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Many dynamic incentive problems have a primal recursive formulation in which utility
promises serve as state variables. We associate dual recursive formulations with these
problems. We make transparent the connections between recursive primal and dual
approaches, relate value iteration under each and give conditions for such value iteration
to be convergent to the true value function.
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1. Introduction

Dynamic incentive models have received widespread application in finance and macroeconomics. They have been used
to provide micro-foundations for market incompleteness, firm capital structure and bankruptcy law. In macroeconomics,
first Ramsey and later more general Mirrlees models have informed thinking on tax policy and social insurance. In each
of these varied cases the associated dynamic incentive problem recovers optimal equilibrium payoffs and outcomes from
a game played by a population of privately informed or uncommitted agents and, often, a committed mechanism designer
or principal. Equilibrium restrictions from the game provide the problem’s constraints and given additive separability of
payoffs over histories, tractable recursive primal and dual formulations are available. In contrast to many other problems in
economics, however, this recursivity is often implicit and these formulations must be recovered from the payoff/constraint
structure via the addition of constraints that define state variables or through the manipulation of a Lagrangian. Recursive
formulations of dynamic incentive problems have been developed in different contexts by Kydland and Prescott (1980),
Abreu et al. (1990), Green (1987), Spear and Srivastava (1987), Fernandes and Phelan (2000), Judd et al. (2003) and Marcet
and Marimon (2011). Each of these papers uses or develops a particular method and several consider a particular applica-
tion. Our goal is to provide a unified treatment of recursive primal and dual approaches for dynamic incentive problems.
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We use basic results from the theory of dynamic programming and duality, especially conjugate function duality, to do so.
We emphasize practical issues associated with the application of these methods and identify when particular methods are
valid. We relate value iteration under each method and give conditions for both primal and dual value iteration to converge
to the true value function.

Many dynamic economic problems include amongst their primitives a state space and a non-empty valued constraint
correspondence. Given the current state, the correspondence restricts current choices inclusive of the subsequent state. In
contrast, dynamic incentive problems are usually formulated in terms of incentive constraints that are non-recursive and
forward-looking. State spaces and constraint correspondences must be recovered from these. A well-known approach re-
expresses incentive constraints in terms of utility promises and supplements them with promise-keeping conditions that
enforce past promises. Thus, utility promises serve as states. We develop the promise approach in a framework general
enough to handle a variety of frictions including limited commitment and hidden information, as well as combinations of
the two. Our framework accommodates problems with and problems without a committed principal. In the former, the
promise approach yields an optimal payoff for the principal as a function of an initial promise to agents; in the latter it
gives the set of equilibrium payoffs available to all players. In this second case, indicator functions are used to represent
equilibrium payoff sets, permitting a recasting of the set-theoretic treatment of equilibrium payoffs in Abreu et al. (1990) in
terms of value functions.

A difficulty with the promise approach is that some promises may not be attainable with any incentive-feasible allocation
or plan. Several contributions have followed a two step procedure: in a first step, an “endogenous state space” of feasible
promises is approximated; in a second, the optimal value function restricted to this state space is calculated.1 We pursue an
alternative approach. By assigning minus infinite payoffs to infeasible states, we jointly handle the value function and the
endogenous state space, encoding the latter as the “effective domain” of the former.2 An elaboration of standard arguments
implies that the optimal value function solves a Bellman equation. By way of a partial converse, we give conditions for
the optimal value function to be the limit of a value iteration. In economics, it is standard to consider problems with
norm-bounded value functions, contractive Bellman operators and uniformly convergent (with respect to the norm) value
iteration. Dynamic incentive problems with possibly non-finite value functions do not fit into this class. For these problems,
hypo- and epi-convergence provide useful alternatives to uniform convergence. They relate well to optimization and to the
dual approaches discussed below. We give conditions for the optimal value function to be the limit of a hypo-convergent
value iteration and for the limits of policies computed during this iteration to be optimal.

Non-finite value functions remain problematic from the point of view of practical computation since they introduce
arbitrarily large discontinuities or arbitrarily large steepness at the boundaries of their effective domains. In addition, in
many dynamic incentive problems constraints run across current shock realizations. In these cases, the promise-keeping
formulation does not permit a decomposition across time and shocks. Instead, choices contingent on all current shock
realizations must be solved for simultaneously raising the dimension of the optimizations that define the Bellman operator.
These issues motivate the development of dual approaches.

Constrained optimizations can be re-expressed using Lagrangians that incorporate some or all of the constraints. In these
re-expressed problems, a sup–inf operation over choices and Lagrange multipliers replaces a sup operation over choices
alone. In this form the optimization is referred to as a primal problem. The sequencing of sup and inf is important. By
interchanging them a dual problem is obtained. We express the dynamic incentive Bellman operator in sup–inf terms and
then interchange these operations to obtain its dual. From the dual Bellman operator, we extract a component dual opera-
tor D . This operator relocates calculations to an alternative space of value functions defined on a domain of agent Pareto
weights. D combines a Pareto weight-domain value function with a law of motion for such weights and a current pay-
off function over choices and multipliers; it then performs a dual inf–sup operation with respect to current choices and
incentive multipliers on the resulting objective. The updated Pareto weights encode continuation rewards and penalties
much as updated promises do. Under certain regularity conditions, a promise-domain value function can be uniquely paired
with a weight-domain one via a mathematical operation called conjugacy. Under related conditions, D and the original
(promise-domain) Bellman operator are tightly connected. In particular, our earlier results on (hypo-)convergent promise-
domain value iteration imply (epi-)convergent Pareto weight-domain value iteration. In the latter case, the limiting value
function is the optimal one from a Pareto problem (and is the conjugate of the optimal promise-domain value function).
Working with dual operator D has certain computational advantages. It is often possible to restrict attention to real-valued
weight-domain value functions and avoid the difficulties associated with infinite-valued functions and endogenous effective
domains that emerge in the promise-domain setting. In addition, D decomposes the supremum operation into a family of
shock-contingent supremum operations tied together by incentive multipliers. Thus, the high(er) dimensional supremum op-
erations encountered in the primal promise-keeping formulation are replaced with groups of simpler supremum operations,
further assisting calculations.

The paper proceeds as follows. After a brief literature review, Section 2 gives examples. Section 3 describes a framework
that can accommodate a large class of dynamic incentive problems. In Section 4, a recursive promise-keeping formulation is
outlined and a primal Bellman operator introduced. In Section 5, sufficient conditions for convergent primal value iteration

1 For example, see Abraham and Pavoni (2008).
2 If f : X → R ∪ {−∞}, then the effective domain of f is the set {x ∈ X: f (x) > −∞}.
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are given. Section 6 defines the dual Bellman operator and extracts the component D from it. Sufficient conditions for
convergent dual value iteration are provided and the merits of the dual approach discussed. Section 7 gives extensions.

Literature Papers by Green (1987), Spear and Srivastava (1987) and Abreu et al. (1990) provide early applications of the
promise approach to dynamic incentive problems with and without committed principals. Further applications are provided
by, inter alia, Fernandes and Phelan (2000), Kocherlakota (1996) and Rustichini (1998). Of these, the latter paper is most
related to ours; it also uses monotone iterative methods and hypo-convergence. However, in other dimensions our respective
approaches are different. Rustichini (1998) does not consider dual approaches and confines himself to limited commitment
problems, we generalize these aspects. On the other hand, we confine ourselves to problems with a time additively separable
structure, Rustichini does not.

We build on Messner et al. (2011). In that earlier contribution, we paired a sequential primal problem with a sequential
dual problem and then obtained a recursive formulation of the latter. Thus, we “dualized” and then “recursivized”. In the
current paper we reverse these roles, first deriving a recursive primal problem and then “dualizing” this. The approach in
Messner et al. (2011) has the advantage that it permits a significant weakening of the conditions for equality of optimal
primal and dual values and solutions. The approach in the current paper is useful for directly relating primal and dual
Bellman operators. Messner et al. (2011) showed how the recursive dual approach can be applied to non-additively separable
problems and provide an application to hidden action moral hazard. In the current paper, we focus on time additively
separable, infinite horizon incentive problems. We discuss in detail the properties of primal and dual Bellman operators and
their fixed points in these settings.

In an important and influential contribution, Marcet and Marimon (1999) (revised: 2011) develop a recursive saddle
point method for a class of dynamic contracting problems. Let L : A × Λ → R denote a Lagrangian defined on a space of
actions and multipliers. The saddle operation is given by: saddle(a|λ)L (a, λ) = L (a∗, λ∗), where a∗ ∈ arg maxA L (a, λ∗) and
λ∗ ∈ arg minΛ L (a∗, λ). Marcet and Marimon (1999) seek a recursive decomposition of this operation. Here the maximiza-
tion and minimization are done in parallel, each taking the solution of the other as given. In contrast, we interchange sup–inf
with inf–sup operations (in each case the operations are performed in sequence), justifying the interchange with appeals to
standard duality results. As described above, we tie a dual (inf–sup) Bellman operator acting on weight-domain value func-
tions to a primal (sup–inf) Bellman operator acting on promise-domain value functions. In particular, we relate monotone
value iteration under each approach. Marcet and Marimon (1999)/(2011) consider their recursive saddle approach in isola-
tion. Apart from establishing the connection between approaches, this also allows us to considerably relax the boundedness
conditions necessary for convergent value iteration. In contrast to us, Marcet and Marimon (2011) explicitly incorporate
physical state variables such as capital, we do not. On the other hand, they exclude problems with private information and
focus on ones with a committed principal or government. We extend both of these elements. Marcet and Marimon (2011)
construct Lagrangians that include incentive constraints (and, implicitly, the law of motion for promises), but exclude the
law of motion for physical state variables. As a result, their recursive formulation features a mixture of primal and dual
state variables. We keep all laws of motion in either primal or dual form. Thus, we use either primal (promise) or dual
(multiplier) state variables, but never a mixture.

Judd et al. (2003) develop methods for computing the value sets of repeated games (in which no player is committed).
Their outer approximation method can be interpreted as a variation on our dual approach in which only the promise-
keeping constraints are dualized (i.e. brought up into the Lagrangian). They couple this with an approximation procedure
for the resulting value functions.

Passing from a primal to a dual problem introduces the possibility of a difference between the optimal dual and primal
values (a “duality gap”). If a saddle point exists at each primal state variable, then there are no duality gaps and all primal
solutions are maximizers for the corresponding dual problem. However, the dual problem may introduce extraneous solu-
tions, see Messner and Pavoni (2004). This issue is resolved in strictly concave settings (in which the set of dual maximizers
is a singleton). Recently, Cole and Kubler (2010) provide a clever method for recovering optimal primal solutions from an
augmented problem formulated on a dual state space.

Our value iteration approach relies on quite general monotone arguments. Messner et al. (2012) give conditions for the
dual Bellman operator to be contractive.

2. Examples

To motivate the subsequent analysis and set notation, we begin with three examples. The first example illustrates our
approach in a simple setting. The remaining examples show how the approach can be applied to more complex economic
problems. We refer back to these examples throughout the paper.

Example 1 (One-sided limited commitment). A committed principal shares risk with an uncommitted agent. Both live for
an infinite number of periods t ∈ N. Let {st}∞t=1 be a shock process taking values in a finite set S = {1, . . . , S} and evolving
according to a Markov transition Q from s0 ∈ S. Let the endowment of goods in each current state be given by ω : S → R++ .
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A consumption process {ct}∞t=1, ct : St → R+ is resource-feasible if for all t ∈ N, st ∈ St , ct(st) ∈ [0,ω(st)]. Conditional on the
first period shock, the principal and the agent value resource-feasible consumption processes c∞ according to:

U c(s′, c∞)=
∞∑

t=1

βt−1 E
[
v
(
ct
(
st)) ∣∣ s1 = s′], (1)

where β ∈ (0,1) and v : R+ → R satisfies the following assumption.

Assumption 1. v : R+ → R is continuous, increasing and strictly concave.

Date 0 evaluations of c∞ are given by
∑

S U c(s′, c∞)Q (s, s′) =∑∞
t=1 βt−1 E[v(ct(st)) | s0 = s]. Let c∞ denote the agent’s

consumption process, with the principal receiving the residual ω(st) − ct(st) at each st . c∞ is incentive-feasible if it is
resource-feasible and it provides the agent with utility in excess of her outside option B:

∀t, st , v
(
ct
(
st))+ β

∑
s′∈S

U c(s′, c∞
t+1

(
st))Q

(
st , s′)� B(st),

where c∞
t+1(st) = {ct+ j(st , ·)}∞j=1 and B : S → R satisfies:

B(s) = b(s) + β
∑
s′∈S

B
(
s′)Q

(
s, s′), b : S → R.

Assumption 2. ∀s, b(s) ∈ [v(0), v(ω(s))].

It is convenient to re-express the analysis in terms of utility net of the outside option. Given c∞ the agent’s net utility
plan y∞ = {yt}∞t=1 is for all t , st , yt(st) = v(ct(st))−b(st). Let h = v−1 and C(s) = {y: ω(s)−h(y +b(s)) � 0}. Assumption 1
ensures that each C(s) is compact, Assumption 2 that each C(s) is non-empty. Let Ω0 = {y∞ | ∀t, yt(·, st) ∈ C(st)} denote
the set of resource-feasible net utility plans. Conditional on s1 = s′ , the net value of a plan y∞ ∈ Ω0 to the agent is:

U
(
s′, y∞)=

∞∑
t=1

βt−1 E
[

yt
(
st) ∣∣ s1 = s′];

conditional on s0 = s, its value to the principal is:

F
(
s, y∞)=

∞∑
t=1

βt−1 E
[

f
(
st , yt

(
st)) ∣∣ s0 = s

]
,

where f (s′, y) = v(ω(s′) − h(y + b(s′))). A plan in Ω0 is incentive-feasible if it delivers a non-negative net utility to the
agent for all t , st−1, s,

yt
(
st−1, s

)+ β
∑
s′∈S

U
(
s′, y∞

t+1

(
st−1, s

))
Q
(
s, s′)� 0. (2)

Let Ω1 denote the set of incentive-feasible plans. Absent further constraints, the principal’s problem at s0 = s is:

sup
Ω1

F
(
s, y∞). (3)

The first step in our analysis is to show how the non-recursive problem (3) can be embedded into a family of “perturbed”
problems that are recursive. For each (s, x) ∈ S × R augment Ω1 with the “promise-keeping” condition:

x =
∑
s′∈S

U
(
s′, y∞)Q

(
s, s′),

to obtain:

Ω1(s, x) =
{

y∞ ∈ Ω1

∣∣∣ x =
∑
s′∈S

U
(
s′, y∞)Q

(
s, s′)}.

