
Optimal Life-cycle Capital Taxation under Self-Control Problems∗

Nicola Pavoni† and Hakki Yazici‡

November 2013

Abstract

We study optimal taxation of savings in an economy where agents face self-control prob-

lems, and we allow the severity of self-control to change over the life cycle. We focus on

quasi-hyperbolic discounting with constant elasticity of intertemporal substitution utility

functions and linear Markov equilibria. We derive explicit formulas for optimal taxes that

implement the efficient (commitment) allocation. We show, analytically, that if agents’ abil-

ity to self-control increases concavely with age, then savings should be subsidized and the

subsidy should decrease with age. We also study the quantitative effects of age-dependent

self-control problems and find that the optimal subsidies in our environment are much larger

than those implied by models with constant self-control. Finally, we compare our optimal

subsidies with those implied by the 401(k) plan. Although the subsidy levels in the two

cases are of comparable magnitudes, the 401(k) plan implies an increasing pattern of subsi-

dies while the optimal subsidies decrease over the life cycle.

JEL classification: E21, E62, D03.

Keywords: Self-control problems, Linear Markov equilibrium, Life-cycle taxation of savings.

∗We would like to thank Per Krusell, John Leahy, and seminar participants at Bogazici University, Goethe Uni-

versity in Frankfurt, IIES, the SED meetings in Ghent, University of Alicante, University of Bologna, University of

Oxford for their comments and suggestions. Yazici gratefully acknowledges financial support from the European

Community Framework Programme through the Marie Curie International Reintegration Grant #268457.
†Bocconi University, IGIER, IFS, and CEPR.
‡Sabanci University.

1



1 Introduction

Economists traditionally assume that people discount streams of utility over time exponentially.

An important implication of exponential discounting is that under this assumption people have

time-consistent intertemporal preferences: How an individual feels about a given intertemporal

tradeoff is independent of when he is asked. However, laboratory and field studies on intertem-

poral choice have cast doubt on this assumption.1 This evidence suggests that discounting

between two future dates gets steeper as we get closer to these dates. Such time-inconsistent

intertemporal preferences capture self-control problems. Naturally, all this evidence on self-

control problems have led many economists to model this phenomenon and study its positive

and normative implications.2

In this paper, we study optimal capital income taxation over the life cycle in the presence of

self-control problems. A common modeling assumption in the literature on self-control prob-

lems is that the degree of self-control problem is constant over time. This contrasts with the

significant body of empirical research indicating that, like many other personality traits, peo-

ple’s ability to self-control changes as they age. A first set of evidence for changing level of self-

control over the life span comes from personality psychology. As Ameriks, Caplin, Leahy, and Tyler

(2007) states ”personality psychologists associate self-control with conscientiousness, one of the

‘big five’ personality factors.”3 There is a long list of empirical studies in personality psychology

that show that conscientiousness and in particular its lower-level facet, self-control, changes

1See DellaVigna (2009) for a survey of field studies and Frederick, Loewenstein, and O’Donoghue (2002) for

a survey of experimental studies. Also, see Laibson, Repetto, and Tobacman (2007) for evidence of self-control

problems in consumption asset holdings panel data.
2Three main models that have been proposed to capture self-control problems are the hyperbolic discounting

model of Laibson (1997), the temptation model of Gul and Pesendorfer (2001), and the planner doer model of

Thaler and Shefrin (1981).
3Actually, Ameriks, Caplin, Leahy, and Tyler (2007) validates this relationship between conscientiousness and

the measure of self-control used in the experiment (the EI gap) and finds that ”the data reveal a strong relationship

between the conscientiousness questions and the absolute value of the EI gap.”
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with age.4 Indeed, Caspi, Roberts, Robins, and Trzesniewski (2003), in their survey article on

personality development in adulthood, conclude that: ”it appears that the increase in consci-

entiousness is one of the most robust patterns in personality development, especially in young

adulthood.” There is a second set of more direct evidence in favor of changing self-control:

research on intertemporal discounting over the life span has shown that short term discount

rates fall with age predicting a life-cycle developmental trend toward increased self-control.5

In this paper, we extend the traditional models of self-control to allow for varying degrees of

self-control problem over the life cycle, and study optimal capital income taxation.

In our model, agents make consumption and savings decisions facing self-control problems

at all ages. In the last period of their lives, people make consumption and bequest decisions

knowing that they are going to be replaced by their offspring next period. We model prefer-

ences that exhibit self-control problems through the quasi-hyperbolic discounting framework

of Laibson (1997), which builds on the seminal works of Strotz (1955) and Phelps and Pollak

(1968). We extend the Laibson (1997) model in two ways that are important to our analysis.

First, we allow for the degree of self-control problem to change over time. Second, we intro-

duce partial sophistication which essentially amounts to allowing for different degrees of self

awareness about the existence of future self-control problems.

In this environment, we define efficient (or commitment) allocation as the allocation that

would arise in the absence of self-control problems. It is given by the solution to a fictitious

social planner’s consumption-saving problem where the planner discounts exponentially future

utilities. In our environment, this preference corresponds to the preference of an initial gener-

ation parent. The main exercise in this paper is to examine the optimal tax policy that imple-

ments the efficient allocation. In this sense, this paper is a normative exploration of optimal

paternalistic tax policy regarding life-cycle saving behavior. It is well-known that in models

4For example, see John, Gosling, Potter, and Srivastava (2003) and Helson, Jones, and Kwan (2002).

Ameriks, Caplin, Leahy, and Tyler (2007) also, through their experimental finding, show that there is a pro-

found reduction in the scale of self-control and conscientiousness problems as individuals age.
5Green, Fry, and Myerson (1994), Green, Myerson, and Ostaszewski (1999), Read and Read (2004), and

Ameriks, Caplin, Leahy, and Tyler (2007).
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of quasi-hyperbolic discounting there is multiplicity of equilibria.6 We restrict attention to the

(unique) linear Markov equilibrium of our economy.

We derive closed form formulas for optimal age-dependent capital taxes. Our closed-form

solution represents the equilibrium obtainable as the limit of the equilibria of finite-period

economies. We show that optimal capital taxes can be positive as well as negative in different

periods of life and they can be increasing, decreasing, or changing non-monotonically with age,

depending on what we assume about the evolution of self-control problem over the life cycle.

This ambiguity result about the qualitative properties of optimal taxes is an important message

since it shows that researchers who take self-control problems seriously should also take the

evolution of self-control problems over the life cycle seriously before making policy sugges-

tions. This result also questions the basic presumption in the literature that self-control prob-

lems always imply optimality of saving subsidies, which - as we demonstrate - arises purely

from the assumption of constant self-control over age.

Our closed forms are obtained assuming agents have CEIS preferences. When utility is

logarithmic, optimal taxes are independent of how sophistication changes over the life cycle.

Moreover, if the economy is in the steady-state and agents are fully sophisticated, then optimal

taxes are independent of the CEIS coefficient. These results make the tax formulas computed for

the logarithmic case quite general. Using these formulas, we prove that if, as strongly suggested

by personality psychologists, the degree of self-control increases with age, then capital should

indeed be subsidized in all periods. We put forth empirical evidence that suggests that the degree

of self-control increases concavely with age. We prove that, if this is the case, then optimal

capital subsidies should decrease with age.

We study the quantitative effects of age-dependent self-control in a calibrated version of our

model, and we find that the optimal subsidies in our model with decreasing self-control prob-

lems are much larger than those implied by a model with constant self-control. We also compare our

optimal subsidies with those implied by the 401(k) plan. If we exclude the very last periods be-

fore retirement - where the subsidy rate in the 401(k) essentially mimics the employer matching

6For discussions of multiplicity of equilibria, see, among others, Laibson (1994) and Krusell and Smith (2003).
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rate - the subsidy levels in the two cases are of comparable magnitudes. A marked difference

emerges however: the 401(k) plan implies an increasing pattern of subsidies while the optimal

subsidies decrease over the life cycle.

