For completeness, we brie�y show the result. First, if U0

is optimal we must have f ′−(U0) ≥ 0. Indeed, whenever f ′−(U0) < 0, the incremental ratio for the left derivative
implies that for U su�ciently close to U0 (but still U − U0 < 0), we have f(U) > f(U0), which contradicts the
optimality of U0. A similar argument can be used to show that optimality of U0 implies f ′+(U0) ≤ 0. Q.E.D.

(I) Since the case with a∗ = 0 is obvious, we will consider only a∗ = 1. When a∗ = 1, the incentive constraint
(7) can be rewritten as follows:

Ue − Uu ≥ v

β [π(h)− π̂ (h)]
. (30)

We can have two cases.
Case 1: At the optimum the incentive constraint (30) is satis�ed with equality. If we rewrite the objective

function using (30) with equality and use (6), we can rewrite the problem as a function of Uu alone:

sup
Uu

−u−1

(
U − βUu +

π̂(h)v
π(h)− π̂(h)

)
+ β

[
π(h)W

(
Uu +

v

β [π(h)− π̂ (h)]

)
+ (1− π(h)) V (Uu, h′)

]
.

The problem is now a free maximization whose objective function is a weighted sum between the di�erentiable
functions u−1 and W, and the function V (Uu, h′). We can directly apply Lemma 14 to this problem and obtain
the desired result.
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Case 2: The optimum is such that the incentive constraint (30) is slack. In this case, we can use (6) and
rewrite the problem as a function of both Uu and Ue as follows:

sup
Uu,Ue

−u−1 (U + v − βUu − βπ(h) (Ue − Uu)) + β [π(h)W (Ue, h) + (1− π(h)) V (Uu, h′)] .

Notice that in the objective function the two choice variables Uu and Ue interact in a very peculiar way. Either
they are part of a linear mapping into a di�erentiable function (this is the case of the �rst term of the objective
function, the term inside u−1) or they enter into two di�erent functions which are linearly related to each
other. This feature guarantees that when taking the directional derivative for optimality we can separate the two
variables. The choice of Ue is clearly well de�ned since both u−1 and W are di�erentiable everywhere. Moreover,
for any given choice of Ue, the optimal level Uu is now computed by solving again a free maximization over a
weighted sum between the di�erentiable function u−1 and the function V (Uu, h′); thus Lemma 14 also applies to
this case.

(II) Consider again the a∗ = 1 case. Once we have shown that the problem must be di�erentiable at the
optimum, we can use the (local) Kuhn-Tucker theorem. For this, notice that the incentive constraint (30) is
linear, hence satis�es the constraint quali�cation requirement needed to apply the Kuhn-Tucker theorem. Hence,
if µ is the multiplier associated with the incentive constraint, µ is nonnegative, as claimed. Q.E.D.

Proof of Corollary 6 The �rst part of the corollary is easily derived from the last result of Proposition 5. It

su�ces to use Proposition 8 and rewrite V ′(U, h) = − 1
u′(b∗t ) , W ′ (Ue∗, h′) = − 1

u′(w∗t+1)
and V ′ (Uu∗, h′) = − 1

u′(b∗t+1)
.

To show the second part, notice that since π(1, h) > 0, both results (i) and (ii) can be easily derived from (18),

(19), (20), µ ≥ 0 and the strict concavity of u. Obviously, if a∗t = 0 then w∗t+n = b∗t = b∗t+n for n ≥ 1. Q.E.D.
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