Plans in Ω1(s, x) are incentive-feasible and deliver a lifetime utility of x to the agent conditional on prior shock s. We
will say that a shock-promise pair (s, x) is incentive-feasible if Ω1(s, x) 	= ∅. For the current problem it is easy to see that
(s, x) is incentive-feasible if and only if x ∈ [0, U (s)], where U (s) =∑∞

t=1 βt−1 E[v(ωt(st)) | s0 = s] − B(s). However, in more
complicated settings the set of incentive-feasible (s, x) pairs is harder to characterize. Since one of our objectives is to show
how to derive and solve a recursive formulation of the principal’s problem without first determining the incentive-feasible
set, we proceed as if this set is unknown.
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The associated family of promise-constrained problems is, for each (s, x) ∈ S × R,

W ∗(s, x) = sup
Ω1(s,x)

F
(
s, y∞), (4)

where W ∗(s, x) = −∞ if Ω1(s, x) = ∅ and (s, x) is not incentive-feasible. Problem (3) may be solved by recovering solutions
to (4) at x∗ ∈ arg maxx∈R W ∗(s, x).

A recursive formulation of the promise-constrained problems (4) is obtained by defining the choice set A =∏s′∈S C(s′)×
RS and the constraint correspondence Γ : S × R → 2A ,

Γ (s, x) =
⎧⎨⎩(y, x′) ∈ A

∣∣∣∣∣ x =
∑
s′∈S

{
ys′ + δx′

s′
}

Q
(
s, s′)

ys′ + δx′
s′ � 0, s′ ∈ S

⎫⎬⎭ .

Γ (s, x) gives current utilities and continuation utility promises consistent with keeping the utility promise x given shock s
and the current incentive constraints. Γ is used to define the Bellman operator B on W = {W : S×R → R∪{−∞}} according
to:

W ∈ W , ∀(s, x) ∈ S × R, B(W )(s, x) = sup
Γ (s,x)

∑
s′∈S

{
f
(
s′, ys′

)+ βW
(
s′, x′

s′
)}

Q
(
s, s′). (5)

By fairly standard arguments, W ∗ satisfies the Bellman equation W ∗ = B(W ∗). However, when defined on all of S × R,
W ∗ is extended real-valued, i.e. can take the value −∞. In Section 5, the monotonicity of B and convergence concepts for
extended real-valued functions are used to show that W ∗ may be obtained as the limit of a convergent value iteration.
Alternatively, dual methods may be used. We describe these next.

The current problem has one promise-keeping constraint and S incentive constraints. The first of these is an equality
constraint, the remainder are inequality constraints. Let Φ = R × RS+ denote the corresponding multiplier set with element

(μ, {Q (s, s′)ηs′ }). Given W ∈ W , define the Lagrangian Ls(W ) : A × Φ → R according to:

Ls(W )
(

y, x′;μ,η
)=

∑
S

{
f
(
s′, ys′

)+ βW
(
s′, x′

s′
)}

Q
(
s, s′)+ μ

∑
S

{
ys′ + δx′

s′
}

Q
(
s, s′)

+
∑

S
Q
(
s, s′)ηs′[ys′ + δx′

s′
]
.

Since the infimum operation infΦ Ls(W )(y, x′;μ,η) − μx attaches −∞ values to choices (y, x′) outside of Γ (s, x) and∑
S{ f (s′, ys′ ) + βW (s′, x′

s′ )}Q (s, s′) values to those inside, the Bellman operator B may be re-expressed in “sup–inf” form
as:

B(W )(s, x) = sup
A

inf
Φ

Ls(W )
(

y, x′;μ,η
)− μx. (6)

By interchanging supremum and infimum operations a dual Bellman operator is derived:

BD(W )(s, x) = inf
Φ

sup
A

Ls(W )
(

y, x′;μ,η
)− μx.

Given Assumptions 1 and 2, BD(W ) = B(W ) (see Section 6). Application of BD simplifies calculations since it decomposes
the supremum operation in (5) or (6) allowing each (ys′ , x′

s′ ) to be solved for separately conditional on the multipliers μ
and η, which are solved for in the outer inf. However, its application still involves potentially extended real-valued value
functions.

We extract from BD an operator D that relocates calculations to an alternative space of value functions defined on a
“Pareto weight” domain. The key advantage of doing so is that for many problems, including this one, these functions can
be restricted to be real-valued. Grouping terms involving ys′ and x′

s′ together, the Lagrangian Ls(W ) may be reorganized to
give:

Ls(W )
(

y, x′;μ,η
)=

∑
S

{
f
(
s′, ys′

)+ (μ + ηs′)ys′ + β
(
W
(
x′

s′
)+ (μ + ηs′)x′

s′
)}

Q
(
s, s′).

Consequently, BD may be rewritten as:

BD(W )(s, x) = inf
μ∈R

inf
η∈RS+

∑
S

{(
sup

ys′ ∈C(s′)
f
(
s′, ys′

)+ (μ + ηs′)ys′
)

+ β
(

sup
x′

s′ ∈R
W
(
x′

s′
)+ (μ + ηs′)x′

s′
)}

Q
(
s, s′)− μx.
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It follows that application of BD can be broken into three steps. In the first step, the continuation value function is relocated
to the space of Pareto weights by solving:

∀s′,μ′ ∈ S × R, V
(
s′,μ′)= sup

x′∈R
W
(
s′, x′)+ μ′x′.

In the second step, the value function V is combined with the (dual) current objectives:

νs′(μ,η) = sup
y∈C(s′)

f
(
s′, y

)+ (μ + ηs′)y,

and the updating functions, μ′
s′ (μ,η) = μ+ηs′ , to give a new objective over η. The infimum of this objective over η is then

calculated:

D(V )(s,μ) = inf
η∈RS+

∑
S

{
νs′(μ,η) + βV

(
s′,μ′

s′(μ,η)
)}

Q
(
s, s′). (7)

In the third step the value function D(V ) is returned to the promise-domain with an infimum operation over μ:

BD(W )(s, x) = inf
μ∈R

D(V )(s,μ) − μx.

Now consider extracting the operator D (defined in (7)) from BD . Under Assumptions 1 and 2,

W ∗(s, x) = inf
μ∈R

V ∗(s,μ) − μx, (8)

where V ∗ is a fixed point of D : V ∗ = D(V ∗). Moreover, V ∗ is the value function from the Pareto problem:

V ∗(s,μ) = sup
Ω1

F
(
s, y∞)+ μ

∑
s′∈S

U
(
s′, y∞)Q

(
s, s′).

Significantly, since Ω1 is non-empty and F and U are bounded on Ω1, V ∗ is real-valued. Thus, (3) or (4) may be solved by
iterating with D on a space of real-valued functions to obtain V ∗ . W ∗ may then be recovered as in (8) or, alternatively, the
optimal value in (3) may be obtained directly as V ∗(s,0).

Example 2 (Hidden information: IID shocks). Our next example is a hidden information problem of the sort considered by
Atkeson and Lucas (1992) and Farhi and Werning (2007). An agent experiences privately observed taste shocks {st}∞t=1 over
her life. These shocks take values in the finite set S and are assumed to be i.i.d. with per period distribution Q ∈ RS . The
agent values consumption processes c∞ = {ct}∞t=1, ct : St → R+ , according to:

∞∑
t=1

δt−1 E
[
st v
(
ct
(
st))],

where δ ∈ (0,1) and v : R+ → Y = [y, y), −∞ < y < y � ∞.
We re-express the analysis in terms of utility-from-consumption. Given a consumption process c∞ , the corresponding

utility plan is y∞ = {yt}∞t=1, where yt(st) = v(ct(st)). Let U (s′, y∞) =∑∞
t=1 δt−1 E[st yt(st) | s1 = s′] denote the agent’s life-

time payoff from utility plan y∞ conditional on first period shock s′ and let Ω0 = {y∞ | ∀t, yt : St → Y } denote the set of
plans. Without loss of generality attention may be restricted to utility plans that induce the agent to truthfully report the
shocks she receives. Such plans satisfy the incentive-compatibility conditions, for all t , st−1, s′ 	= ŝ,

s′ yt
(
st−1, s′)+ δ

∑
s′′∈S

U
(
s′′, y∞

t+1

(
st−1, s′))Q

(
s′′)� s′ yt

(
st−1, ŝ

)+ δ
∑
s′′∈S

U
(
s′′, y∞

t+1

(
st−1, ŝ

))
Q
(
s′′), (9)

where s′ denotes a true shock, ŝ a lie and y∞
t+1(st) is the continuation of y∞ after st . Let Ω1 denote the set of plans in Ω0

satisfying these constraints.
A principal seeks to maximize a discounted stream of utility to the agent net of a resource cost. The principal’s per

period objective is given by f (s′, y) = s′ y − ψh(y), where ψ ∈ R++ is the shadow price of resources and h : Y → R+ is the
inverse of v . The following assumption is imposed directly on h.

Assumption 3. h is strictly convex, increasing, continuous and differentiable on the interior of Y . In addition, h(y) = 0,
limy↑y h(y) = ∞, limy↓y h′(y) = 0 and limy↑y h′(y) = ∞.

The principal uses a discount factor β ∈ [0,1); her lifetime payoff is given by: F (y∞) =∑∞
t=1 βt−1 E[ f (st , yt(st))]. Given

Assumption 3, f is bounded above and F is well defined, though possibly −∞-valued. Atkeson and Lucas (1992) assume
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δ = β; Farhi and Werning (2007) assume δ < β . The planner’s problem is supΩ1
F (y∞). The promise-perturbed version of

this problem is obtained, as previously, by augmenting Ω1 with a “promise-keeping” condition:

W ∗(x) = sup
Ω1(x)

F
(

y∞), (10)

with:

Ω1(x) =
{

y∞ ∈ Ω1

∣∣∣ x =
∑
s′∈S

U
(
s′, y∞)Q

(
s′)}

and W ∗(x) = −∞ if Ω1(x) = ∅. W ∗ satisfies a Bellman equation W ∗ = B(W ∗),

B(W )(x) = sup
Γ (x)

∑
s′∈S

{
f
(
s′, ys′

)+ βW
(
x′

s′
)}

Q
(
s′),

with choice set A = Y S × RS and constraint correspondence Γ : R → 2A :

Γ (x) =
⎧⎨⎩(y, x′) ∈ A

∣∣∣∣∣ x =
∑
s′∈S

[
s′ ys′ + δx′

s′
]

Q
(
s′)

s′ ys′ + δx′
s′ � s′ ŷs + δx′̂

s,
(
s′, ŝ

) ∈ M

⎫⎬⎭ .

M = {(s′, ŝ) ∈ S2, s 	= ŝ} gives the set of M = S(S − 1) constraint indices.
Proceeding through the same steps as before and assigning ηs′ ,̂s to the (s′, ŝ)-incentive constraint, we obtain the dual

operator:

D(V )(μ) = inf
η∈RM+

∑
S

{
νs′(μ,η) + βV

(
μ′

s′(μ,η)
)}

Q
(
s′), (11)

where now

νs′(μ,η) = sup
y∈Y

f
(
s′, y

)+(μs′ +
∑
ŝ 	=s′

ηs′ ,̂s

Q (s′)
s′ −

∑
ŝ 	=s′

η̂s,s′

Q (s′)
ŝ

)
y,

and the updating function is

μ′
s′(μ,η) = δ

β

(
μ +

∑
ŝ 	=s′

ηs′ ,̂s

Q (s′)
−
∑
ŝ 	=s′

η̂s,s′

Q (s′)

)
.

Once more D relocates calculations to an alternative space of value functions defined on a “Pareto weight” domain. Under
Assumption 3 and additional regularity conditions that we describe below V ∗ = D(V ∗) where V ∗ is the value function from
the Pareto problem:

V ∗(μ) = sup
Ω1

F
(

y∞)+ μ
∑
s′∈S

U
(
s′, y∞)Q

(
s′).

Example 3 (Hidden information: Markov shocks). Suppose that everything is as in Example 2 except that now shocks evolve
according to a Markov process with transition Q from s0. The planner’s problem is: supΩ1

F (s, y∞), with Ω1 modified
to include Markov shocks and F (s, y∞) =∑∞

t=1 βt−1 E[ f (st , y∞
t (st)) | s0 = s]. As in Fernandes and Phelan (2000), to ob-

tain a recursive problem, it is necessary to augment Ω1 with “ex post” promise-keeping constraints that compel promises
conditional on each period 1 shock, i.e. for each x ∈ RS ,

Ω1(x) = {y∞ ∈ Ω1
∣∣ ∀s′ ∈ S, xs′ = U

(
s′, y∞)}.

The associated family of promise-constrained problems is then, for each (s, x) ∈ S × RS ,

W ∗(s, x) = sup
Ω1(x)

F
(
s, y∞), (12)

where again W ∗(s, x) = −∞ if Ω1(x) = ∅ (and x is not incentive-feasible). This time direct characterization of the set of
incentive-feasible promises is more complicated.

To derive the recursive form of the promise-constrained problems (12), let A = Y S × RS×S and modify the constraint
correspondence Γ : RS → 2A to include the ex post promise-keeping constraints:

Γ (x) =

⎧⎪⎪⎨⎪⎪⎩
(

y, x′) ∈ A

∣∣∣∣∣
xs′ = s′ ys′ + δ

∑
s′′

x′
s′,s′′ Q

(
s′, s′′)

s′ ys′ + δ
∑

s′′
x′

s′,s′′ Q
(
s′, s′′)� s′ ŷs + δ

∑
s′′

x′̂
s,s′′ Q

(
s′, s′′), (s′, ŝ

) ∈ M

⎫⎪⎪⎬⎪⎪⎭ .
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Define the Bellman operator B on W = {W : S × RS → R ∪ {−∞}} according to:

B(W )(s, x) = sup
Γ (x)

∑
s′∈S

{
f
(
s′, ys′

)+ βW
(
s′, x′

s

)}
Q
(
s, s′). (13)

Again standard arguments give W ∗ = B(W ∗) and once more W ∗ is extended real-valued as a function on S × RS (and as
noted the set upon which it is finite is more complicated).

Following the same steps as before, we obtain the dual operator:

D(V )(s,μ) = inf
η∈RM+

∑
S

{
νs,s′(μ,η) + βV

(
s′,μ′

s,s′(μ,η)
)}

Q
(
s, s′), (14)

where:

νs,s′(μ,η) = sup
y∈Y

f
(
s′, y

)+(μs′ s
′ +
∑
ŝ 	=s′

ηs′ ,̂s

Q (s, s′)
s′ −

∑
s 	=s′

ηs,s′

Q (s, s′)
ŝ

)
y

and the weight updating function is μs,s′ = {μs,s′,s′′ }s′′∈S with:

μ′
s,s′,s′′(μ,η) = δ

β

(
μs′ +

∑
ŝ 	=s′

ηs′ ,̂s

Q (s, s′)
−
∑
ŝ 	=s′

η̂s,s′

Q (s, s′)
Q (̂s, s′′)
Q (s′, s′′)

)
.