Finally, we know from O’Donoghue and Rabin (1999) that allowing for even constant level

of partial naivete can change people’s behavior.7 We analyze how changing naivete over the

life span alters our optimal taxation results. When CEIS coefficient is different from one and

agents are allowed to be partially sophisticated, closed form solutions for optimal taxes are

unavailable. Therefore, we resort to numerical analysis at the steady state. The main conclu-

sion from our numerical experiments is as follows: as long as the level of sophistication is not

changing abruptly from one period to another, the pattern of optimal capital subsidies over the

life cycle is surprisingly robust to the degree of sophistication sophistication. This result holds

approximately for a large range of CEIS coefficients.

Related Literature. Our paper is related to a number of recent papers that have explored the

implications of self-control problems for optimal paternalistic taxation. O’Donoghue and Rabin

(2003b) and O’Donoghue and Rabin (2006) analyze models of paternalistic taxation of unhealthy

goods. More closely related is Krusell, Kuruscu, and Smith (2010), which analyzes optimal tax-

ation of savings in an economy where agents live finitely many periods and have temptation

and self-control problems à la Gul and Pesendorfer (2001).8 First, they prove that the opti-

mal policy prescriptions of the quasi-hyperbolic model and the temptation model are identical

when the utility function is logarithmic or when it is CEIS and the temptation parameter goes

to infinity. Second, they show that savings should be subsidized and that this subsidy should

be increasing with time due to finite life time effect.9 Our work differs from this paper along

several dimensions. First and foremost, we allow for changing level of self-control problems

over the life cycle whereas - like all papers prior to ours - Krusell, Kuruscu, and Smith (2010)

7See Ariely and Wertenbroch (2002) for behavioral evidence on partial sophistication.
8Krusell, Kuruscu, and Smith (2002) also analyze optimal taxation of savings under self-control problems but

their main focus is on an environment where the government as well as the people face issues of time-inconsistency.
9It is indeed straightforward to show that, in the infinite horizon version of their model, the subsidies would

be constant.
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assume the level of self-control problem to be constant over time. The implications of modeling

age-dependent self-control problems turns out to be significant. First, by assuming empirically

plausible patterns of self-control problems over the life cycle, we show, analytically, that capi-

tal subsidies should actually be decreasing with age. Our benchmark model assumes perfectly

altruistic parents, making it equivalent to a standard infinite horizon framework. In the quan-

titative section, we allow parents to be imperfectly altruistic and generalize our optimal tax

formulas to take into account the finite life time effects of Krusell, Kuruscu, and Smith (2010).

We find that, in our model, the effect of age-dependent self-control dominates the finite time ef-

fect induced by imperfect altruism: optimal capital income subsidies decrease over the life cycle

even when parents do not care at all about their offsprings (i.e., when finite life time effect is the

strongest). Second, we show quantitatively that age-dependence of self-control problems imply

much higher levels of optimal subsidies relative to the constant self-control model. Finally, we

allow for agents to be partially aware of their future self-control problems (partial sophistica-

tion) as opposed to assuming people at all ages predict their future self-control level perfectly

which is an assumption maintained in Krusell, Kuruscu, and Smith (2010). This allows us to

study the effects of sophistication on capital subsidies.

Another important paper that is related to ours is that of Imrohoroglu, Imrohoroglu, and Joines

(2003), who study the role of social security in a model where agents have self-control problems.

They consider a rich overlapping generations model with uninsurable unemployment shocks

and liquidity constraints. They find that social security is not very useful in helping agents to

solve their self-control problems. Ours is a theory of capital subsidies under complete markets.

One advantage of our analysis is that whenever utility is logarithmic, our results are robust to

many dimensions of heterogeneity - such as the life-cycle wage profile and the wealth distribu-

tion - whereas the normative predictions in models with incomplete markets obviously depend

on all these features.

As discussed above, an immediate implication of age-dependent self-control problems is

that capital taxes should be age-dependent. The age-dependence result is also a feature of

two sets of earlier contributions that analyze benefits of age-dependent capital income taxes
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with time-consistent agents. First, in the Ramsey taxation tradition, Erosa and Gervais (2002)

shows that, in life-cycle economies, if the government has access to age-dependent linear capital

and labor income taxes, the resulting optimal tax system features age-dependence both for

capital and labor income. Second, the New Dynamic Public Finance literature calls for age-

dependence in optimal capital and labor income tax codes (e.g., Farhi and Werning (2013) and

Golosov, Troshkin, and Tsyvinski (2011)). The forces generating age-dependence in the current

paper, however, are completely different from the forces in these papers.10 Therefore, our paper

complements this literature by providing a new mechanism through which capital taxes should

depend on age. As such, in this paper, the life-cycle pattern of optimal capital taxes depends on

features of the environment that are neglected by these papers.

2 Model

The economy is populated by a continuum of a unit measure of dynasties who live for a count-

able infinity of periods, t = 1, 2, . . . , where each agent within a dynasty is active for I + 1

periods. In the first I periods, agents make consumption saving decisions facing different de-

grees of self-control problems at different ages. In the last period of their lives, agents decide

how much to consume and bequeath to the offspring, knowing that they are going to be re-

placed by their offsprings next period. People are altruistic and they anticipate their offspring’s

self-control problems.11 We use quasi-hyperbolic discounting formalized by Laibson (1997) to

10The optimality of age-dependence in Erosa and Gervais (2002) is a direct implication of time-dependent con-

sumption and labor plans present in Ramsey tax models off the steady-state. In the New Dynamic Public Finance

models, capital is taxed in order to deter people from joint deviation of saving and shirking. Since people at differ-

ent ages (and contingencies) have different levels of accumulated wealth and future prospects, they have different

tendencies to save, and hence, the corrective taxes depend on age.
11 In this paper, we are only interested in analyzing life-cycle capital taxation under self-control problems. There-

fore, we could have even assumed there are no intergenerational links and hence no bequest motive. We do model

altruism (and assume ‘perfectly’ altruistic parents) to abstract away from the effects of finite life time on taxes (see

Krusell, Kuruscu, and Smith (2010) for finite life time effects). The case with imperfect altruism is briefly analyzed
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model self-control problems as follows.

An agent who is in his ultimate period of life (we refer to this agent as parent from now on)

has the following preferences over dynastic consumption stream:

u(c0) + δu(c1) + δ2u(c2) + · · ·+ δIu(cI) + δI+1u(c′0) + . . .

where c0 is the consumption level of the current parent, ci is the consumption level of the off-

spring at age i, and c′0 is the consumption level of the offspring when he becomes a parent. u

is the instantaneous utility function and δ refers to both the discount factor and the altruism

factor. The offspring has different preferences at different periods of his life:

u(c1) + β1δ
[

u(c2) + δu(c3) + · · ·+ δI−1u(c′0) + . . .
]

,

u(c2) + β2δ
[

u(c3) + · · ·+ δI−2u(c′0) + . . .
]

,

. . . ,

u(cI) + β Iδ
[

u(c′0) + . . .
]

.

The first equation above is the agent’s preference during his first period of adult life, second

equation is his preference during his second period, and so on. When βi = 1 for all i, all agents

at all ages are time-consistent as there is no self-control problem. Throughout the paper we

will assume that βi < 1, meaning individuals postpone their planned savings when the date

of saving comes. If we were to take βi = β for all i, as previous papers have assumed, that

would mean that the degree of self-control problem is constant as people age. However, as

documented by personality psychologists and experimental studies, as people age, the severity

of the self-control problem they face might change. Therefore, we allow for the severity of

self-control problems, βi, to depend on i.

Another dimension of self-control problems is the extent to which agents can predict the

level of self-control problems their followers (be it their future selves or their offsprings) face.

in Section 4.1.
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We allow for partial sophistication which essentially amounts to allowing for different degrees

of self awareness about the existence of self-control problems.12 We explain in detail the way

we model partial sophistication in the next subsection.

The instantaneous utility function, u, is of the CEIS form with elasticity parameter σ > 0 :

u(c) =
c1−σ

1 − σ
, for σ 6= 1;

= log c, else.

Production takes place at the aggregate level according to the function F(k, l), where k is ag-

gregate capital and l is aggregate labor. The production function satisfies the usual neoclassical

properties together with the Inada conditions:

F1, F2 > 0 ; F11, F22 ≤ 0; and lim
k→0

F1 = ∞; lim
k→∞

F1 = 0.

Labor is inelastically supplied, so at all dates l = 1. Define

f (k) = F(k, 1) + (1 − d)k,

where d refers to the fraction of capital that is forgone due to depreciation. There is a credit

market in which agents can trade one period risk-free bonds and capital as perfectly substi-

tutable assets. Since at any given date there is not cross-sectional heterogeneity, all agents have

the same level of asset holdings. Let bt be the amount of asset holdings of the agent alive in

period t; the credit market clearing condition is hence kt = bt.

2.1 The Efficient Allocation

The efficient or – as we use interchangeably throughout the paper – the commitment allocation

is the allocation that would arise in the absence of self-control problems. It is given by the so-

12We are not the first ones to model partial sophistication, O’Donoghue and Rabin (1999) are. However, the

way we introduce partial sophistication is different from theirs, and more in line with Eliaz and Spiegler (2006)

and Asheim (2007). We justify our way of modeling partial sophistication on the grounds of tractability. The

added bonus of our model of partial sophistication is that the structure is consistent with a learning approach to

sophistication (e.g., Ali (2011)).
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lution to a fictitious social planner’s consumption-saving problem where the planner discounts

exponentially with discount factor δ. In our environment, this preference corresponds to the

preference of an initial generation parent. By taking a long-term perspective and evaluating

welfare according to the initial generation parent’s preference, we are following much of the lit-

erature.13 The following Euler Equations characterize the efficient allocation, which we denote

with an asterisk throughout the paper:14

u′(c∗i ) = δ f ′(k∗i )u
′(c∗i+1), for i = 0, 1, 2, . . . , I − 1, (1)

and

u′(c∗I ) = δ f ′(k∗I )u
′(c′∗0 ),

. . .

2.2 Implementing the Efficient Allocation

Since people in this economy face self-control problems, laissez-faire market equilibrium cannot

attain the commitment allocation. Our main interest in this paper is to find and characterize a

tax system that implements the commitment allocation in the market environment. We call such

a tax system optimal. We proceed by defining a market equilibrium with taxes. It is important

to note that from the outset we restrict the set of taxes that are available to the government to

linear taxes on savings coupled with lump-sum rebates (throughout the paper we call this the

set of linear taxes). In general, it is not obvious that there is a linear tax system that implements

the efficient allocation. However, since we focus our attention to linear equilibria, a linear tax

system that implements the efficient allocation exists. We will verify this claim in Section 3.

13See DellaVigna and Malmendier (2004), Gruber and Koszegi (2004) and O’Donoghue and Rabin (2006), for ex-

ample.
14We do not state the transversality condition but the commitment allocation will converge to a steady state with

positive capital as long as k0 > 0.
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2.3 Markov Equilibrim with Taxes

For notational simplicity, here in the main text, we only present the stationary version of the

model where the level of aggregate capital stock starts from its steady-state level, k. The prices

at the steady-state are given by

R = f ′(k), (2)

w = f (k)− f ′(k)k.

In such a world, the only index we need to carry around is the age index i. In Appendix A,

we provide the general setup where the economy starts from an arbitrary level of capital stock

and prices change over time. We prove our main result, Proposition 1, for the general case, and

show that if the utility function is logarithmic, then optimal taxes do not depend on whether

the economy is at the steady-state or in a transition.

Let τi be the savings (capital) tax agent i = 0, 1, . . . , I pays. Tax proceeds are rebated in

a lump-sum manner in every period. Denote the lump-sum rebate in period i by Ti and let

τ = {τi, Ti}i. For each set of taxes, we define the policy functions bi(·; τ) for i = 0, 1, . . . , I,

describing the optimal behavior of agent i given prices, taxes, and his beliefs about other agents’

policy rules. When agent of age n is deciding bn, his evaluation of the effect of his choice on

bi, i > n will be described by the (nested) function bi(bi−1(...bn+1(bn; τ)...; τ); τ), which will be

referred to as bi(...(bn)...)) so as to simplify notation. In addition, in order to only deal with

functions, we assume each agent’s solution is unique, a property satisfied by our closed form

solution involving linear policies. Of course, in case of multiple solutions, our policy functions

correspond to appropriate selections from the policy correspondences.

In order to define the equilibrium for this economy, we first define the parent’s problem. Let

V (b; τ) be the value of a parent’s problem who saved b units in his last period before parent-

hood and faces the tax system τ. The parent chooses his bequest b0 and does not have any direct

control over b1, . . . , bI . Note that his preferences are not aligned with his offspring’s (in a given

period i, parent’s discount factor is δ whereas offspring’s is βiδ). The parent is sophisticated

in the sense that he foresees this misalignment of preferences, and correctly forecasts future
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policies.

Problem of the parent:

V (b; τ) = max
b0

u (R (1 − τI) b + w + TI − b0)

+δ

{

I−1

∑
i=0

δiu (R (1 − τi) bi(...(b0)...) + w + Ti − bi+1(...(b0)...)) + δIV (bI(...(b0)...); τ)

}

s.t. for all b0

b1(b0; τ) =

arg max
b̂1

u
(

R (1 − τ0) b0 + w + T0 − b̂1

)

+ δβ1

[

π1u
(

R (1 − τ1) b̂1 + w + T1 − b2(b̂1)
)

+ (1 − π1)W1

(

b̂1; τ
)]

+δβ1π1

{

I−1

∑
i=2

δi−1u
(

R (1 − τi) bi(...(b̂1)...) + w + Ti − bi+1(...(b̂1)...)
)

+ δI−1V
(

bI(...(b̂1)...); τ
)

}

s.t. for all b1

b2(b1; τ) =

arg max
b̂2

u
(

R (1 − τ1) b1 + w + T1 − b̂2

)

+ δβ2

[

π2u
(

R (1 − τ2) b̂2 + w + T2 − b3(b̂2)
)

+ (1 − π2)W2

(

b̂2; τ
)]

+δβ2π2

{

I−1

∑
i=3

δi−2u
(

R (1 − τi) bi(...(b̂2)...) + w + Ti − bi+1(...(b̂2)...)
)

+ δI−2V
(

bI(...(b̂2)...); τ
)

}

. . .

bI−1(bI−2; τ) =

arg max
b̂I−1

u
(

R (1 − τI−2) bI−2 + w + TI−2 − b̂I−1

)

+ δβ I−1πI−1u
(

R (1 − τI−1) b̂I−1 + w + TI−1 − bI(b̂I−1)
)

+δβ I−1

[

(1 − πI−1)WI−1

(

b̂I−1; τ
)

+ δπI−1V
(

bI(b̂I−1); τ
)]

(3)

s.t. for all bI−1

bI(bI−1; τ) = arg max
b̂I

u
(

R (1 − τI−1) bI−1 + w + TI−1 − b̂I

)

+ δβ I

[

πIV
(

b̂I ; τ
)

+ (1 − πI)WI

(

b̂I ; τ
)]

(4)

where the functions Wi for i = 0, 1, . . . , I − 1 solve:

Wi (b; τ) = max
b′

u
(

R (1 − τi) b + w + Ti − b′
)

+ δWi+1

(

b′; τ
)

;

with

WI (b; τ) = max
b′

u
(

R (1 − τI) b + w + TI − b′
)

+ δW0

(

b′; τ
)

.
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A Stationary Markov equilibrium with taxes τ := {τi, Ti}
I
i=0 consists of a level of capital k, prices

R, w, value functions V(·; τ) and {Wi(·; τ)}I
i=0 and policy functions {bi(·; τ)}i such that: (i) the prices

satisfy (2); (ii) the value functions and the policies are consistent with the parent’s problem described

above; (iii) the government budget is satisfied period-by-period and markets clear: Ti = Rτibi(k; τ) and

bi(k; τ) = k for all i.