Again the operator D relocates calculations to an alternative space of value functions defined on a “Pareto weight” domain
and V ∗ = D(V ∗), where V ∗ is the value function from the Pareto problem.

3. A framework for dynamic incentive problems

The previous section sketched in the context of examples how recursive and dual recursive problems may be associated
with dynamic incentive problems. In the remainder of the paper we formalize and generalize these ideas. We give sufficient
conditions for optimal value and dual value functions to be fixed points of relevant Bellman operators and show how these
operators may be used to find the associated value functions and (restrictions on) the associated policy functions. We begin
by presenting a dynamic incentive framework general enough to encompass many economic applications including the three
from the previous section. The framework incorporates a principal who can commit and has no private information and a
single incentive-constrained agent. In Section 7 we show how this framework may be extended to encompass problems
with multiple agents and/or without a committed principal.

Let Y ⊂ Rm denote a set of actions and S a finite set of shock values as before. Identify time with the natural numbers:
t ∈ N. Let st be an S-valued random variable describing the shock in period t and st an St -valued random variable describing
shock histories up to period t . Let C : S → 2Y \ {∅} denote a correspondence giving the set of actions potentially available to
the agent in each shock state.

A plan is a sequence y∞ = {yt}∞t=1 with yt : St → Y and yt(st) ∈ C(st). Let Q denote a Markov transition for shocks,
which, given our finiteness assumption, we identify with an S × S-matrix of positive transition probabilities {Q (s, s′)}. Let
u : Graph C → R give the agent’s per period payoff as a function of the current shock and action and let δ ∈ [0,1) denote
the agent’s discount factor. Given s1 = s, the agent’s lifetime payoff function from an action plan y∞ is:

U
(
s, y∞) := lim inf

T →∞

T∑
t=1

δt−1 E
[
u
(
st , yt

(
st)) ∣∣ s1 = s

]
.

Define:

Ω0 =
{

y∞
∣∣∣ ∀t, yt

(
st) ∈ C(st), ∀s ∈ S, U

(
s, y∞)= lim

T →∞

T∑
t=1

δt−1 E
[
u
(
st , yt

(
st)) ∣∣ s

] ∈ R

}
.

We restrict attention to plans in Ω0. Let y∞
t (st−1) denote the continuation of plan y∞ following the shock history st−1.

The restrictions in Ω0 are supplemented with forward-looking incentive constraints. These constraints guarantee that a
given plan is optimal for an agent relative to some set of feasible deviations. The key piece of constraint structure in the
examples is the linearity of incentive constraints in continuation payoffs, see, for example, (2) or (9). However, in other
dimensions the constraints vary: in the hidden information problems they run across states, while in limited commitment
problems they are state specific. This leads us to write down a constraint structure that is additive across time and states
and linear in agent continuation payoffs, but is otherwise general. Constraints are constructed from three elements: an index
set M, a family of functions {um} and a family of continuation payoff weights {qm

s,s′ }. The index m ∈ M := {1, . . . , M} iden-
tifies the constraint. The function um : Graph C → R describes how current actions enter the m-th constraint. Continuation
payoffs enter the incentive constraints linearly; q = {qm

s,s′ } weights them. Specifically, qm
s,s′ weights the continuation payoff

following the s-th current action and s′-th future shock in the m-th constraint. Collecting these elements together, we have
the following definition.
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Definition 1. A plan y∞ = {yt}∞t=1 ∈ Ω0 is incentive-feasible if for each t ∈ N, st−1 and m ∈ M, Gm(y∞
t (st−1)) � 0, where

Gm(y∞)=
∑
s∈S

[
um(s, y1(s)

)+ δ
∑
s′∈S

U
(
s′, y∞

2 (s)
)
qm

s,s′

]
. (15)

Let Ω1 denote the set of incentive-feasible plans (belonging to Ω0).

The function Gm allows any current action y1(s) and continuation payoff U (s′, y∞
2 (s)) to enter any constraint m. By

restricting um and the weights qm appropriately, the constraints in the examples are recovered. For example, the constraints
in the limited commitment problem (2) may be obtained from (15) by setting, for each current shock m ∈ S,

um(s, y) =
{

y if s = m,

0 if s 	= m
and qm

s,s′ =
{

Q (s, s′) if s = m,

0 if s 	= m.

Thus, actions and payoffs not associated with the m-th shock are zeroed out of the m-th constraint. Note that here the
weights qm

s,s′ may be factored as qm
s Q (s, s′), where qm

s = 1 if s = m and 0 otherwise.
Similarly, the constraints (9) in the hidden information problem are obtained from (15) by setting M = {(m,m′) ∈ S,

m 	= m′} and for the (m,m′)-th constraint (i.e. the constraint in which the truthful report m is compared to the lie m′),

um,m′
(s, y) =

{
my if s = m,

−my if s = m′,
0 otherwise

and qm,m′
s,s′ =

{
Q (s′) if s = m,

−Q (s′) if s = m′,
0 otherwise.

Again the continuation payoff weights qm,m′
s,s′ have a simple structure: they may be factored as qm,m′

s Q (s′), where qm,m′
s = 1

if s = m (“truth”), −1 if s = m′ (“lie”), and 0 otherwise. For hidden information problems with Markov shocks the functions
um,m′

remain the same, but the payoff weights become:

qm,m′
s,s′ =

{
Q (m, s′) if s = m,

−Q (m, s′) if s = m′,
0 otherwise.

These weights can no longer be factored into a part that depends on the constraint (m,m′) and a part that depends on the
future shock s′ as in the i.i.d. case.

Let f : Graph C → R denote the principal’s per period payoff as a function of the current shock and action. Together f ,
a discount factor β ∈ [δ,1) and Q give the principal’s lifetime payoff, F : S × Ω1 → R, R = R ∪ {−∞} ∪ {∞}, where:

F
(
s, y∞) := lim inf

T →∞

T∑
t=1

βt−1 E
[

f (st, yt)
∣∣ s0 = s

]
,

and F depends on the date 0 not the date 1 shock.

Assumption 4. f , β , Q , Ω1 are such that

(i) Ω1 	= ∅,
(ii) for all s ∈ S and y∞ ∈ Ω1, F (s, y∞) = limT →∞

∑T
t=1 βt−1 E[ f (st, yt) | s0 = s] ∈ R ∪ {−∞} and

(iii) supS×Ω1
F (s, y∞) ∈ R.

Assumptions 1, 2 and 3 guarantee Assumption 4 in the examples of Section 2. The principal’s problem is:

sup
Ω1

F
(
s, y∞). (16)

4. A recursive primal formulation

We now derive a recursive formulation for the class of incentive problems presented in Section 3. This derivation is not
an immediate application of standard results as in, for example, Stokey et al. (1989). In standard recursive settings a state
space and a recursive constraint correspondence are given as part of the primitives of the problem. From these the set
of feasible plans is constructed. In contrast, in many incentive problems this derivation is reversed: the set of (incentive)
feasible plans is given and from it the state space and the recursive constraint correspondence are recovered. The recursive
structure in many dynamic incentive settings is, thus, implicit.

In specific settings, Green (1987), Kocherlakota (1996) and Fernandes and Phelan (2000) have shown how a state space
and a recursive constraint correspondence may be associated with a contracting problem and, hence, a recursive formulation
obtained. In their formulations states are identified with utility promises to agents. We show that this approach is applicable
to the general dynamic incentive problems of Section 3.
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We identify two cases. These cases determine whether ex ante promises (conditional on past shocks) or ex post promises
(conditional on present shocks) are needed in the recursive formulation and, hence, determine the dimension of the state
space. The cases are distinguished by the structure of the payoff weights q in their constraints. In Case 1, for all m ∈ M and
s, s′ ∈ S, the constraint weights may be factored as qm

s,s′ = qm
s Q (s, s′) and we say that they are decomposable. In this case,

the incentive constraints (15) can be rewritten as:∑
s∈S

[
um(s, yt

(
st−1, s

))+ δqm
s

∑
s′∈S

U
(
s′, y∞

t+1

(
st−1, s

))
Q
(
s, s′)]� 0, (17)

with the qm
s term factored through the summation over next period shocks s′ . Thus, the continuation plan y∞

t+1(st−1, s)

affects the constraint functions at st−1 only insofar as it affects
∑

s′∈S U (s′, y∞
t+1(st−1, s))Q (s, s′). In Case 2, some (or all)

of the weights qm
s,s′ cannot be factored as qm

s Q (s, s′) and we say that the weights q are non-decomposable. In this case,

the impact of y∞(st−1, s) on the constraint functions is not adequately summarized by
∑

s′∈S U (s′, y∞
t+1(st−1, s)) Q (s, s′).

Instead, the entire vector {U (s′, y∞
t+1(st−1, s)}s′∈S must be used. Our one-sided commitment problem belongs to Case 1, our

hidden information problems with i.i.d. and Markov shocks belong to Cases 1 and 2 respectively.
For Case 1 problems, set N = 1 and for Case 2 problems, set N = S . In what follows N will give the dimension of the

state space. Define the family of promise-perturbed problems by, for all (s, x) ∈ S × RN ,

W ∗(s, x) = sup
Ω1(s,x)

F
(
s, y∞) (18)

where in Case 1:

Ω1(s, x) =
{

y∞ ∈ Ω1

∣∣∣ x =
∑
s′∈S

U
(
s′, y∞)Q

(
s, s′)}, (19a)

and in Case 2:

Ω1(s, x) = {y∞ ∈ Ω1
∣∣ for each s′ ∈ S, xs′ = U

(
s′, y∞)}. (19b)

The variable x ∈ RN is referred to as a promise. Thus, (18) augments the original problem (16) with additional promise-
keeping constraints (contained in (19)). We retain our convention that W ∗(s, x) = −∞ if Ω1(s, x) = ∅. This is natural since
we do not at this stage know which (s, x)-states are consistent with non-empty constraint sets and is consistent with our
later treatment of dual problems. It does, however, mean that W ∗ is an extended real-valued function on all of S × RN . Let
Dom W ∗ = {(s, x) ∈ S × RN | Ω1(s, x) 	= ∅} denote the effective domain of W ∗ on which W ∗ is not equal to −∞. It coincides
with the set of incentive-feasible shock-promise pairs. Definition 2 describes a mild regularity condition that excludes certain
pathological functions.

Definition 2. A function W : S × RN → R is sup-proper if for each s ∈ S, W (s, ·) is nowhere equal to ∞ and not everywhere
equal to −∞. Let W denote the set of sup-proper functions with domain S × RN .

A consequence of Assumption 4 is that W ∗ is sup-proper (see Appendix A). Let A :=∏S C(s) × RN S . Define the case 1
constraint correspondence Γ : S × RN → 2A :

Γ (s, x) =

⎧⎪⎪⎨⎪⎪⎩
(

y, x′) ∈ A

∣∣∣∣∣
x =

∑
s′∈S

[
u
(
s′, ys′

)+ δx′
s′
]

Q
(
s, s′)

∑
s′∈S

[
um(s′, y

)+ δqm
s′ x′

s′
]
� 0, m ∈ M

⎫⎪⎪⎬⎪⎪⎭ (20)

and the case 2 correspondence:

Γ (s, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

y, x′) ∈ A

∣∣∣∣∣
xs′ = u

(
s′, ys′

)+ δ
∑
s′′∈S

x′
s′,s′′ Q

(
s′, s′′), s′ ∈ S

∑
s′∈S

[
um(s′, y

)+ δ
∑
s′′∈S

qm
s′,s′′ x

′
s′,s′′

]
� 0, m ∈ M

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (21)

Definition 3. The Bellman operator B is defined on W according to, for W ∈ W and each (s, x) ∈ S × RN ,

B(W )(s, x) = sup
Γ (s,x)

∑
s′∈S

{
f
(
s′, ys′

)+ βW
(
s′, x′

s′
)}

Q
(
s, s′).

The corresponding Bellman equation is given by: W = B(W ), W ∈ W .
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Note that since W ∈ W , S is finite and f is real-valued on Graph C , B(W ) is well defined, though possibly −∞-valued.
Proposition 1 below establishes that W ∗ satisfies the Bellman equation and that solutions to (18) are consistent with the
associated optimal policy correspondence. A partial converse to Proposition 1 is supplied in Section 5.

Proposition 1. If Assumption 4 holds, then W ∗ = B(W ∗). Also, if y∞ solves (18) at (s0, x1), then there is a corresponding promise
plan x∞ = {xt}∞t=1 such that (y1, x2) ∈ G(s0, x1) and for each t > 1 and st−1 , (yt(st−1), xt+1(st−1)) ∈ G(st−1, xt(st−1)) where:

G(s, x) = arg max
Γ (s,x)

∑
s′∈S

{
f
(
s′, ys′

)+ βW ∗(s′, x′
s′
)}

Q
(
s, s′).

Proof. See Appendix A. �
A difficulty with B In contrast to standard problems, in (18) there is no exogenously given state space on which the con-
straint correspondence Ω1 is non-empty and W ∗ real-valued. The effective domain of W ∗ , Dom W ∗ = {(s, x) ∈ S × RN |
Ω1(s, x) 	= ∅}, constitutes such a state space, but it is endogenous and must be solved for along with W ∗ .3

One approach is to solve for W ∗ in two steps. In the first an approximation to the domain of W ∗ is obtained, in the
second the finite-valued restriction of W ∗ to the approximated domain is calculated.4 Alternatively, a value iteration using
B may be performed directly on (a subset of) W . This effectively combines the steps of the first approach and allows for
the joint determination of W ∗ and Dom W ∗ . It is the approach we take. Analytical results are available once an appropriate
convergence concept for extended real-valued functions has been settled upon. In what follows, we use the concept of hypo-
convergence and give sufficient conditions for value iteration under B to be hypo-convergent to the true value function. We
remark that our approach is sufficiently flexible to allow for non-compact valued constraint correspondences Γ . This is
useful for problems in which the incentive constraints do not restrict future utility promises to a bounded set and later in
dual formulations when multipliers are similarly unrestricted.

5. Dynamic programming

We begin by introducing a useful convergence concept for extended real-valued functions.

Definition 4. A sequence of functions {Wn}∞n=1, Wn : S × RN → R, hypo-converges to W : S × RN → R written Wn
h−→ W if

for each s ∈ S and any x ∈ RN ,

(1) ∀xn → x, lim supn Wn(s, xn) � W (s, x) and
(2) ∃xn → x, lim infn Wn(s, xn) � W (s, x). W is called the hypo-limit of {Wn}∞n=1.

Hypo-convergent sequences of functions have several desirable properties. In particular, if Wn
h−→ W and xn ∈

arg maxx∈RN Wn(s, x), then all cluster points of the sequence {xn} maximize W (s, ·). Thus, hypo-convergent value iteration
allows policies as well as values to be approximated. We will also use the following definition.

Definition 5. Let Z ⊂ Rn and g : Z → R. g is upper-level bounded if for each v ∈ R the upper level set u-levv g = {z ∈ Z |
g(z) � v} is bounded (and possibly empty).

A real-valued function defined on a bounded domain is immediately upper-level bounded. We impose the following
condition.5

Assumption 5. C is closed and non-empty valued. f : Graph C → R is upper semicontinuous and upper-level bounded. Each
um : Graph C → R is upper semicontinuous and u : Graph C → R is continuous.

Theorem 1 below combines Assumptions 4 and 5 with the requirement that there exists an upper bounding function W0
for W ∗ satisfying certain properties. Under these conditions, it establishes that a value iteration from W0 (hypo-)converges
to a fixed point of B.

3 In intertemporal consumption problems, No Ponzi game conditions render some initial debt levels infeasible and, hence, define an endogenous state
space. For these problems the endogenous state space is a collection of intervals indexed by the shock and unbounded at the top. The lower bounds are
called “natural debt limits”.

4 See, for example, Abraham and Pavoni (2008).
5 Language convention: if a function g : S × Rn → R is such that each g(s, ·) satisfies a property (e.g. upper semicontinuity, concavity, etc.), we will simply

say that g possesses that property.
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Theorem 1. Let Assumptions 4 to 5 hold. Let W0 be sup-proper, upper semicontinuous and upper-level bounded with (1) W0 � B(W0)

and (2) W0 � W ∗ . For n = 0,1,2, . . . , let Wn+1 = B(Wn). Then Wn
h−→ W∞ with W∞ � W ∗ and W∞ = B(W∞).

Proof. See Appendix A. �
The assumptions made in the examples of Section 2 ensure Assumption 4. They also ensure Assumption 5 up to the

closed valuedness of C in the hidden information problems.6 In each of the examples it may be verified that the value
function from the incentive unconstrained problems W (s, x) = supΩ0(s,x) F (s, y∞), where Ω0(s, x) omits the incentive con-
straints from Ω1(s, x), satisfies the requirements on W0.

Although Theorem 1 gives conditions for convergent value iteration, it does not ensure that the limit of the iteration is
the true value function W ∗ . To guarantee this Theorem 2 below imposes a further restriction on W0. Let ‖ · ‖ : RN → R+
denote the Euclidean norm on RN .

Definition 6. W ∈ W is sup-coercive in expectation if for all s0 ∈ S and promise plans x∞ = {xt+1 : St → RN } with
lim supt→∞ δt E[‖xt+1‖ | s0] 	= 0, lim supt→∞ βt E[W (st , xt) | s0] = −∞.

W is sup-coercive in expectation if an “exploding” promise process implies divergence of the discounted expected value
of W to −∞.

Theorem 2. Let the assumptions of Theorem 1 hold. Assume additionally that W0 is sup-coercive in expectation. For n = 0,1, . . . , let
Wn+1 = B(Wn). Then Wn

h−→ W ∗ .

Proof. See Appendix A. �
Sup-coercivity in expectation is satisfied if W is finite on a bounded set and is otherwise −∞. Evidently, the incentive

unconstrained value function W satisfies this condition if the set {(s, x): Ω0(s, x) 	= ∅} is bounded, as is the case in the
one-sided limited commitment problem or the hidden information problems with bounded agent utility. When agent utility
is unbounded above in the hidden information problems, the Inada condition and convexity of h ensure that f and, hence,
W satisfy sup-coercivity properties.7

The following corollary is a straightforward consequence of the previous result’s proof. It asserts that any plan generated
by the optimal policy correspondence G from the recursive problem solves the original sequence problem (18).

Corollary 1. Let the assumptions of Theorem 2 hold. If y∞ satisfies (yt(st−1), xt+1(st−1)) ∈ G(st−1, xt(st−1)) for each shock history
st−1 and a promise plan x∞ , then y∞ solves (18) at (s0, x1). In particular, if W ∗(s0, x1) > −∞, then there is an action plan satisfying
the preceding condition and, hence, an optimal solution to (18) at (s0, x1).

Proof. See Appendix A. �
We now show that the value iteration considered above not only generates sequences of values that converge to the

optimal value, but also sequences of approximate policies that converge to optimal policies. This result exploits implications
of hypo-convergence.

Proposition 2. Let the assumptions of Theorem 2 hold and let Wn be defined as in that proposition. Assume that W ∗(s, x) > −∞ and
for each n ∈ N and ε > 0, let:

Gn
ε(s, x) =

{(
y, x′) ∈ Γ (s, x)

∣∣∣∑
s′∈S

{
f
(
s′, ys′

)+ βWn
(
s′, x′

s′
)}

Q
(
s, s′)+ ε > Wn+1(s, x)

}
.

For any pair of sequences {εn} and {yn, x′
n} with εn ↓ 0 and (yn, x′

n) ∈ Gn
εn

(s, x), all cluster points of {yn, x′
n} belong to G(s, x).

Proof. See Appendix A. �
6 In our hidden information problems, C(s) is identified with the range of the agent’s utility function: [y, y). If y ∈ R (i.e. does not equal ∞), then C(s)

is not closed-valued. A small modification of our arguments deals with this case, see Remark 2 in Appendix B.
7 For example, if β = δ and shocks are i.i.d., W (x) = 1

1−β
E[sys(x) − ψh(ys(x))] and limx→∞ ys(x) = ∞, where ys is the (static) optimal policy function

from the incentive-unconstrained problem. If limt→∞ βt xt > 0, then limt→∞ βt W (xt ) � limt→∞ βt xt (1 − ψs
1−β

h(E[y(xt )])
E[y(xt )] ) = −∞. The concavity of W then

gives the desired result.
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6. Dual recursive formulations

In this section, we use a Lagrangian to pair the Bellman operator B with its dual counterpart BD . We show that when
restricted to a particular domain of functions, B and BD coincide. Then we decompose the dual Bellman operator BD . We
extract one of its components, which we label D , and show that, under certain conditions, value iteration can be conducted
with D rather than B. Our focus on D is motivated by practical computational considerations. In addition, our tying of
D to B allows us to derive convergent value iteration results for D as easy consequences of the results in the previous
section.

6.1. A first dual formulation

We focus on Case 1 problems with decomposable constraint weights, deferring the extension to Case 2 settings until
Section 7. Recall the definition of B:

B(W )(s, x) = sup
Γ (s,x)

∑
S

{
f
(
s′, ys′

)+ βW
(
s′, x′

s′
)}

Q
(
s, s′), (22)

with, once again, sup ∅ = −∞ and G(W ) the associated policy correspondence. As described in the examples, the family
of optimizations (22) may be re-expressed as sup–inf problems using the Lagrangians Ls(W ) : A × Φ → R, where A =∏

S C(s′) × RS is the choice set, Φ := R × RM+ , with generic element (μ,η), is the multiplier set and:

Ls(W )
(

y, x′;μ,η
)=

∑
S

{
f
(
s′, ys′

)+ βW
(
s′, x′

s′
)}

Q
(
s, s′)+ μ

[∑
S

[
u
(
s′, ys′

)+ δx′
s′
]

Q
(
s, s′)]

+
∑
M

ηm
[∑

S
um(s′, ys′

)+ δ
∑

S
qm

s′ x′
s′

]
. (23)

As described previously, B(W ) and G(W ) may be re-expressed as:

B(W )(s, x) = sup
A

inf
Φ

Ls(W )
(

y, x′;μ,η
)− μx (24)

and

G(W )(s, x) = arg max
A

inf
Φ

Ls(W )
(

y, x′;μ,η
)− μx.

We refer to problems in the form (24) as primal problems.
Dual problems are obtained from primal problems by interchanging the supremum and infimum operations. In the

context of (24), this leads to the “dual” operator BD :

BD(W )(s, x) = inf
Φ

sup
A

Ls(W )
(

y, x′;μ,η
)− μx. (25)

We emphasize that the dual problems BD(W ) are obtained from the recursive primal problems B(W ) and that they
involve the dualization of only current constraints (i.e. the absorption of only these constraints into the Lagrangian). This
“recursivize-then-dualize” approach allows us to avoid explicit treatment of the infinite dimensional dual space associated
with the original sequential problem (16). In contrast, the alternative “dualize-then-recursivize” approach which pairs the
sequential problem (16) with a dual and then seeks a recursive formulation of the latter necessitates consideration of this
space.

The order of the infimum and supremum operations in (24) and (25) matters. Classical weak duality assures BD(W ) �
B(W ), but, in general, equality of values is not guaranteed and a duality gap, BD(W )(s, x) > B(W )(s, x), is possible.
Proposition 3 below rules this out. It requires similar properness, upper semicontinuity and level boundedness properties to
those used in the previous section. Now, however, additional concavity assumptions are needed. To state them, we embed
the family of problems (24) into a larger family that incorporates perturbations of the incentive constraints. For W ∈ W and
each (s, x, p, y, x′) ∈ S × RN+M × A, let:

Ũ (W )
(
s, x, p, y, x′) :=

{∑
S{ f (s′, ys′) + βW (s′, x′

s′)}Q (s, s′) if Γ̃ (s, x, p) 	= ∅,

−∞ otherwise

where:

Γ̃ (s, x, p) =

⎧⎪⎪⎨⎪⎪⎩
(

y, x′) ∈ A

∣∣∣∣∣
x =

∑
S

[
u
(
s′, ys′

)+ δx′
s′
]

Q
(
s, s′)

∑
S

[
um(s′, y

)+ δqm
s′ x′

s′
]
� pm, m ∈ M

⎫⎪⎪⎬⎪⎪⎭ .



Author's personal copy

514 M. Messner et al. / Review of Economic Dynamics 15 (2012) 501–525

Ũ (W ) is simply the principal’s objective in a recursive problem in which the incentive constraints are perturbed by p.
Infeasible choices are encoded as −∞ payoffs. By setting p = 0 our earlier problems are recovered: B(W )(s, x) =
supA Ũ (W )(s, x,0, y, x′). We define Ũ (W ) to be concave-like if for each s, (x0, p0, y0, x′ 0), (x1, p1, y1, x′ 1) and λ ∈
[0,1], there is a (yλ, x′λ) such that Ũ (W )(s, λx0 + (1 − λ)x1, λp0 + (1 − λ)p1, yλ, x′λ) � λŨ (W )(s, x0, p0, y0, x′ 0) + (1 −
λ)Ũ (W )(s, x1, p1, y1, x′ 1). Note that concave-likeness does not require that yλ and x′λ be convex combinations of y0 and
y1 and x′ 0 and x′ 1. Hence, it is weaker than concavity of each Ũ (W )(s, ·). It is easy to see that if Ũ (W ) is concave-like,
then B(W ) is concave. Let C denote the set of concave, upper semicontinuous, sup-proper functions with domain S × RN .

Assumption 6. If W ∈ C , then Ũ (W ) is concave-like.

A sufficient condition for Assumption 6 to hold is that f and um are concave and u is affine. These conditions ensure
that if W ∈ C , then Ũ (W ) is not just concave-like, but is concave. They hold in the examples of Section 2. Imposing
Assumption 6, the following result obtains.

Proposition 3. Let Assumptions 4 to 6 hold. Assume that W is sup-proper, upper semicontinuous, upper-level bounded and concave.
Then BD(W ) = B(W ).

Under the conditions of Propositions 1 and 3 (with W ∗ substituted for W ),

W ∗ = B
(
W ∗)= BD(W ∗),

i.e. W ∗ satisfies the dual Bellman equation W ∗ = BD(W ∗).

6.2. Decomposing BD and a second dual formulation

The dual Bellman BD may be decomposed into component operators. We first give the following useful concept from
convex analysis.

Definition 7. Given g : RN → R, the function g� : RN → R, with:

g�
(
x�
)= sup

RN

〈
x, x�

〉− g(x)

and 〈·,·〉 : RN × RN → R the vector dot product operation, is called the conjugate of g . The mapping of a function to its
conjugate is called the Legendre–Fenchel transform. If g : S × RN → R, then we define its conjugate to be g� = {g(s, ·)�}S and
extend the definition of the Legendre–Fenchel transform accordingly.

Conjugation and the Legendre–Fenchel transform play an important role in duality theory (see, inter alia, Rockafellar,
1970). For our purposes, it will be useful to define two related operations, for g : S × RN → R, let:

D(g)(s,μ) = (−g)�(s,μ) = sup
x∈RN

〈x,μ〉 + g(s, x),

L(g)(s, x) = −(g�
)
(s, x) = inf

μ∈RN
−〈x,μ〉 + g(s,μ).

D gives the “conjugate of the negative” and L the “negative of the conjugate”. Roughly speaking, if W is a candidate value
function on a domain of utility promises, then V = D(W ) is the corresponding value function on a domain of Pareto weights.
Geometrically, it is the “upper envelope” of W . Conversely and under some regularity conditions, if V is a candidate value
function on a domain of Pareto weights, then W = L(V ) is the corresponding value function on a domain of utility promises.
Geometrically, it is the lower envelope of V . Fig. 1 illustrates.

Proposition 4 shows how BD can be decomposed into three steps. Loosely, the theorem asserts that applying BD

to a promise-domain value function W is equivalent to (i) transforming W into a Pareto domain value function via D ,
(ii) applying a “dual” operator D and (iii) converting the resulting value function back to the promise-domain via L. To
make the statement of the theorem precise, a definition and some notation is needed. We say that V : S × RN → R is inf-
proper if each V (s, ·) is nowhere −∞ and not everywhere ∞ (i.e. −V is sup-proper). Let V denote the set of inf-proper
functions on S × RN and F the set of extended real-valued functions on S × RN . Recall also that for Case 1 problems with
a single agent, N = 1.

Proposition 4. Define D :V → F by:

D(V )(s,μ) = inf
RM+

∑
S

(
νs,s′(μ,η) + βV

(
s′,μs′(μ,η)

))
Q
(
s, s′), (26)
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Fig. 1. W (s, ·) and V (s, ·) evaluated at x∗ and μ∗ . V (s,μ∗) is the largest vertical intercept of a line with normal (μ∗,1) that touches/intersects W (s, ·).
W (s, x∗) is the smallest vertical intercept of a line with normal (−x∗,1) that touches/intersects V (s, ·).

where:

νs,s′(μ,η) = sup
C(s′)

[
f
(
s′, ys′

)+ μu
(
s′, ys′

)+∑
M

ηmum(s′, ys′)

Q (s, s′)

]
and

μs′(μ,η) = δ

β

(
μ +

∑
M

ηmqm
s′

Q (s, s′)

)
.