To understand the nested nature of policies and the way we model partial sophistication

better, let us analyze the definition of policies in (3) and (4). First, constraint (4) describes how

self I chooses bI . The number πI ∈ [0, 1] represents the belief of self I about the presence

of self-control problems. More precisely, this is the belief of self I about the probability that

next period when he becomes a parent he will face an offspring with self-control problems, i.e.

(β1, . . . , β I) 6= (1, . . . , 1), and the offspring will face an offspring with self-control problems,

and so on. Note that in reality this probability is one, meaning in each generation people face

self-control problems over their life cycle. If πI < 1, self I is partially naive in the sense that he

incorrectly attaches positive probability (1−πI) to the event that there will never be self-control

problems in the future, i.e. (β1, . . . , β I) = (1, . . . , 1). So, in our environment, πI represents the

level of sophistication of self I. We assume that all agents, including the parents, correctly guess

the level of sophistication of their future selves, (πi)i. In other terms, agents share the same

higher-order beliefs.15 Second, consider constraint (3) which defines how self I − 1 chooses

bI−1. The number πI−1 ∈ [0, 1] represents the degree of sophistication of self I − 1, meaning

self I − 1 knows the truth that his followers will have self-control problems with probability

πI−1. In particular, with πI−1 probability self I − 1 thinks self I chooses bI according to (4),

and with the remaining probability he thinks self I chooses bI without facing any self-control

problems. We have just seen that the last constraint, (4), enters the parent’s problem in at

least two ways: first, in the definition of self I’s policy function and then as a constraint in the

15Of course, this structure is rich enough to allow for disagreements on higher order beliefs across agents as in

O’Donoghue and Rabin (2001). At the same time, if certain regularity conditions are satisfied, it is possible to map

such disagreements within a learning environment à la Ali (2011) as either coming from different priors about each

other’s sophistication or from different information sets across agents. Details are available upon request.
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definition of self I − 1’s policy function. These two different constraints are represented by a

single constraint, (4), because the parent and self I − 1′s sophisticated belief agree about how

self I will behave.16 Similarly, the constraint describing self I − 1’s policy is also a constraint in

the constraint that describes self I − 2’s policy, and self I − 2’s policy is also a constraint of self

I − 3’s, and so on. Thus, actually the constraint that describes the policy of self i enters parent’s

problem in i different places but since these are all identical constraints, we represent them with

just one constraint that describes self i′s policy.

We restrict attention to linear equilibria, meaning equilibria with policy functions that are

linear in net present value of current wealth. This implies that agents’ problems are strictly

concave maximization problems. As a result, first-order optimality conditions are not only

necessary but also sufficient, which means we can replace agents maximization problems with

the associated first-order conditions. First define

Γi(b) = R(1 − τi)b + w + Ti + Gi,

Gi =
Ti+1 + w

R (1 − τi+1)
+

Ti+2 + w

R2 (1 − τi+1) (1 − τi+2)
+ · · ·+

TI + w

RI−i
I

∏
j=i+1

(

1 − τj

)

+
T0 + w

RI−i+1(1 − τ0)
I

∏
j=i+1

(

1 − τj

)

+ . . . ,

where Gi is the total net present value of future lump-sum taxes plus wages, Γi(b) is the net

present value of wealth available to an agent at the beginning of age i + 1 with asset level b. We

derive closed form solutions of the form:

ci(b) = MiΓi−1(b),

where the constant Mi is the fraction consumed out of net present value of wealth at the begin-

ning of age i. The closed form is obtained by rewriting the parent’s problem using linearity of

the policy functions and the first-order approach, and finding analytic expressions for the value

functions Wi and V, and the vector of constants Mi describing the optimal linear policies.

16Sophisticated belief of self i about how self j, j > i, agrees with parent’s belief thanks to our assumption that

the same ‘beliefs’ (πi)i are are shared by all agents.
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3 Optimal Taxes

In this section we analyze optimal capital taxes in the model introduced in Section 2. Proposi-

tion 1 characterizes optimal taxes when utility is logarithmic for any level of sophistication.

Proposition 1 Suppose u(c) = log(c). For any level of partial sophistication over the life cycle, π =

(π1, π2, .., πI), we have:

1 − τ∗
0 = 1 − δ + β1δ,

1 − τ∗
i =

1

βi
(1 − δ + βi+1δ) , for i ∈ {1, .., I − 1}

1 − τ∗
I =

1

β I
.

Proof. In Appendix A.

The invariance of optimal taxes to the level of sophistication for logarithmic utility is anal-

ogous to the equivalence result obtained by Pollak (1968) on consumption policies. Since our

model of partial sophistication is different from that considered in the literature, it is interesting

that it shares this property with the more standard framework.

It might be important to stress that - as shown in the Appendix - Proposition 1 holds regard-

less of whether the economy is in a steady state or in a transition. In particular, since agents do

not face binding liquidity constraints, the expressions for taxes hold for any life-cycle path of wages:

they only depend on the path of self-control parameter βi. In Proposition 2, we show that if the

economy is in the steady state and all the agents in the economy are fully sophisticated, then

optimal taxes characterized above for the σ = 1 case is valid for any σ.

Proposition 2 Assume k is such that δ f ′(k) = 1 and πi = 1 for all i. Then optimal taxes are indepen-

dent of CEIS coefficient σ, i.e., optimal capital taxes take exactly the same form as those of Proposition 1

for all i.

Proof. In Appendix A.
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The tax formula for 1 − τ∗
i , 0 < i < I, consists of two main components. The first part, 1

βi
, is

easier to understand. Because of his current self-control problem, self i discounts tomorrow by

an extra βi and hence wants to undersave relative to the efficient allocation. By multiplying the

after tax return with 1
βi

, we can exactly offset the extra discounting, thereby getting rid of this

undersaving motive of the agent. Let us call this first part of the tax formula the current compo-

nent. Clearly, the current component is always greater than one, i.e. it always calls for a subsidy.

This is not the end of the story, however. Self i’s choice of current savings is also affected by

the actions of future selves and future government policies. Therefore, even if we correct for

his undersaving through the current component of the tax, he still deviates from the efficient

saving level in order to compensate for his future self’s suboptimal actions (due to future self-

control problems) and/or in response to future policies. The component (1 − δ + βi+1δ) of the

tax formula is there to correct deviations in current savings caused by future actions and poli-

cies. We call this part the future component of the tax formula. Here, the level of sophistication

might also matter. Interestingly, it can be shown that the future component is always less than

one, i.e. it calls for a tax, independent of the level of sophistication.17

To gain intuition on why future component always calls for a tax, consider the future com-

ponent in the case where agents are fully sophisticated, i.e. set πi = 1 for all i. The future

component is less than one because of a combination of two factors. First, it is easy to see that

the policy of each agent in this economy bi(·) is monotone in the level of assets. Second, from

self i’s perspective self i + 1 undersaves in period i + 1. This implies a violation of an Envelope

condition that holds when agents are time-consistent. According to agent i, each unit saved

by self i + 1 has a cost u′(c∗i+1) that is lower than the self i’s perceived return. This is so since

self i + 1′s discount rate between period i + 1 and i + 2 is higher than that of self i. Self i + 1′s

undersaving hence appears as an extra return to saving for self i. As a consequence, whenever

the policy function of agent i + 1 is monotone in the level of assets, self i is induced to save

more than the efficient level. The future component of the tax formula calls for a tax in order

to correct this oversaving behavior. The reader might still feel puzzled by our argument: after

17For details, the reader can refer to Section 3 of an earlier version of the paper: Pavoni and Yazici (2012).
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all, when facing the optimal taxes, self i + 1 saves the efficient amount. Note however, that

from self 1’s perspective, self i + 1 is still undersaving (at the new price that is inflated by the

subsidy).