Then:

LD D(W ) = BD(W ).

In particular, if Assumption 4 holds and BD(W ∗) = B(W ∗) = W ∗ , then W ∗ = LD D(W ∗).

Proof. See Appendix A. �
Interpretation of D and specific forms of it for one-sided limited commitment and hidden information problems were

given in Section 2.

6.3. Dual value iteration

Having defined D and related it to B, we now extract it and consider using it to solve dynamic incentive problems. This
requires some strengthening of assumptions.

Assumption 5′ . Assumption 5 holds. The function:
∑

S νs,s′ (μ,η)Q (s, s′) is bounded below.

We will also use the following definition.

Definition 8. W : S × RN → R is sup-coercive if it is bounded above and for each s,

lim sup
‖x‖→∞

W (s, x)

‖x‖ = −∞.

For functions in C , this strengthens our earlier sup-coercive in expectation condition. Previously, we introduced the
concept of hypo-convergence; its dual analogue is epi-convergence. If a sequence of functions {Wn}, Wn : S × RN → R,
hypo-converges to W : S × RN → RN (Wn

h−→ W ), then its negatives Vn = {−Wn} are said to epi-converge to V = −W . We
write Vn

e−→ V and call V the epi-limit of the negative sequence. The main result of the paper follows.

Theorem 3. Let Assumptions 4, 5′ and 6 hold. Let W0 ∈ C be sup-coercive and suppose that for each s ∈ S, 0 ∈ Dom W0(s, ·) and that
W0 � B(W0) � W ∗ . Define V 0 = D(W0) and V ∗ = D(W ∗). Then, Bn(W0)

h−→ W ∗ and Dn(V 0)
e−→ V ∗ . Also,
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V ∗(s,μ) = sup
Ω1

F
(
s, y∞)+ μ

∑
S

U
(
s′, y∞)Q

(
s, s′)

and V ∗ : S × RN → R, i.e. is real-valued.

Proof. See Appendix D. �
In words, the theorem says that under certain regularity conditions on primitives and starting points, B-value iteration

(hypo-)converges to the optimal promise-domain value function, while D-value iteration (epi-)converges to the optimal
Pareto problem value function. The two iterations are tied together via a conjugacy relationship: the iterates of one are the
(negatives of the) conjugates of the iterates of the other. As we have previously described, Assumptions 1, 2 and 3 ensure
Assumptions 4 and 6 hold in the examples of Section 2 (if agent utility is bounded above in the hidden information problems
a slightly modified version of Assumption 4 sufficient for Theorem 3 is needed). Assumption 5′ holds in these examples after
possible renormalization of agent utilities. For example, in the one-sided commitment problem, for each s′ , 0 ∈ C(s′) and
so νs,s′ (μ,η) � f (s′,0) = v(ω(s′) − h(b(s′))). Similarly, in the hidden information problems, utilities may be normalized so
that 0 ∈ C(s′) and νs,s′ (μ,η) � f (s′,0) = −ψh(0). W0 may be identified with the value function from a problem in which
the incentive constraints are not imposed (after renormalization of agent utilities to ensure 0 ∈ Dom W0(s, ·)). In all of the
examples, our assumptions ensure this function is sup-coercive.

Why use the D-operator? As previously indicated, a difficulty with B-value iteration is that it may involve extended
real-valued functions. In particular, if the agent has bounded payoffs, then some agent payoffs are infeasible and at
these W ∗ is −∞-valued. Thus, W ∗ is extended real-valued. In the bounded case, we clearly also have for each s,
lim‖x‖→∞ ‖x‖−1W ∗(s, x) = −∞, i.e. W ∗ is sup-coercive. By Rockafellar (1970, p. 116), for a sup-proper, concave, upper
semicontinuous function, sup-coercivity is equivalent to real-valuedness of (the negative of) the conjugate. Since V ∗ is the
negative of the conjugate of W ∗ , we have that if Assumptions 4, 5′ and 6 hold and the agent’s payoffs are bounded, then
W ∗ is extended real-valued, but V ∗ is real-valued. Thus, by choosing the starting point of the D-value iteration appro-
priately (i.e. to bound V ∗ above, but still to be real-valued), difficulties associated with extended real-valued functions are
avoided.

A further advantage of the D operator is that it permits the decomposition of the supremum operation across shocks. In
the prototypical dynamic programming problem, e.g. Stokey et al. (1989), constraints do not run across shock realizations.
Thus, it is possible to decompose problems across time and shocks, solving for current choices contingent on different cur-
rent shocks separately. This is, for example, the case in standard consumer choice problems in which the budget constraint
in a given shock-state does not depend on alternative unrealized shocks (and preferences are additively separable across
shocks). However, it is usually not the case in incentive problems. Either the incentive constraint or, if it involves an ex ante
utility promise, the promise-keeping constraint place restrictions across states and prevent choices in one shock state being
solved separately from those in another. This raises the dimension of the choice variables in the sup (or sup–inf) prob-
lem associated with B. In contrast, the inf–sup problem associated with D decouples shock specific supremum operations.
Consider the definition of D given in (26). Each supremum operation:

νs,s′(μ,η) := sup
C(s′)

[
f
(
s′, ys′

)+ μu
(
s′, ys′

)+∑
M

ηmum(s′, ys′)

Q (s, s′)

]
(27)

can be solved separately. The value functions from these component maximizations may then be embedded into the mini-
mization over multipliers η. This inter-shock decomposition complements the inter-period decomposition implicit in D and
further simplifies calculations. Additional simplification is possible if u and each um are affine in y. Notice this was the case
in the examples of Section 2. In this situation, if the constraints in C(s′) are non-binding, then νs,s′ is just a constant plus
the conjugate of − f (s′, ·) evaluated at a weighted sum of multipliers. If, in addition, f (s′, ·) is an additive sum of standard
functional forms, e.g. polynomial or exponential, then the conjugate of − f (s′, ·) is immediately available and no explicit
maximization needs to be done. This is commonly the case in applied problems, leading to considerable simplification. For
example, in the hidden information problem of Section 2, f (s′, y) = s′ y − ψh(y), where h is the inverse of the agent’s util-

ity function. If the latter is CRRA with coefficient σ , then h(y) = {(1 − σ)y} 1
1−σ . Applying standard rules for conjugation to

s′ y −ψh(y) (or direct calculation) gives: νs,s′ (μ,η) = d(s′ +αs′ (μ,η))
1
σ , where d is a constant and αs′ (μ,η) is the weighted

sum αs′ (μ,η) = μs′ +∑ŝ
ηs′ ,̂s

Q (s,s′) s′ −∑ŝ
η̂s,s′

Q (s,s′) ŝ. No explicit optimization is needed to construct νs,s′ .

6.4. Policies

So far in this section we have focused on values rather than policies. We now give two results relating to policies.
The first establishes that the optimal dual policy correspondence obtained by applying D to V ∗ = D(W ∗) gives necessary
conditions for optimal primal policies; the second establishes that under stronger (strict concavity) assumptions it gives
sufficient conditions as well. In addition, epi-convergent dual value iteration delivers a sequence of approximate policy
correspondences that converge to the optimal dual policy correspondence. We will need the following definition.
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Definition 9. Let g : RN → R. The sub-differential of g at x, g(x) finite, is given by:

∂ g(x) = {λ ∈ RN
∣∣ ∀x′ ∈ RN , g

(
x′)� g(x) + 〈λ,

(
x′ − x

)〉}
.

The elements of ∂ g(x) are called sub-gradients of g at x.

The application of D to the function V ∗ induces a policy correspondence Ψ where:

Ψ (s,μ) = {(η,μ′) ∣∣ η attains the minimum in D
(

V ∗)(s,μ) and μ′ = {μs′(μ,η)
}

s′
}
.

We say that {ηt,μt+1}, ηt : St−1 → RM+ and μt+1 : St → RN , is generated by Ψ from (s0,μ1) if (η1,μ2) ∈ Ψ (s0,μ1) and for
each st−1, (ηt(st−1),μt+1(st−1)) ∈ Ψ (st−1,μt(st−1)). Let:

Ξ(s,μ,η) =
{

y ∈ Y S
∣∣∣ ∀s′ ∈ S, ys′ ∈ arg max

C(s′)
f
(
s′, ỹs′

)+ μu
(
s′, ỹs′

)+∑
M

ηmum(s′, ỹs′)

Q (s, s′)

}
.

We say that a plan {yt} is generated by (Ψ,Ξ) from (s0,μ1) if there is a sequence {ηt ,μt+1} generated by Ψ such that
each yt(st−1) ∈ Ξ(st−1,μt(st−1), ηt(st−1)). Proposition 5 below shows that if the family of Lagrangians Ls(W ∗)(·,μ, ·)
admit saddle points, then {y∗

t } is optimal for the primal problem (18) at (s0, x1), with x1 a point of sub-differentiability of
−W ∗(s0, ·), only if it is generated by (Ψ,Ξ) from s0 and μ1 ∈ ∂(−W ∗)(s0, x1). In this sense, the policy correspondences
(Ψ,Ξ) obtained from the dual approach provide necessary conditions for an optimal primal solution.

Proposition 5. Let {y∗
t } solve (18) at (s0, x1) and let {x∗

t+1} denote a corresponding optimal promise plan. Assume that −W ∗(s0, ·) is
sub-differentiable at x1 with sub-gradient μ1 . Assume further that for all (s,μ), Ls(W ∗)(·;μ, ·) admits a saddle point. Then, {y∗

t } is
generated by (Ψ,Ξ) from (s0,μ1).

Proof. See Appendix E. �
Remark 1. The Lagrangians Ls(W ∗)(·,μ, ·) admit saddle points if, in addition to the assumptions of Proposition 3, a Slater
condition is satisfied with respect to the incentive constraints, i.e. there is some (y, x′) such that for each m ∈ M,∑

S um(s′, ys′ ) + δ
∑

S qm
s′ x′

s′ > 0. Note that the promise-keeping constraints do not need to respect a Slater condition. The
conditions in Proposition 5 seem weaker than those used by Marcet and Marimon (2011) when deriving a related result.
Marcet and Marimon (2011) also require uniqueness of the optimal plan {y∗

t }.

Corollary 1 gives conditions for the existence of an optimal action and promise plan (y∞∗, x∞∗) from some (s0, x1).
Under the further conditions of Proposition 5 these plans are generated by (Ψ,Ξ) from s0 and some μ1. However, even
under these conditions (Ψ,Ξ) may generate extraneous action-plans that are not optimal for (18).8 A simple sufficient
condition that rules this out is contained in the next result.

Proposition 6. Assume the following:

(i) W ∗(s0, x1) > −∞ and that μ1 ∈ ∂(−W ∗(s0, x1)),
(ii) the conditions of Theorem 2 hold,

(iii) at each (s,μ) the Lagrangian Ls(W ∗)(·,μ, ·) admits a saddle point,
(iv) all saddle points of Ls(W ∗)(·,μ, ·) have a common primal component (y, x′). Then there is a unique plan y∞∗ generated by

(Ψ,Ξ) from (s0,μ1) and y∞∗ is optimal for (18) at (s0,μ1).

Proof. See Appendix E. �
A sufficient condition for (iv) in Proposition 6 is that each C(s′) is convex, f is strictly concave, um is concave and

u is affine. Notice this condition holds in all of the examples of Section 2. Since, under the conditions of Theorem 3,
Dn(V 0)

e−→ V ∗ , an analogue of Proposition 2 is available for the dual setting. This result establishes convergence of dual
multiplier policies. Specifically, associated with the iterates Vn = Dn(V 0) there is a family of dual policy correspondences:

Ψ n
ε (s,μ) = {(η,μ′) ∣∣ Vn(s,μ) + ε � Jn−1(s,μ,η) and μ′ = {μs′(μ,η)

}}
,

with: Jn(s,μ,η) =∑
S{νs,s′ (μ,η) + βVn−1(s′,μs′ (μ,η))}Q (s, s′). Similar to Proposition 2, if εn ↓ 0 and {ηn,μn} is a se-

quence with each (ηn,μn) ∈ Ψ n
εn

(s′,μ), then all cluster points of {ηn,μn} lie in Ψ (s′,μ). In the interests of space, we omit
the proof.

8 As was pointed out by Messner and Pavoni (2004), the same issue arises in the context of Marcet and Marimon (2011)’s recursive saddle point method.
Cole and Kubler (2010) provide an extension that resolves this problem in weakly concave settings.
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7. Extensions and variations

We briefly detail some extensions.

Case 2 extension We have developed BD and D in the context of Case 1 problems with decomposable weights qm . The
analysis may be extended to the non-decomposable setting of Case 2. In this case, following the approach of Proposition 4,
we obtain:

D(W )(s,μ) = inf
RM+

∑
S

(
sup
C(s′)

[
f
(
s′, ys′

)+ μs′ u
(
s′, ys′

)+∑
M

ηmum(s′, ys′)

Q (s, s′)

]
+ βW

(
s′,μs,s′(μ,η)

))
Q
(
s, s′),

where:

μs,s′(μ,η) =
{

δ

β

[
μs′ +

∑
M

ηmqs′,s′′

Q (s, s′)Q (s′, s′′)

]}
s′′∈S

∈ RS .

μ = {μs′ } ∈ RS is an (ex post) Pareto weight vector. The components μs′ are contingent on the shock and are updated to give
new Pareto weight vectors μs′ (μ,η) ∈ RS . Our results relating D to BD and B go through for this case. In particular under
the conditions of an appropriately modified version of Theorem 3, epi-convergent D-iteration to V ∗ , the value function
from an (ex post) Pareto problem, is obtained. The D-operator can then be used to compute value functions from problems
with persistent private information, such as in Section 2.

Multiple agents We have focused on single agent problems. Multiple agent problems may be accommodated at the cost of a
corresponding increase in the dimension of the state space. Consider a problem with I agents indexed by i ∈ I := {1, . . . , I}
each of whom has a per period payoff function ui : Graph C → R, discount factor δi , constraint set Mi with Mi constraints,
constraint functions ui,m : Graph C → R and decomposable constraint weights qi,m

s′ . Let μ = {μi} ∈ RI denote Pareto weights
for these agents and η = {ηi,m} ∈ RM+ , M =∑I Mi , multipliers on their incentive constraints. The problem formulation is as
before except there are now I +∑I Mi constraints. The corresponding D operator is:

D(W )(s,μ) = inf
RM+

∑
S

(
sup
C(s′)

[
f
(
s′, ys′

)+∑
I

μiui(s′, ys′
)+∑

I

∑
Mi

ηi,mui,m
s′ (ys′)

Q (s, s′)

]
+ βW

(
s′,μs,s′(μ,η)

))
Q
(
s, s′),

with:

μs,s′(μ,η) =
{

δi

β

[
μi +

∑
Mi

ηi,mqi,m
s′

Q (s, s′)

]}
i∈I

.