Obviously, the sign of the optimal capital tax depends on whether the current or the future

component dominates. For constant self-control (i.e., βi ≡ β < 1), the current component al-

ways dominates, implying and optimal negative tax (i.e., optimality calls for a saving subsidy).

We will see below that when βi changes with age, depending on the pattern of change, either

component may dominate, and the optimal tax can in general be positive or negative.

Finally, note that τ∗
0 is only shaped by the future component. It is hence always positive.

Since it is applied to the wealth transferred to future generations, τ∗
0 can be interpreted as a

bequest tax. In this paper, we do not analyze taxation of wealth transferred across generations.

We study this topic in detail in Pavoni and Yazici (2013).

3.1 Lessons for Capital Taxation

Propositions 1 and 2 imply several general lessons for capital taxes which are summarized

below in a series of corollaries.

Corollary 3 (Age-dependence) Optimal capital taxes are age-dependent. In particular, depending on

how βi changes with i :

(i) Optimal capital taxes might be positive or negative at different ages.

(ii) Optimal capital taxes might be increasing or decreasing with age at different ages.

Proof. (i) For an example of τi > 0, set βi+1 ≈ 0 and βi > 1 − δ.

For an example of subsidy, set βi = βi+1 = β < 1. See also Figure 1.

(ii) See the green line with crosses in Figure 2 below for an example.

Corollary 3 shows that in general optimal capital taxes should depend on people’s age. The

reason for the necessity of this dependence is the changing the degree of self-control problem

over age, for which, as discussed in the introduction, there is an overwhelming amount of ev-

idence in personality psychology literature. It also shows that optimal capital taxes might be
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positive or negative and that they can be increasing or decreasing with age, all depending on

how the severity of the self-control problems evolve over the life cycle. These ambiguity results

about the qualitative properties of optimal taxes constitute an important message: researchers

who take self-control problems seriously should also take the evolution of self-control prob-

lems over the life cycle seriously before making policy suggestions. This is quite contrary, for

instance, to the presumption in the literature that self-control problems always imply subsi-

dies.18 The existing literature overlooks this result because they assume constant self-control

problems under which the current component always dominates the future component, and

hence, implementing the commitment allocation calls for subsidies.

We display Figure 1 and Figure 2 to show how different assumptions about the pattern

of self-control problem over the life span can affect the evolution of optimal capital taxes. In

Figure 1, we see that constant βi, which is depicted by a dashed line, implies constant subsidies

as found by previous literature. This figure also shows that optimal capital taxes can be positive

if βi decreases with age as depicted by the red crosses. In Figure 2, we see different self-control

patterns that are all increasing with age. In all these cases, as the theory shows, capital should be

subsidized. Whether subsidies should increase or decrease with age depends on the curvature

of βi.

Corollaries 4 and 5 below characterize quite sharply the sign and monotonicity properties

of optimal capital taxes over the life cycle for a class of self-control patterns over the life cycle

that is suggested by personality psychologists and the literature on intertemporal discounting.

The pattern is that the degree of self-control problem decreases with age and this decline

slows down with age. In the notation of this paper, this means βi is increasing and concave

in i. We have two sets of evidence in favor of these assumptions. First, research on intertem-

poral discounting over the life span has shown that short term discount rates fall with age

18O’Donoghue and Rabin (1999) is an exception where it says if the agent is sophisticated then he may oversave.

However, even in that paper it says that ”naifs will undersave in essentially any savings model” and hence should

be subsidized. Proposition 1 shows that, in our environment depending on how self-control evolves over the life

cycle, even naive may oversave and hence may need to be taxed.
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predicting a life-cycle developmental trend toward increased self-control.19 Second, personal-

ity psychologists associate self-control with conscientiousness, one of the ‘big five’ personality

factors,20 and in the words of Caspi, Roberts, Robins, and Trzesniewski (2003) ‘it appears that

the increase in conscientiousness is one of the most robust patterns in personality develop-

ment, especially in young adulthood.’ So, there seems to be a consensus among psychologists

that self-control increases with age. The evidence for concavity of this increase comes again

from the personality psychology literature. John, Gosling, Potter, and Srivastava (2003) and

Roberts, Walton, and Viechtbauer (2006) both find that conscientiousness increases concavely

over the life cycle. For example, in the work by John, Gosling, Potter, and Srivastava (2003),

conscientiousness is estimated as a quadratic function of age and they find that the quadratic

age term has a negative coefficient ‘indicating that the rate of increase [in conscientiousness]

was greater at younger ages than at older ages.’21

Corollary 4 shows that if the severity of self-control problems decline with age, then capital

should be subsidized at all ages.

Corollary 4 (Optimality of Capital Subsidies)

Under the assumptions of Propositions 1 or 2, if βi+1 ≥ βi, for all i, optimal capital tax is negative for

all ages:

Proof. 1 − τ∗
i = 1

βi
(1 − δ + βi+1δ) >

βi+1
βi

≥ 1.

19See Green, Fry, and Myerson (1994) , Green, Myerson, and Ostaszewski (1999), Read and Read (2004), and

Ameriks, Caplin, Leahy, and Tyler (2007).
20Ameriks, Caplin, Leahy, and Tyler (2007) also analyzes the relationship between conscientiousness and

the measure of self-control used in the experiment (the EI gap) and finds that ‘the data reveal a

strong relationship between the conscientiousness questions and the absolute value of the EI gap.’

Borghans, Duckworth, Heckman, and ter Weel (2008) also states that conscientiousness is conceptually related to

self-control problems.
21It is possible to compute one-year short-term discount rates (our β′s) using Green, Myerson, and Ostaszewski

(1999)’s estimates of hyperbolic discount functions for different age groups in his study and such an analysis

confirms that β is a concave increasing function of age. However, they have only three age groups.

20



Corollary 5 shows that, if people’s ability to self-control increases concavely with age, then

capital subsidies should decrease with age.

Corollary 5 (Decreasing Capital Subsidies)

Under the assumptions of Propositions 1 or 2, if 0 ≤ βi+1 − βi ≤ βi − βi−1 for all i (concavity), then

optimal capital subsidies decrease with age.

Proof. 1 − τ∗
i−1 = 1−δ

βi−1
+

βiδ
βi−1

>
1−δ
βi

+
βiδ

βi−1
>

1−δ
βi

+
βi+1δ

βi
= 1 − τ∗

i , where the first and second

inequalities follow from βi−1 < βi and βi+1 − βi ≤ βi − βi−1, respectively.

The result of Corollary 5 is contrary to Krusell, Kuruscu, and Smith (2010) who conclude

that in any finite economy with constant self-control, capital subsidies should be increasing

with age. The optimality of increasing subsidies in their case is purely due to the finite life

time people face, and this element is missing from our analysis due to our assumption of per-

fect altruism. In Section 4.1, we show that the finite life time effect is quantitatively small for

the relevant parameter space, implying that the optimality of decreasing subsidies with age is

generally optimal.

3.2 Quantitative Analysis

In this subsection, we numerically analyze optimal capital taxation over the life cycle assuming

either one of the justifications of the tax formulas in Proposition 1 hold: either utility is logarith-

mic or the steady-state condition holds and all the agents in the model are fully sophisticated.

In order to conduct a numerical analysis, we have to choose particular values for the parameters

of the model. Individuals are assumed to be born at the real-time age of 20 and they live I = 50

years, so they die at age 70. Observe that the tax formulas do not depend on the constant rela-

tive risk aversion coefficient σ, the shape of the production function F, or the depreciation rate,

d. So, we do not specify values for these parameters. The only parameters that are needed are

the true yearly discount factor δ and the evolution of self-control with age, {βi}
51
i=1.22 We set the

22Observe that if we want the taxes computed using the formulas in Proposition 1 to be valid under any σ and

with full sophistication, then we need to assure that the interest rate R (or the deeper parameters of the production
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true yearly discount factor δ = 0.96 which is consistent with Laibson, Repetto, and Tobacman

(2007)’s estimate in a constant self-control model when σ = 1.

As evident from the optimal tax formulas, self-control vector {βi}
51
i=1 is the crucial ‘param-

eter’. Figure 1 and Figure 2 show that taxes are in general very sensitive to the vector {βi}
51
i=1 .

This vector is calibrated as follows. We assume the relationship i → βi takes the following

functional form:

βi = a − d exp

{

51 − i

b

}

. (5)

This form allows for both concave and convex patterns. A priori, we do not want to restrict the

sign of the curvature; therefore, we let the parameters to be dictated by the calibration targets.

Note that whenever the signs of d and b are the same, i → βi is an increasing function of i.

We have chosen this functional form over some other - perhaps simpler - functions because it

satisfies the key condition of our model, namely βi ≤ 1 for all i. In Figure 6, we provide some

sensitivity analysis regarding the functional forms.

We use the level of self-control problems at the beginning and end of the life cycle, β1 and

β51, together with the average level of self-control problems in the economy, call it βavg, to

pin down the parameters of the function. In our benchmark simulation, we assume β1 =

0.5. Green, Myerson, and Ostaszewski (1999) estimates a hyperbolic discount function for their

young adult group which has mean age of 20 years. We approximate a quasi-hyperbolic dis-

count function using their estimate. Even though this approximation procedure does not allow

us to pin down a single number for one-year short term discount rate for this group, β1, it

does allow us to compute upper and lower bounds on the level of β1. Our benchmark choice

of β1 = 0.5 is in the middle of this range, [0.25, 0.7].23 We then perform sensitivity analysis for

β1 = 0.35 and β1 = 0.65. We assume that self-control problem vanishes towards the end of

function F and d) satisfies the steady-state condition

R = f ′(k) = F′(k, 1)− d = δ−1,

where k refers to steady-state level of capital stock.
23In Appendix C, we explain in detail how we approximate the bounds on β1 using

Green, Myerson, and Ostaszewski (1999).
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one’s life cycle. This is in line with the evidence from research on intertemporal discounting as

summarized in Read and Read (2004): ”Green et al’s major result- that younger people show

hyperbolic discounting while older people show exponential discounting - is supported by our

data.” The old people have a mean age of seventy-five in Read and Read (2004) and seventy in

Green, Myerson, and Ostaszewski (1999), which is consistent with the age of our oldest agent,

seventy. Thus, β51 is set to 1. We take βavg to be 0.818 in our benchmark analysis following the

estimate of Laibson, Repetto, and Tobacman (2007) for σ = 1 for a constant self-control model

with mean age 40. We perform sensitivity analysis by also targeting βavg to 0.703 and 0.898.

The first value corresponds to Laibson, Repetto, and Tobacman (2007)’s estimates for σ = 2;

our second target for βavg is the value they find when they estimate σ and β jointly.24

By construction, β51 = 1 implies a = 1 + d. Then, for a given level of d, we compute b as

a function of d using equation (5) for i = 1. Finally, we pick d to match βavg. The calibration

for benchmark and sensitivity exercises are summarized in Table 1. The benchmark calibration

implies a concave pattern for i → βi. In the robustness check exercises, we also obtain three

calibrations with negative coefficients, implying a convex pattern of self-control.

Now we summarize our results. The solid blue line on the left-hand panel of Figure 3 rep-

resents our benchmark calibration of the evolution of self-control problem over the life cycle;

the right-hand panel displays the corresponding optimal subsidies. In our benchmark exercise,

optimal taxes are negative, so they are indeed subsidies. The subsidies start at 8% and are de-

creasing with age to less than 1% toward the end of the life cycle. The optimality of declining

subsidies is expected given Corollary 4 and Corollary 5 and the concavely increasing pattern of

βi with i.

The dotted lines in Figure 3 display the results of the sensitivity analysis we performed

regarding one of our calibration targets, β1. We recalibrate the i → βi function given by equation

(5) targetting first β1 = 0.35 and then β1 = 0.65. The calibrated parameters are reported in

second and third rows of Table 1, respectively. We observe that when we calibrate the evolution

24Recall that our tax formulas are valid for any level of σ if the steady-state condition specified in Proposition 2

holds.
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Table 1: Calibration of self-control pattern

Targets Parameters

β1 βavg b d

0.5 (Benchmark) 0.8186 28.2935 0.103

0.35 0.8186 16.0373 0.0301

0.65 0.8186 -224.071 -1.75

0.5 0.8983 10.2472 0.00383

0.35 0.8983 7.5292 0.00085

0.65 0.8983 17.1918 0.0202

0.5 0.703 -43.2913 -0.73

0.35 0.703 94.3404 0.93

0.65 0.703 -7.3796 -0.3504
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Figure 3: Optimal subsidies for benchmark calibration and sensitivity with respect to β1.
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Figure 6: Benchmark case and sensitivity with respect to functional forms and curvature of βi.

of self-control problems to a higher level of β1, namely 0.65, this affects optimal subsidies in

two ways. First, the level of subsidies in the early periods of the life cycle are much lower:

instead of starting at 8% as in the benchmark case, they start at below 4%, and benchmark

subsidies remain significantly larger than β1 = 0.65 case in the early years of the life cycle. This

is mainly due to the fact that, in the β1 = 0.65 case, younger people begin life with less self-

control problems, and thus, the current component of the optimal tax formula calls for lower

levels of subsidies compared to the benchmark case. Second, when β1 = 0.65, the decline of

subsidies with age is milder relative to the benchmark case. This is due to the fact that, for a

given level of βavg target, a higher β1 target calibrates a βi function that is less concave relative

to the benchmark case, which as Corollary 5 suggests, implies a milder decline in subsidies with

age. In fact, when β1 = 0.65, the self-control problem as a function of age is slightly convex, but

not convex enough to make optimal subsidies increase with age. The discussion of the optimal

subsidies with a calibration target of β1 = 0.35 is analogous and hence is omitted.
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In Figure 4 and Figure 5, we analyze sensitivity with respect to calibration target βavg. The

calibrated parameters of the i → βi function are reported in rows four to nine of Table 1. Com-

parison of the blue lines in Figure 3 and Figure 4 shows that, for a given level of β1 target, a

higher βavg target, namely 0.898 relative to the 0.818 in the benchmark case, gives a calibrated

self-control function that is more concave in age. This results in higher optimal subsidies early

in the life cycle and sharper decline in subsidies with age. A comparison of blue lines in Figure

3 and Figure 5, where in this case we consider a βavg target that is lower than the benchmark

target, namely 0.703, confirms our findings regarding how βavg affects optimal subsidies over

the life cycle. Figure 5 is also interesting because we see that when calibration targets for β1

and βavg are close to each other, the calibration procedure gives a i → βi function that is convex

enough to make optimal subsidies increase with age.

In Figure 6, we provide sensitivity analysis with respect to our choice of functional form for

the i → βi function. The figure shows that, for benchmark calibration targets, if we instead

choose a quadratic or 4th order polynomial functional form, the resulting optimal subsidies

over the life cycle follows a pattern that is very similar to our benchmark case.

We conclude this section by summarizing the general pattern of optimal taxes that emerges

in virtually all of our simulations: optimal taxes are negative, - i.e., they are in fact subsidies,

and these subsidies typically decline with age.

How Large Are the Optimal Subsidies Relative to Existing Ones? Observe that in our com-

putations the tax base is the gross return on asset holdings. Most actual tax systems, however,

tax asset income. If we translate our numbers taking that into account, we find that optimal

subsidies on capital income at the earliest age takes a value of approximately 200%, decreasing

to 9%.25 These are obviously large numbers. In this section, we compare these numbers with

existing saving subsidies in the United States.