All earlier results go through for this case with appropriate modification of notation. The extension to multiple agents with
Case 2 constraints is similar.

Equilibrium problems without a principal To motivate the analysis in this section consider the following example.

Example 4 (Risk sharing with limited commitment). A population I = {1, . . . , I} of agents receive shocks to its endowment of
goods and the outside utility options of its members. As before {st} is an underlying S-valued shock process with Markov
transition Q . A consumption process c∞ = {ci

t} now gives the consumption of every agent i after all histories st . The
i-th agent evaluates her personal consumption process according to (1) and has an outside utility option Bi that evolves
according to: Bi(s) = bi(s) + β

∑
s′∈S Bi(s′)Q (s, s′), bi : S → Y . Given the endowment map ω : S → R++ , incentive-feasibility

requires: ∀t, st ,
∑

I ci
t(st) � ω(st) and for all i, t , st , v(ci

t(st)) + βU c(st, ci,∞
t+1(st)) � Bi(st). We seek to characterize the set of

incentive-feasible plans and/or the set of Pareto optimal incentive-feasible plans.
Re-expressing the problem in terms of net utility, a plan y∞ = {yi

t} is incentive-feasible if for all t , st , yt(st) ∈ C(st),
where:

C(s) =
{

y
∣∣∣ω(s) −

∑
i∈I

h
(

yi + bi(s)
)
� 0

}
,

and for all i, t , st−1, s, yi
t(st−1, s)+β

∑
s′∈S U i(s′, yi,∞

t+1(st−1, s))Q (s, s′) � 0, with U i(s, y∞) =∑∞
t=1 βt−1 E[yi

t(st) | s1 = s]. Let
Ω1 denote the set of incentive-feasible plans.

This environment lacks a committed principal. We set f = 0 and, hence, F = 0. Thus, the immediate analogue of (16) is
the problem supΩ1

F (y∞) which takes the value 0 if Ω1 	= ∅ and, given our convention, −∞ otherwise. The optimal value
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of this problem simply expresses whether the set of incentive-feasible plans is empty or not. The promise perturbed version
of this problem augments Ω1 with promise-keeping constraints for each of the I players:

W ∗(s, x) = sup
Ω1(s,x)

F
(

y∞),
where: Ω1(s, x) = {y∞ ∈ Ω1 | ∀i ∈ I, xi =∑s′∈S U i(s′, y∞)Q (s, s′)}. Now, W ∗ : S × RI → {0,−∞} takes the value 0 if x is a
feasible promise profile and −∞ if it is not. Formally, W ∗ is the indicator function of the set of incentive-feasible shock-
utility promise pairs.9 Just as before W ∗ satisfies a Bellman equation W ∗ = B(W ∗), where10:

B(W )(s, x) = sup
Γ (s,x)

∑
s′∈S

{
f
(
s′, ys′

)+ βW
(
s′, x′

s′
)}

Q
(
s, s′) (28)

and:

Γ (s, x) =
⎧⎨⎩(y, x′) ∈

∏
s′∈S

C
(
s′)× RI S

∣∣∣∣∣ xi =
∑
s′∈S

{
yi

s + δxi ′
s′
}

Q
(
s, s′)

yi
s′ + δxi ′

s′ � 0,
(
s′, i
) ∈ S × I

⎫⎬⎭ . (29)

Assigning the multiplier ηs′,i Q (s, s′) to the (s′, i)-th incentive constraint and proceeding as before, we obtain the dual
operator:

D(V )(s,μ) = inf
η∈RM+

∑
s′∈S

{
νs′(μ,η) + βV

(
s′,μ′

s′(μ,η)
)}

Q
(
s, s′), (30)

where νs′ (μ,η) = supy∈C(s′)
∑

I(μ
i + ηs′,i)yi and μ′

s′ = {μ′
s′,i} with μ′

s′,i(μ,η) = μi + ηs′,i . Again the operator D relocates
calculations to the space of “Pareto weight” domain value functions and V ∗ = D(V ∗), where V ∗ is the value function from
the Pareto problem:

V ∗(s,μ) = sup
Ω1

∑
I

μi
∑
s′∈S

U
(
s′, y∞)Q

(
s, s′).

V ∗(s, ·) is also the support function of the feasible payoff set given shock s.11 To obtain only Pareto efficient risk-sharing
plans (and since the continuation of Pareto efficient plans are Pareto efficient), it is sufficient to restrict attention to μ ∈
D := RI+ \ {0}.

More generally, to extend the analysis to problems in which all players are uncommitted, set f = 0 on Graph C . The
primal problems (18) then reduce to:

W ∗(s, x) =
{

0 if Ω1(s, x) 	= ∅,

−∞ otherwise.
(31)

As in Example 4, W ∗ is an indicator function for the set of incentive-feasible shock-promise pairs X∗ = {(s, x) | Ω1(s, x) 	= ∅}.
Suppose that Graph C is bounded and that um and u satisfy the conditions of Theorem 1. For each s ∈ S, let X0(s) be
a compact and convex set satisfying X∗(s) ⊂ X0(s). If W0 is the indicator function for X0 and B(W0) � W0, then, by
Theorem 2, Bn(W0)

h−→ W ∗ .
The dual value functions V ∗(s, ·) = D(W ∗)(s, ·) are support functions for the promise sets X∗(s) = {x | Ω1(s, x) 	= ∅}. If

X∗ is bounded, then W ∗ is extended real-valued, but, following our earlier discussion, V ∗ is real-valued. If X0 and W0 are
as in the previous paragraph and with a strengthening of assumptions, along the lines of Theorem 3, then iteration of D
from V 0 = D(W0) generates a sequence of functions that epi-converge to the support functions of the incentive-feasible
promise set X∗ .12

Abreu et al. (1990) introduce a set-valued operator for computing the sequential equilibrium payoff sets of repeated
games. Our Bellman operator B is quite related to their B-operator. There are two main differences.13 First, we represent
equilibrium payoffs with indicator functions, rather than sets. This allows us to give a more unified treatment of problems
with and without a committed principal. Second, the APS B-operator uses the (candidate) set of equilibrium payoffs to

9 If P ⊆ RN , then its indicator function is δP : RN → R, with δP (p) = 0 if p ∈ P and −∞ otherwise.
10 There is another way to obtain a recursive formulation of the problem. It involves maximizing the weighted payoff of an (incentive-constrained) agent

subject to incentive-feasibility and the delivery of a utility promise to all other agents. This approach leads to a recursive formulation in which the optimal
value function enters the constraint set. It is the formulation adopted in Kocherlakota (1996).
11 If P ⊆ RN , then the support function is σP : RN → R with σP (p∗) = supP 〈p∗, p〉. σP encodes the set of supporting hyperplanes to the set P .
12 Judd et al. (2003) also use support functions to represent equilibrium payoff sets. Their outer approximation formulation can be seen as combining a

dualization of the promise-keeping (but not the incentive) constraints with a linear interpolation.
13 Abreu et al. (1990) consider a class of hidden action games. These do not fall within the class of problems considered here as their incentive constraints

are not additively separable in current actions and continuation payoffs. However, the APS B-operator is applicable to games which do fall in to this class.
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determine the continuation payoff consequences of agent deviations. Our basic formulation of incentive constraints handles
two cases: those in which the payoff consequences of deviation are determined by the optimal plan and those in which they
are known a priori (to the modeler). The first case accommodates hidden information problems, the second limited commit-
ment problems in which reversion to autarky characterizes the worst equilibrium outcome. An extension of our formulation
allows us to compute the worst equilibrium payoff simultaneously with all payoffs that can be sustained by reversion to the
worst. This extension allows us to solve problems in which public deviations are possible and worst equilibrium payoffs a
priori unknown; it aligns our approach more closely with Abreu et al. (1990). In the extension, some or all of the recursive
incentive constraints have the form:

ui(s′, y
)+ δx′ i

s′ − sup
C(s′;y−i)

inf
RI

{
ui(s′, ỹ

)+ δ
(̃
xi − W ∗(s′, x̃

))}
� 0. (32)

Here, ui(s′, y)+δx′ i
s′ gives the payoff to the i-th player if she adheres to the action profile y, while supC(s′;y−i)

infRI {ui(s′, ỹ)+
δ(̃xi − W ∗(s′, x̃))} gives her payoff from a best defection followed by a worst incentive-feasible continuation payoff. C(s′; y−i)

is player i’s set of observable defections given that the other players (−i) adhere to y; x̃ = {̃xi, x̃−i} gives continuation payoffs
following a defection by i. W ∗ is an indicator function for the equilibrium payoff set. Its inclusion in (32) ensures that only
incentive-feasible defection penalties are chosen.14

Assume a set of players I each of whom has constraints of the form (32) (indexed by m = (i, s′) ∈ I × S) and that f = 0
on Graph C and −∞ otherwise. Let W denote the indicator function of a closed candidate equilibrium payoff set and
define:

L̃s(W )
(

y, x′;μ,η
)=

∑
S

[
f
(
s′, ys′

)+ βW
(
s′, x′

s′
)]

Q
(
s, s′)+∑

I
μi
∑

S

[
ui(s′, ys′

)+ δx′ i
s′
]

Q
(
s, s′)

+
∑
I×S

ηi,s′
[

ui(s′, ys′
)+ δx′ i

s′ − sup
C(s′;y−i)

inf
RI

{
ui(s′, ỹ

)+ δ
(̃
xs′ − W

(
s′, x̃

))}]
. (33)

In analogy with our earlier analysis let B̃(W )(s, x) = supA infRI ×RI S+ L̃s(W )(y, x′;μ,η) −∑
I μ

i xi . The dual operator B̃D

may be obtained from this by interchanging the supremum and infimum operations. Rearranging terms and using the
definition V = D(W ), the following analogue of the D-operator may be extracted from BD :

D̃(V )(s,μ) = inf
RI S+

∑
S

{
sup
C(s′)

∑
I

[
μiui(s′, ys′

)+ ηi,s′

Q (s, s′)
(
ui(s′, ys′

)− sup
C(s′;y−i)

ui(s′, ỹ
))]

+ β

[
V
(
s′,μs′(μ,η)

)+ δ

β

∑
I

(
ηi,s′

Q (s, s′)
V
(
s′,−1i

))]}
Q
(
s, s′),

where μs′ (μ,η) = { δ
β
[μi + ηi,s′

Q (s,s′) ]}I and −1i ∈ RN has a −1 in the i-th location and 0’s elsewhere. V (s′, ·) is the support
function for the s′-shock payoff set. If this set is compact and convex, then −V (s′,−1i) gives the worst (continuation) payoff
to the i-th agent in this state.15 Our preceding analysis goes through for the operators B̃, B̃D and D̃ .16 In addition, since
support functions are homogenous of degree 1, D(V )(s, cμ) = cD(V )(s,μ), c > 0, and the state space can be identified
with the unit sphere in RN .

8. Conclusion

We identify a class of dynamic incentive problems that admit recursive formulations. The key property of this class is
that incentive constraints are (additively) separable in the continuation utilities of incentive-constrained agents. A difficulty
is that not all promised utilities are feasible. We tackle this issue by defining the optimal value to be −∞ at infeasible
promises and provide sufficient conditions for value iteration to generate a sequence of extended real-valued functions that
hypo-converge to the true value function. Non-finite value functions are problematic from the point of view of numerical
computation. This motivates us to consider dual formulations. We isolate a component dual operator that relocates the
value iteration to a space of conjugate functions, these may be real-valued even when the original (promise-domain) value
functions are not. In addition, the dual operator decomposes optimizations across shock realizations and, hence, simplifies
them. We give sufficient conditions for the dual operator to generate a sequence of functions that epi-converge to the
conjugate of the promise-domain value function. Equivalently, they converge to the value function from a corresponding
recursive Pareto problem. Our results rely on a “recursize, then dualize” strategy, in contrast to other papers that reverse
these roles. Consequently, we do not need to treat explicitly the infinite dimensional dual space containing multipliers on
all constraints from the infinite horizon problem.

14 −W ∗(s′, x̃) = 0 if x̃ is incentive feasible and ∞ if x̃ is infeasible. The latter will not be chosen in the infimum operation.
15 Using the definition of a support function: −V (s′,−1i) = − supX∗(s′)〈−1i , x〉 = inf{xi | x ∈ X∗(s′)}.
16 The concavity requirements in the earlier theorems now become quite demanding. Following Judd et al. (2003) lotteries may be introduced to restore

concavity.
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Appendix A. Proofs from Sections 3 and 4

Lemma 1. Under Assumption 4, W ∗ ∈ W and, for each s, Dom W ∗(s, ·) 	= ∅.