Tax deferred retirement accounts. As the name suggests, a tax deferred retirement account

25Denoting the capital income tax by τk
i , the relation between our taxes and tax on capital income is: 1 − τk

i =
R(1−τi)−1

R−1 . As a consequence, for −τ1 = .08 and R = 1.04 we have −τk
1 = 2.
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allows to defer tax payment till retirement. It works through deductible contributions. Probably,

the most common defined contribution plan linked to a tax deferred account in the United

States is the classical 401(k). Each dollar invested into a classical 401(k) can be deducted from

taxable income. The 401(k) restricts withdrawals before retirement and pays taxes both on the

principal and the interest generated only at the date of withdrawal, according to the tax rate

faced by the agent at that date. Moreover, it is quite likely that, at retirement age, contributors

face lower marginal taxes than when they invested into the plan. As we see below, this feature

may generate considerable saving subsidies, and, importantly, these saving subsidies depend

on where the agent is over his life cycle. Consider an agent who is at age i and who is facing

a marginal income tax rate τ
y
C based on the income tax bracket she falls in. Suppose there are

N periods before she retires. If she invests $1 today in 401(k), with the current tax deduction,

this is as if she invests $ 1
1−τ

y
C

. If τ
y
R is the income marginal tax rate at retirement age, the agent

will receive $RN 1−τ
y
R

1−τ
y
C

at retirement. Therefore, the yearly gross return for each dollar invested

in 401(k) at age i - and N periods before retirement - is given by

(

RN 1−τ
y
R

1−τ
y
C

) 1
N

, which implies a

yearly saving subsidy of
(

1 − τ
y
R

1− τ
y
C

)
1
N

− 1. (6)

This saving subsidy depends on a person’s age in two ways.26 First, a person’s age determines

how far away he is from retirement, N, which clearly affects the subsidy rate in (6). Second,

people’s income tend to depend where they are on their life cycle, which implies the tax deduc-

tion they receive, τ
y
C, effectively depends on their age. Observe that in computing the implied

401(k) subsidy rate in (6) we take the tax base as the gross return on asset holdings to make it

comparable to the optimal subsidies we have computed earlier in this section.

401(k) plan with employer matching. The 401(k) also allows the employer to contribute to the

26The formula in (6) indicates that the implied subsidy rate of the 401(k) scheme is independent of the agent’s

saving rate. The 401(k) scheme, however, puts a cap on the amount agents can invest. In 2012, the maximal

amount for agents aged 50 or below was $17,000; older contributors faced an higher cap. As we will explain below

however, the cap is unlikely to be binding for the median household with an average saving rate.
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worker investment plan. The most common methods of employer matching are the $1 per $1 up

to 6% of pay and the $0.5 per $1 up to 6% of pay.27 According to these options, if the saving rate

is below 6%, then for each dollar that a worker contributes to the 401(k) account, the employer

contributes one (or, respectively, one half) dollar. This means a worker investing one dollar is

effectively investing $2
(1−τ

y
C)

into the plan when the employer matching is 1-to-1 and $1.5
(1−τ

y
C)

when

the employer matching is 0.5-to-1. The formula in (6) can then straightforwardly be adapted to

compute implied 401(k) subsidies in the presence of employer matching.28

Now, we compare the saving subsidies implied by a typical 401(k) plan to the optimal sub-

sidies implied by our model. In Figure 7, right panel, we report the life-cycle profile of the

median income per household head - between 17 and 67 years of age - in the period 2000-2006

and the corresponding marginal tax rates implied by the 2006 income tax code.29 In Figure 7,

left panel, we report the implied saving subsidies for several 401(k) plans together with the op-

timal subsidies given by our model under the benchmark parameterization. Three observations

are immediate. First, interestingly, the range of values for the subsidies implied by the 401(k)

plan are not very different from the optimal ones. Second, the subsidies implied by the 401(k)

27According to a 2009 survey conducted by Hewitt Associates, $1 for $1 up to 6% pay is the most

common matching plan and is offered by 27% of all employers in their sample while $0.5 per $1 is

the second most common matching plan. ”Trends and Experience in 401(k) Plans.” Retrieved from

http://www.retirementmadesimpler.org/Library/Hewitt-Research-Trends-in-401k-Highlights.pdf
28Let a person’s annual income be w and his amount contributed to 401(k) be x. If x > 0.06w, meaning the person

is contributing more than 6% of his income, then in a one-to-one matching plan, the employer contributes 0.06w

dollars, which implies that for each dollar he invests he is effectively investing

x + 0.06w

x(1 − τ
y
C)

.

Therefore, in this case, the implied subsidy depends on the amount contributed. However, Thaler and Benartzi

(2004) report that the average saving rates into the SMarT plan (for the ‘control group’) is between 4.4% and 6.6%

(see page S174). Thus, in our computations of the implied 401(k) subsidies, we assume that contribution rate is

less than 6% and use the formula explained in the main text.
29The data for the life-cycle profile of the median income per household head in the period 2000-2006 is taken

from Heathcote, Perri, and Violante (2010).
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plan are very much age-dependent. Third, the life-cycle pattern of the 401(k) subsidies is qual-

itatively very different from the optimal ones as they are increasing over the life-cycle. Existing

subsidies appear too low for young individuals and too high for individuals close to retirement.
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Figure 7: Left panel: Saving subsidies implied by the 401(k) plan according to the marginal income tax

rates in 2003 and 2006, at different levels of employer matching. Right panel: Median income of the U.S.

household head over the life cycle in 2000-2006 and implied marginal income taxes in the year 2006.

Comparison to the Constant Self-Control Model. How the level of optimal capital subsidies

we obtain in our experiments compare to those one would obtain is a model where self-control

problems are constant over the life cycle? Table 2 reports optimal tax levels implied by models

with constant self-control problems for four representative levels of β. The first column of the
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Table indicates the level of self-control used in the computations. For example, if β is constant at

the value estimated by Laibson, Repetto, and Tobacman (2007), namely 0.818, optimal subsidies

on capital are 0.93% independent of age. On the other hand, in the benchmark simulation

depicted in Figure 3 by the solid blue line, optimal capital subsidies are much higher than 0.93%

for a large fraction of the life cycle. The optimal subsidy is as high as 8% at the beginning of the

life cycle. This might not be very surprising since people have a lower level of self-control at

earlier ages in our model, β1 = 0.5, relative to the constant self-control model where β = 0.818

at every age. What is perhaps more surprising is that the level of optimal subsidies remain

higher than the one implied by the constant self-control model until the very end of the life

cycle. For instance, in period 22, the agent in our model has the same degree of self-control as

in the constant self-control model, i.e., β22 ≈ 0.818. However, the optimal subsidy he receives

is 2.08%, which is much larger than 0.93%.

To see how the level of optimal subsidies in our model compares to the constant self-control

model, one can rewrite the optimal tax formula given by Proposition 1 as

−τ∗
i = (1 − δ)(

1

βi
− 1) + δ

βi+1 − βi

βi+1
. (7)

The expression (7) decomposes optimal subsidy formula into two components. The first com-

ponent is the optimal subsidy that arises in a model if the self-control problem remains constant

at the current level, βi. The second component is the additional amount of subsidy needed due

purely to the change in the level of self-control problems. Obviously, as long as self-control

problem is decreasing with age, βi+1 > βi, this term calls for additional subsidization of sav-

ings. Since δ is typically close to one, the second component plays a quantitatively important

role in shaping capital subsidies and taxes.