Proof. By Assumption 4, for each s ∈ S, there is some (x, y∞) such that y∞ ∈ Ω1(s, x) and F (s, y∞) > −∞. Hence, W ∗(s, ·)
is not everywhere −∞ and Dom W ∗(s, ·) 	= ∅. Also, by Assumption 4, for all (s, x), W ∗(s, x) � supS×Ω1

F (s, y∞) < ∞. Hence,
each W ∗(s, ·) is sup-proper. �
Proof of Proposition 1. Case 1 proof is given; Case 2 proof is similar. Note first that since Assumption 4 holds,
by Lemma 1, W ∗ is sup-proper and B(W ∗) is well defined. We first show W ∗(s, x) � supΓ (s,x)

∑
S[ f (s′, ys′ ) +

βW ∗(s′, x′
s′ )]Q (s, s′). If W ∗(s, x) = −∞, then the inequality is immediate. If not, let y∞ = (y1, {y∞

2 (s′)}) ∈ Ω1(s, x)
and for s′ ∈ S let x2,s′ = ∑

S U (s′′, y∞
2 (s′))Q (s′, s′′). Then since y∞ ∈ Ω1(s, x) implies for s′ ∈ S, y∞

2 (s′) ∈ Ω1, we have
y∞

2 (s′) ∈ Ω1(s′, x2,s′ ). So, W ∗(s′, x2,s′ ) � F (s′, y∞
2 (s′)). Also, for m ∈ M,

∑
S[um(s′, y1(s′)) + δx2,s′qm

s′ ] =∑
S[um(s′, y1(s′)) +

δ
∑

S U (s′′, y∞
2 (s′))Q (s′, s′′)qm

s′ ] � 0 and so (y1, x2) ∈ Γ (s, x). Thus, supΓ (s,x)
∑

S[ f (s′, ys′ ) + βW ∗(s′, x′
s′ )]Q (s, s′) �∑

S[ f (s′, y1(s′))+βW ∗(s′, x2,s′ )]Q (s, s′) � F (s, y∞). Since y∞ was an arbitrary element of Ω1(s, x), supΓ (s,x)
∑

S[ f (s′, ys′ )+
βW ∗(s′, x′

s′ )]Q (s, s′) � supΩ1(s,x) F (s, y∞) = W ∗(s, x).
Next we show W ∗(s, x) � supΓ (s,x)

∑
S[ f (s′, ys′ ) + βW ∗(s′, x′

s′ )]Q (s, s′). If Γ (s, x) = ∅, then supΓ (s,x)
∑

S[ f (s′, ys′) +
βW ∗(s′, x′

s′ )]Q (s, s′) = −∞ and the inequality is immediate. Let (y, {x′
s′ }) ∈ Γ (s, x). If Ω1(s′, x′

s′ ) = ∅ for some s′ ∈ S, then
again

∑
S[ f (s′, ys′ ) + W ∗(s′, x′

s′ )]Q (s, s′) = −∞ and the result follows. Otherwise, for each s′ ∈ S choose y∞
s′ ∈ Ω1(s′, x′

s′ ).
Then (y, {y∞

s′ }) ∈ Ω1(s, x) and W ∗(s, x) �
∑

S[ f (s′, ys′) + β F (s′, y∞
s′ )]Q (s, s′). Since each y∞

s′ is an arbitrary element of
Ω1(s′, x′

s′ ), W ∗(s, x) �
∑

S[ f (s′, ys′ ) + βW ∗(s′, x′
s′ )]Q (s, s′). Since (y, {x′

s′ }) is an arbitrary element of Γ (s, x), W ∗(s, x) �
supΓ (s,x)

∑
S[ f (s′, ys′ ) + βW ∗(s′, x′

s′ )]Q (s, s′).
Suppose that y∞ ∈ Ω1(s, x) solves (18) at (s, x). Then, (y1, x2) ∈ Γ (s, x), where x2,s′ =∑

S U (s′′, y∞
2 (s′))Q (s′, s′′) and

each y∞
2 (s′) ∈ Ω1(s′, x2,s′ ). Thus, W ∗(s, x) = ∑

S[ f (s′, y1(s′)) + β F (s′, y∞
2 (s′))]Q (s, s′) �

∑
S[ f (s′, y1(s′)) +

βW ∗(s′, x2,s′ )]Q (s, s′) � W ∗(s, x). Hence, (y1, x2) ∈ G(s, x) and F (s′, y∞
2 (s′)) = W ∗(s′, x2,s′ ). Applying this argument re-

peatedly at successive histories proves the final part of the proposition. �
Appendix B. Proofs from Section 5

For W ∈ W , define U (W ) according to, for each (s, x, y, x′) ∈ S × RN × Y S × RN S ,

U (W )
(
s, x, y, x′) :=

{∑
S{ f (s′, ys′) + βW (s′, x′

s′)}Q (s, s′) if (y, x′) ∈ Γ (s, x),
−∞ otherwise.

U (W ) expresses the payoff of a principal with continuation objective W as a function of states and choices. Infeasible
state-choice combinations are assigned the value −∞. We use the following definition.

Definition 10. Let Zi ⊂ RNi , i = 1,2. Given g : Z2 → R and v ∈ R, u-levv g = {z2 ∈ Z2 | g(z2) � v} is called the v-upper level
set of g . g is said to be u-level (upper-level) bounded if for every v ∈ R the set u-levv g is bounded (and possibly empty). Let
g : Z1 × Z2 → R. g is said to be u-level bounded locally in z1 if for each z1 ∈ Z1 and v ∈ R there is a neighborhood N of z1
and a bounded set B such that u-levv g(z′

1, ·) ⊂ B for each z′
1 ∈ N .

Local u-level boundedness in z1 of g : Z1 × Z2 → R ensures that the upper level sets of g(z1, ·) do not expand arbitrarily
rapidly in the parameter z1. This property is assured if g is finite and continuous on the graph of a continuous, compact-
valued correspondence, but is much weaker.

Lemma 2. Let Assumption 5 hold. If W is upper semicontinuous, upper-level bounded and sup-proper, then U (W ) is upper semicon-
tinuous and U (W ) is u-level bounded locally in x.

Proof. Let s ∈ S and v ∈ R. If u-levvU (W )(s, ·) = ∅, then it is closed. If u-levvU (W )(s, ·) 	= ∅, then let {xn, yn, x′
n}

be a sequence within u-levvU (W )(s, ·) with limit (x, y, x′). Since v ∈ R, it follows that each (xn, yn, x′
n) is in Graph

Γ (s, ·). Since C is closed-valued, u is continuous and um is upper semicontinuous, (x, y, x′) ∈ GraphΓ (s, ·) and, since
f and W are upper semicontinuous, U (W )(s, x, y, x′) = ∑

S[ f (s′, ys′) + βW (s′, x′
s′ )]Q (s, s′) � lim supn

∑
S[ f (s′, ys′,n) +

βW (s′, x′
s′,n)]Q (s, s′) � v . So, u-levvU (W )(s, ·) is closed. Since s and v were arbitrary, U (W ) is upper semicontinuous.

Since f and W are upper semicontinuous, u-level bounded and sup-proper, H(y, x′) =∑S{ f (s′, ys′ ) + βW (s′, x′
s′ )}Q (s, s′)

is u-level-bounded. So, for each v ∈ R, the set u-levv H is bounded. But for all x ∈ RN , u-levvU (W )(s, x, ·) ⊂ u-levv H .
Hence, each U (W )(s, ·) is u-level bounded locally in x. �
Remark 2. It is easy to check that Lemma 2 (and all subsequent results) continues to hold if the assumption of closed-
valuedness of C is replaced with the following weaker condition. For all s and convergent sequences yn → y, each yn ∈ C(s),
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if y /∈ C(s), then limn→∞ f (s, yn) = −∞. This condition is implied in the hidden information examples of Section 2 by
Assumption 3.

The next lemma is a direct application of Rockafellar and Wets (1998, Theorem 1.17).

Lemma 3. Assume that U (W ) is sup-proper, upper semicontinuous and u-level bounded locally in x. Then B(W ) is sup-proper
and upper semicontinuous. In addition, if B(W )(s, x) > −∞, then G(W )(s, x) = arg max U (W )(s, x, ·) is non-empty and compact.
If B(W )(s, x) = −∞, then G(W )(s, x) = ∅. If (yv , x′ v) ∈ G(W )(s, xv ), xv → x and B(W )(s, xv ) → B(W )(s, x) > −∞, then
(yv , x′ v) is bounded and its cluster points lie in G(W )(s, x).

Proof of Theorem 1. We use p-lim to denote the pointwise limit and h-lim to denote the hypo-limit of a sequence of
functions. Let I := {W ′ | W0 � W ′ � W ∗} ⊂ W . By assumption, W0 is sup-proper and u-level bounded; by Assumption 4
and Lemma 1, W ∗ is sup-proper. Hence, all elements of I are sup-proper and u-level bounded. It is easily shown that if
W ′ and W ′′ belong to W with W ′ � W ′′ , then B(W ′) � B(W ′′). By (1) and (2) in the theorem, Proposition 1 and the
monotonicity of B, for any W ′ ∈ I , W0 � B(W0) � B(W ′) � B(W ∗) = W ∗ . Thus, B : I → I . In particular, {Wn} ⊂ I and
so each Wn is sup-proper and u-level bounded. By (1) in the theorem, W0 � B(W0) = W1. By the monotonicity of B,
Wn � Wn+1 implies Wn+1 = B(Wn) � B(Wn+1) = Wn+2. Thus, by induction, {Wn} is a non-increasing sequence. Hence,
since each Wn � W ∗ , {Wn} is pointwise convergent with p-lim Wn = infn Wn =: W∞ � W ∗ . Moreover, Wn � W∞ implies
that for all n, Wn+1 = B(Wn) � B(W∞). Consequently, W∞ = p-lim Wn+1 � B(W∞). In addition, for all n and all (s, x),
∞ > W0(s, x) � B(W0)(s, x) = supA U (W0)(s, x, y, x′) � supA U (Wn)(s, x, y, x′) = B(Wn)(s, x) = Wn+1(s, x) � W ∗(s, x) �
−∞, with the last inequality strict for some (s, x). Hence, for each n, U (Wn) is sup-proper.

Wn is sup-proper and u-level bounded. If, in addition, Wn is upper semicontinuous, then Assumption 5 holds and, by
Lemma 2, U (Wn) is upper semicontinuous and u-level bounded locally in x (as well as sup-proper). Hence, by Lemma 3,
Wn+1 is upper semicontinuous. Since W0 is upper semicontinuous, by induction each Wn is upper semicontinuous and
each U (Wn) is upper semicontinuous and u-level bounded locally in x.

If W∞(s, x) = −∞, then B(W∞)(s, x) � W∞(s, x). If W∞(s, x) > −∞, then each Wn+1(s, x) > −∞ and so, by Lemma 3,
arg maxU (Wn)(s, x, ·) is non-empty and compact. Also, in this case, each arg maxU (Wn)(s, x, ·) is contained in {(y, x′) |
U (W0)(s, x, y, x′) � W∞(s, x)}, where the latter set is non-empty and, since U (W0)(s, x, ·) is upper semicontinuous and
u-level bounded, compact. Hence, there is a sequence {yn, x′

n} with each term (yn, x′
n) ∈ arg maxU (Wn)(s, x) ⊂ {(y, x′) |

U (W0)(s, x, y, x′) � W∞(s, x)}. Since the latter set is compact, the sequence admits a convergent subsequence {ynv , x′
nv

}
with limit (y∞, x′∞) ∈ {(y, x′) | U (W0)(s, x, y, x′) � W∞(s, x)}. Now,

B(W∞)(s, x) = sup
(y,x′)

U (W∞)
(
s, x, y, x′)� U (W∞)

(
s, x, y∞, x′∞

)= lim
v→∞U (Wnv )

(
s, x, y∞, x′∞

)
� lim

v→∞ lim sup
ṽ�v

U (Wnv )
(
s, x, ynṽ , x′

nṽ

)
� lim

v→∞ lim sup
ṽ�v

U (Wnṽ )
(
s, x, ynṽ , x′

nṽ

)
= lim sup

ṽ
U (Wnṽ )

(
s, x, ynṽ , x′

nṽ

)= lim sup
ṽ

Wnṽ+1(s, x) = W∞(s, x).

Combining inequalities W∞ = B(W∞). The sequence {Wn} is a non-increasing sequence of upper semicontinuous functions
with pointwise limit W∞ . By Rockafellar and Wets (1998, Proposition 7.4(d)), the sequence h-lim Wn = infn cl Wn , where
cl Wn denotes the function whose hypograph is the closure of the hypograph of Wn . But since each Wn is sup-proper and
upper semicontinuous, cl Wn = Wn and since the sequence is non-increasing infn Wn = W∞ , the result follows. �
Proof of Theorem 2. By Theorem 1, W∞ � W ∗ . It remains to show W ∗ � W∞ . If W∞(s, x) = −∞, then this is immediate.
Let W∞(s, x) > −∞. Then, by Theorem 1, B(W∞)(s, x) = W∞(s, x) > −∞. Also, following the argument for U (Wn) in the
proof of Theorem 1, U (W∞) is sup-proper. W∞ is in I and so is sup-proper and u-level bounded. It is upper semicontin-
uous as the pointwise limit of a non-increasing sequence of upper semicontinuous functions. So, by Lemma 2, U (W∞) is
upper semicontinuous and u-level bounded locally in x. By Lemma 3, there is a (y∗

1, x∗
2) ∈ Γ (s, x) such that:

W∞(s, x) =
∑

S

[
f
(
s′, y∗

1

(
s′))+ βW∞

(
s′, x∗

2

(
s′))]Q

(
s, s′).

Since W∞(s, x) > −∞, each W∞(s′, x∗
2(s′)) > −∞. Applying this argument at successive nodes gives a sequence {y∗

t , x∗
t+1}

such that for each st−1, (y∗
t (st−1), x∗

t+1(st−1)) ∈ Γ (st−1, x∗
t (st−1)), where x∗

1(s0) = x, s0 = s. Also for each T ,

W∞(s, x) =
T∑

t=1

βt−1 E
[

f
(
st , y∗

t

(
st)) ∣∣ s0 = s

]+ βT E
[
W∞

(
x∗

T +1

(
sT )) ∣∣ s0 = s

]
. (34)

Since W0 is sup-proper, u-level bounded and upper semicontinuous, W0 is bounded above. Thus, W∞ is bounded above and
W∞(s, x) � lim infT →∞

∑T
t=1 βt−1 E[ f (st , y∗

t (st)) | s0 = s]. In addition, since each (y∗
t (st−1), x∗

t+1(st−1)) ∈ Γ (st−1, x∗
t (st−1)), in

Case 1,
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x =
T∑

t=1

δt−1 E
[
u
(
st , y∗

t

(
st)) ∣∣ s0 = s

]+ δT E
[
x∗

T +1

(
sT ) ∣∣ s0 = s

]
,

or in Case 2, for all s′ , xs′ = ∑T
t=1 δt−1 E[u(st, y∗

t (st)) | s1 = s′] + δT E[x∗
T +1(sT +1) | s1 = s′]. Since W0 is sup-coercive in

expectation and W0 � W∞ , W∞ is sup-coercive in expectation as well. Hence, if lim supT →∞ δT E[‖x∗
T +1‖ | s0 = s] 	= 0, then

lim infT →∞ βT E[W∞(x∗
T +1(sT )) | s0 = s] = −∞. But this, (34) and the fact that f is bounded above, contradict W∞(s, x) >

−∞. Thus, lim supT →∞ δT ‖E[x∗
T +1 | s0 = s]‖ = 0 and so, in Case 1,

x = lim
T →∞

T∑
t=1

δt−1 E
[
u
(
st , y∗

t

(
st)) ∣∣ s0 = s

]
,

and in Case 2, for all s′ ∈ S, xs′ = limT →∞
∑T

t=1 δt−1 E[u(st, y∗
t (st)) | s1 = s′]. By the same logic, in Case 1 for each st ,

x∗
t+1(st) = limT →∞

∑T
s=1 δs−1 E[u(st+s, y∗

t+s(st+s)) | st] and similarly for Case 2. Combining these equalities with (y∗
t (st−1, ·),

x∗
t+1(st−1, ·)) ∈ Γ (st−1, x∗

t (st−1)) ensures that {y∗
t } ∈ Ω1(s, x) and so is feasible for (18). Thus, using Assumption 4,

W ∗(s, x) �
∑∞

t=1 βt−1 E[ f (st , y∗
t (st)) | s0 = s] � W∞(s, x). �

Proof of Corollary 1. From the proof of Theorem 2, using the fact that W ∗ = W∞ , if y∞ satisfies (yt(st−1), xt+1(st−1)) ∈
G(st−1, xt+1(st−1)) for all t , st−1, then it is feasible for (18) at (s0, x1). Hence, it has a payoff no more than W ∗(s0, x1).
On the other hand, since W ∗ is bounded above (so that lim supt→∞ βt E[W ∗(st , xt+1) | s0] � 0) and (yt(st−1), xt+1(st−1)) ∈
G(st−1, xt+1(st−1)) for all t , st−1 and, hence, satisfies the Bellman equation with equality, the plan y∞ has a payoff no less
than W ∗(s0, x1). Consequently, y∞ is optimal for (18) at (s0, x1). That there exists such a plan y∞ is immediate from the
proof of Theorem 2. �
Proof of Proposition 2. Let (s, x) be such that W ∗(s, x) > −∞. Then, ∞ > W0(s, x) � Wn+1(s, x) = supA U (Wn)(s, x, ·) �
W ∗(s, x) > −∞. Hence, each U (Wn)(s, x, ·) is sup-proper. By the proof of Theorem 2, it is also upper semicontinuous and
u-level bounded (since U (Wn) is u-level bounded locally). Again by the proof of Theorem 2, h-lim Wn = p-lim Wn = W ∗ .
Thus, h-limU (Wn)(s, x, ·) = p-limU (Wn)(s, x, ·) = U (W ∗)(s, x, ·), see Maso (1993, Example 6.24). Now, ∞ > W ∗(s, x) =
B(W ∗)(s, x) = supA U (W ∗)(s, x, ·) > −∞. Hence, U (W ∗)(s, x, ·) is sup-proper. It is also upper semicontinuous (as the
pointwise limit of upper semicontinuous functions). The result then follows from Rockafellar and Wets (1998, Theo-
rem 7.33). �
Appendix C. Proofs from Section 6

Proof of Proposition 3. By the conditions in the proposition,
∑

S{ f (s′, ys′)+βW (s′, x′
s′ )} Q (s, s′) is sup-proper, upper semi-

continuous and u-level bounded. Hence, it has compact upper level sets and supA
∑

S[ f (s′, ys′ ) + βW (s′, x′
s′ )]Q (s, s′) < ∞.

Also, B(W )(s, x) � BD(W )(s, x) = infΦ supA Ls(W )(y, x′;μ,η) − μx � supA
∑

S[ f (s′, ys′ ) + βW (s′, x′
s′ )]Q (s, s′) < ∞,

where the first inequality follows from weak duality and the second from the fact that μ = 0, η = 0 is feasible for the
inf problem. Embed the problems in (22) into the larger class: R(s, x, p) = supΓ̃ (s,x,p)

∑
S{ f (s′, ys′) + βW (s′, x′

s′ )}Q (s, s′).
The constraint functions for these problems are upper semicontinuous and sup-proper. By the concavity of W and Assump-
tion 6, each R(s, ·) is concave. Hence, the result follows from Borwein and Lewis (2006, Theorem 4.3.8). �
Proof of Proposition 4. The Lagrangian (23) may be arranged to give:

Ls(W )
(

y, x′;μ,η
)=

∑
S

(
hs,s′(μ,η, y) + β

{
W
(
s′, x′

s′
)+ δ

β

(
μ +

∑
M

ηm qm
s′

Q (s, s′)

)
xs′
})

Q
(
s, s′),

where: hs,s′ (μ,η, y) = f (s′, ys′) + μu(s′, ys′) +∑M
ηmum(s′,ys′ )

Q (s,s′) . Hence, using the definitions of BD , D , D , L, νs,s′ and μs,s′ ,
we have:

LD D(W )(s, x) = inf
RN

D D(W )(s,μ) − μx

= inf
Φ

∑
S

(
νs,s′(μ,η) + βD(W )

(
s′,μs,s′(μ,η)

))
Q
(
s, s′)− μx

= inf
Φ

sup
A

∑
S

(
hs,s′(μ,η, y) + β

{
W
(
s′, x′

s′
)+ δ

β

(
μ +

∑
M

ηm qm
s′

Q (s, s′)

)
xs′
})

Q
(
s, s′)

= BD(W )(s, x).

By Proposition 1, W ∗ = B(W ∗). If B(W ∗) = BD(W ∗), then W ∗ = B(W ∗) = BD(W ∗) = LD D(W ∗). �



Author's personal copy

524 M. Messner et al. / Review of Economic Dynamics 15 (2012) 501–525

Appendix D. Proof of Theorem 3

Lemma 4. Let Assumption 5′ hold. Assume V : S × RN → R is convex, then D(V ) is convex. If V is bounded below (by a real number)
and V � D(V ), then D(V ) is real-valued and bounded below. D(V ) (and V ) are continuous.

Proof. Recall the definitions of hs,s′ and νs,s′ . For λ ∈ [0,1], let μλ = λμ1 + (1 − λ)μ2 and ηλ = λη1 + (1 − λ)η2. Then:

νs,s′
(
μλ,ηλ

)= sup
C(s′)

hs,s′
(
μλ,ηλ, y

)= sup
C(s′)

[
λhs,s′

(
μ1, η1, y

)+ (1 − λ)hs,s′
(
μ2, η2, y

)]
� λ sup

C(s′)
hs,s′

(
μ1, η1, y

)+ (1 − λ) sup
C(s′)

hs,s′
(
μ2, η2, y

)= λνs,s′
(
μ1, η1)+ (1 − λ)νs,s′

(
μ2, η2).

Hence, νs,s′ is convex. Since V is convex, it follows that T (V )(s,μ,η) :=∑
S(νs,s′ (μ,η) + βV (s′,μs,s′ (μ,η)))Q (s, s′) is

convex in (μ,η). Hence, for any pair (μi, ηi)2
i=1 and λ ∈ [0,1],

λT (V )
(
s,μ1, η1)+ (1 − λ)T (V )

(
s,μ2, η2)� T (V )

(
s,μλ,ηλ

)
� inf

RM+
T
(
s,μλ,η

)= D(V )
(
s,μλ

)
,

where again μλ = λμ1 + (1 − λ)μ2 and similarly for ηλ . Since η1 and η2 were arbitrary, we have: λD(V )(s,μ1) + (1 −
λ)D(V )(s,μ2) � D(V )(s,μλ). Then, since s, μ1 and μ2 were arbitrary, D(V ) is convex.

By assumption, both
∑

S νs,s′ (·)Q (s, s′) and V are bounded below. Hence, D(V ) is bounded below (by a real number). It
is bounded above by V and, hence, is real-valued on all of RN . Since real-valued, convex functions on open subsets of RN

are continuous, continuity of D(V ) (and V ) is immediate. �
We are now ready to relate D to BD value iteration and, hence, to B value iteration. Let BD1 = BD , BDn+1 =

BD ◦ BDn and similarly for D and B.

Proposition 7. Let Assumption 5′ hold, W ∈ C be sup-coercive and for each s, 0 ∈ Dom W (s, ·) and D(W ) � D D(W ). Then for
n ∈ N, BDn(W ) = D−1Dn D(W ).

Proof. Since W ∈ C is sup-coercive, D(W ) is convex and real-valued (see, Rockafellar and Wets, 1998, p. 479). In addition,
since for each s, 0 ∈ Dom W (s, ·), D(W ) is bounded below (by W (·,0) > −∞). From Lemma 4, D D(W ) is convex and
real-valued (and, hence, continuous) and bounded below. From Proposition 4, BD(W ) = LD D(W ).

We now proceed by induction. Suppose that for some n, Dn D(W ) is convex, real-valued (and, hence, continuous) and
bounded below and BDn(W ) = LDn D(W ). Then: BDn+1(W ) = BD LDn D(W ) = LD DLDn D(W ) = LDn+1 D(W ), where the
first equality is by assumption, the second is from Proposition 4 and the third is by the assumption on Dn D(W ) and
the fact that g = (g�)� if g is convex and real-valued (in fact, this equality holds under much weaker conditions). By
the monotonicity of D , D(W ) � D D(W ) � Dn D(W ) � Dn+1 D(W ). Then, by the assumption on Dn D(W ) and Lemma 4,
Dn+1 D(W ) is convex, real-valued and bounded below. Hence, by induction BDn(W ) = LDn D(W ) for all n. Moreover,
L = D−1 on the space of convex and real-valued functions giving the result. �
Proof of Theorem 3. Since W0 is in C and is sup-coercive, it is also upper-level bounded and sup-coercive in expectation.
The assumptions in the theorem and Theorem 2 imply that Bn(W0)

h−→ W ∗ . Proposition 3 then implies that BDn(W0)
h−→

W ∗ . W0 ∈ C is sup-coercive and for each s, 0 ∈ Dom W0(s, ·). Hence, as described in the proof of Proposition 7, D(W0) is
convex, real-valued, continuous and bounded below. From Lemma 4, D D(W0) is convex and bounded below. In addition, it
is finite at 0 and, hence, inf-proper. From Propositions 3 and 4 and the assumptions, W0 � B(W0) = BD(W0) = LD D(W0)

and so D(W0) � DLD D(W0). Now, since D D(W0) is convex and inf-proper, DLD D(W0) coincides with the closure of
D D(W0) (see, for example, Bertsekas, 2009, pp. 84–85). But since the bounding function D(W0) is real-valued, D D(W0)

and its closure coincide (see Bertsekas, 2009, Proposition 1.3.15, p. 40). Hence, D(W0) � D D(W0) and so D D(W0) is
real-valued and continuous. By Proposition 7, for each n, BDn(W0) = LDn D(W0) = LDn(V 0). Consequently, −LDn(V 0)

e−→
−W ∗ . Also, Dn(V 0) = DLDn(V 0) = (−LDn(V 0))

� . The continuity of the Legendre–Fenchel transform with respect to epi-
convergence (Rockafellar and Wets, 1998, Theorem 11.34) then implies Dn(V 0)

e−→ (−W ∗)� = V ∗ . Finally, V ∗(s,μ) =
(−W ∗)�(s,μ) = supx∈R W ∗(s, x) + 〈x,μ〉 = supx∈R supΩ1(x) F (s, y∞) + 〈x,μ〉 = supΩ1

F (s, y∞) + μ
∑

S U (s′, y∞)Q (s, s′).
W ∗ is sup-coercive since it lies below W0 and so V ∗ is real-valued. �
Appendix E. Proofs of Propositions 5 and 6

Proof of Proposition 5. Fix (s0, x1) and let {y∗
t } be as in the proposition. By Proposition 1, there is a correspond-

ing promise plan {x∗
t+1} with (y∗

1, x∗
2) ∈ G(s0, x1) and for each t and st−1, (y∗

t (st−1), x∗
t+1(st−1)) ∈ G(st−1, x∗

t (st−1)).
By assumption, μ1 ∈ ∂(−W ∗)(s0, x1). Hence, from Rockafellar (1974, Theorem 16, p. 40), we have that: W ∗(s0, x1) =
supA infRM+ Ls0 (W ∗)(y, x′;μ1, η) − μ1x1. Now:
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W ∗(s0, x1) = sup
A

inf
RM+

Ls0

(
W ∗)(y, x′;μ1, η

)− μ1x1

� inf
RM+

Ls0

(
W ∗)(y∗

1, x∗
2;μ1, η

)− μ1x1

= inf
RM+

∑
S

{
f
(
s′, y∗

1

(
s′))+ βW ∗(s′, x∗

2

(
s′))}Q

(
s0, s′)+∑

M
ηm
[∑

S
um(s′, y∗

1

(
s′))+ δ

∑
S

qm
s′ x∗

2

(
s′)]

+ μ1

[∑
S

[
u
(
s′, y∗

1

(
s′))+ δx∗

2

(
s′)]Q

(
s0, s′)− x1

]
= W ∗(s0, x1),

where the last equality uses the fact that (y∗
1, x∗

2) ∈ G(s0, x1) and so the promise-keeping constraint holds with equality and
the incentive constraint with weak inequality. Hence,(

y∗
1, x∗

2(·)
)= arg max

A
inf
RM+

Ls0

(
W ∗)(y, x′;μ1, η

)
.

By assumption, Ls0 (W ∗)(·;μ1, ·) has a saddle point and so, as a corollary of Rockafellar and Wets (1998, Theo-
rem 11.50), there is an η∗

1 ∈ arg minRM+ supA Ls0 (W ∗)(y, x′;μ1, η) with (y∗
1, x∗

2) ∈ arg maxA Ls0 (W ∗)(y, x′;μ1, η
∗
1). Let

μ∗
2 = {μs0,s′ (μ1, η

∗
1)}. Using the definition of D(V ∗), (η∗

1,μ∗
2) ∈ Ψ (s0,μ1) and y∗

1 ∈ Ξ(s0,μ
∗
1, η

∗
1). In addition, x∗

2(s′) ∈
arg maxR μ∗

2(s′)x′
s′ + W ∗(s′, x′

s′ ) and so μ∗
2(s′) ∈ ∂(−W ∗)(s′, x∗

2(s′)). Iterating on this argument gives the desired result. �
Proof of Proposition 6. By (i) and (ii) and Corollary 1, there is an optimal action plan y∞∗ at (s0, x1) with a correspond-
ing optimal promise plan x∞ at (s0, x1). By (i) μ1 ∈ ∂(−W ∗(s0, x1)). It remains to show that y∞∗ is the unique plan
generated by (Ψ,Ξ) from (s0,μ1). Suppose μ∗

t (st−1) ∈ ∂(−W ∗(st−1, x∗
t (st−1))). By (iii) and the proof of Proposition 5,

(y∗
t (st−1), x∗

t+1(st−1)) is the primal part of a saddle point of Lst−1 (W ∗)(·,μ∗
t (st−1), ·). Then, by (iv), (y∗

t (st−1), x∗
t+1(st−1))

is the primal component of all saddle points of Lst−1 (W ∗)(·,μ∗
t (st−1), ·). Thus, while there may be multiple minimizers in

the problem defined by D(V ∗)(st−1,μ
∗
t (st−1)) there is a unique maximizer and this must be (y∗

t (st−1), x∗
t+1(st−1)). In par-

ticular, for all minimizing multipliers η∗
t (st−1), the updated weights μ∗

t+1(st) = μ′
st
(μ∗

t (st−1), η∗
t (st−1)) are sub-differentials

of −W ∗(st, x∗
t+1(st)). So, by induction, for all t and st−1, and all multiplier plans {η∗

t ,μ∗
t+1} generated by Ψ from (s0,μ1),

y∗
t (st−1) is the unique element of Ξ(st−1,μ

∗
t (st−1), η∗

t (st−1)). Hence, y∞∗ is the unique plan generated by (Ψ,Ξ) from
(s0,μ1) as desired. �
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