To grasp the intuition why our model implies higher subsidies, remember the decomposi-

tion of optimal taxes into the current and the future components from the discussion following

Proposition 2. The current component is related to an agent’s current degree of self-control

problem and calls for undersaving. For agent in period 22, this component is the same be-

tween our model and the constant self-control model. The future component summarizes how
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Table 2: Optimal Subsidies under Constant Self-Control Problems

β 0.818 0.65 0.5 0.35

−τ 0.93% 2.15% 4% 7.43%

much a person oversaves to compensate for future self’s undersaving. Since people’s degree

of self-control improves with age in our model, the future component makes the agent save

more today in the constant self-control model relative to ours. As a result, an agent with the

same level of current self-control problem saves more in the constant self-control model, which

implies the required subsidy to make him save the right amount is going to be lower. In pe-

riods after 22, people in our model have lower degrees of self-control problems relative to the

constant self-control model with an average β = 0.818, but their future selves have even lower

degrees of self-control problems. Therefore, the current component of the optimal tax formula

calls for subsidizing them less relative to the agents in the constant self-control model, but the

future component calls for the opposite. Figure 3 suggests that optimal subsidies are higher in

our model compared to constant self-control until well beyond period 22. More precisely, in the

benchmark calibration, the solid blue line stays above 0.93 till period 37 (i.e., until age 57).

4 Effect of Imperfect Altruism and Partial Sophistication

We have seen above that taking into account the life-cycle patterns of self-control problems has

a significant quantitative effect on the level of optimal capital subsidies. Due to the assumption

of logarithmic utility or steady-state, agents’ level of sophistication has not mattered for our

results. Furthermore, we have assumed perfect altruism across generations. In this section, we

remove each of these assumptions one by one and investigate the quantitative importance of

imperfect altruism and partial sophistication on optimal subsidies. The main conclusion is that

they both have little effect on both the level and pattern of optimal saving subsidies.
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4.1 Imperfect Altruism

Using a constant self-control model with fully sophisticated agents Krusell, Kuruscu, and Smith

(2010) find that optimal saving subsidy should be increasing with age if agents face finite life

times. In our baseline model, the finite life time channel, which calls for increasing subsidy with

age, is shut down by the perfect altruism assumption. We now consider an extended version

of our model allowing for imperfect altruism and assess its quantitative importance in shaping

optimal subsidies over the life cycle.

A parent has the following preferences over dynastic consumption streams

u(c0) + γ
[

δu(c1) + δ2u(c2) + · · ·+ δIu(cI) + δI+1u(c′0) + δI+1γ
[

δu(c′1) + δ2u(c′2) + . . .
]

. . .
]

,

where this preference specification is equivalent to the one in the baseline model whenever the

altruism factor, γ, is equal to 1. When γ ∈ [0, 1), there is imperfect altruism. The finite life

time case of Krusell, Kuruscu, and Smith (2010) corresponds to the case of γ = 0. The rest of the

parent’s problem is identical to the one in Section 2.3.

Proposition 6 generalizes optimal tax formulas of Proposition 1 to the case with a general

altruism factor, γ, under the assumption of full sophistication at all ages.

Proposition 6 Suppose u(c) = log(c) and people are fully sophisticated. Then, for γ ∈ (0, 1] we have:

1 − τ∗
0 =

1 + β1δ
[

1 + δ + · · ·+ δI−2 + δI−1D
]

1 + δ + · · ·+ δI−1 + δI D
,

1 − τ∗
i =

1

βi

1 + βi+1δ
[

1 + δ + · · ·+ δI−i−2 + δI−i−1D
]

1 + δ + · · ·+ δI−i−1 + δI−iD
, for i ∈ {1, . . . , I − 1},

1 − τ∗
I =

1

β I
,

where

D =
1 + δγ(1 + δ + · · ·+ δI−1)

1 − δI+1γ
.

Proof. Relegated to Appendix A.

It is straightforward to see that in the case of perfect altruism, γ = 1, these formulas reduce

back to the ones in Proposition 1.
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In Figure 8, we analyze the quantitative effect of the finite life time channel on the mono-

tonicity properties of optimal subsidies. The solid blue line represents optimal subsidies under

the benchmark calibration with γ = 1, whereas the dashed blue line represents those under

benchmark calibration targets but with γ = 0. The comparison of the solid and dashed lines

show that the finite life time effect is not strong enough to overturn the optimality of subsi-

dies declining with age. To study the robustness of the decreasing subsidy result, in the figure,

we also report the results for a βi function that is increasing linearly with age starting from

β1 = 0.5. This shape is even less concave than our benchmark calibration, and it corresponds

to the linear dashed line of Figure 6. In this case too, a comparison of the solid red line in

Figure 8, which represents the perfect altruism case, and the dashed red line, which represents

the no altruism case, show that the finite life time effect is not strong enough to invalidate the

optimality of declining subsidies. Observe that in both robustness exercises we set γ = 0. For

γ ∈ (0, 1), the effect of finite life time on the monotonicity properties of optimal subsidies would

be even smaller. We simulated our model adopting several different parameterizations of γ, δ

and i → βi. The optimality of decreasing saving subsidies is a quite robust finding (details are

available upon request). What seems to play an important role to maintain robustness of the

decreasing subsidy result under various values of γ is that, in our model, self-control problems

vanish towards the end of the life cycle.

We conclude this section by providing intuition for why in Figure 8, the subsidy rates at

all ages are uniformly higher in the model with imperfect altruism (dotted lines) compared

to our benchmark model with perfect altruism (solid lines). Mathematically, observe that the

parameter γ enters into the formula for 1− τ∗
i in Proposition 6 only through the constant D. It is

easy to show that D is increasing in γ and 1− τ∗
i is decreasing in D. To grasp the intuition, recall

our decomposition of the optimal tax formula into current and future components, discussed

right after Proposition 2. In light of that decomposition, the first term on the right-hand side

of the formula for 1 − τ∗
i in Proposition 6, 1

βi
, is the current component and always calls for

a subsidy. The second term, which is where the altruism factor enters the tax formula, is the

future component and always calls for a tax. The future component is there because agent i

34



at date t disagrees with agent i + 1 regarding how agent i + 1 should discount (utility from)

consumption in period t + 2 and onwards relative to consumption in t + 1 : from agent i′s

perspective, the correct discount factor between consumption in date t + 1 and that in t + s is

δs−1, whereas agent i + 1 discounts the same utility from consumption by βi+1δs−1. To correct

for the eventual undeserving of self i + 1, self i oversaves relative to the efficient allocation, and

in order to prevent this, the government has to tax self i. If γ = 0, the disagreement between self

i and self i + 1 regarding the discounting between t + 1 consumption and future consumption

levels stop at the end of the current life cycle (D = 1), while for γ = 1, the disagreement piles

up for infinitely many generations (D = 1
1−δ ). As a result, when γ = 0, there is less cumulative

disagreement between selves i and i + 1, which means self i′s oversaving relative to the efficient

allocation is lower, which implies the tax implied by future component is lower. Therefore, the

future component mitigates the subsidy implied by current component to a lesser degree, and

hence, the subsidy is larger.
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Figure 8: Sensitivity of life-cycle subsidies to the degree of parent’s altruism γ.
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4.2 Partial Sophistication

In the previous section, we show that: (1) when the constant relative risk aversion coefficient σ

is equal to 1, then the degree of sophistication is immaterial for taxes; (2) under the assumption

that all the agents in the economy are fully sophisticated and the economy is at a steady-state,

σ is immaterial for taxes. In these two cases, taxes are given by Proposition 1. It is evident

that in order to investigate the robustness of our policy findings with respect to naivete, we

need to move away from the assumptions of σ = 1 and full sophistication at the same time.

This is exactly what this section does. Unfortunately, when σ 6= 1 and agents are allowed to

be partially sophisticated, we do not get closed form solutions for optimal taxes. Therefore, we

have to resort to numerical analysis. For simplicity, we keep the assumption that the economy

is at steady state. The details of our computational procedure are explained in Appendix B.

In our first set of analysis, we set σ = 2 and analyze how different patterns of the evolution

of partial sophistication over the life cycle affect optimal life-cycle subsidies. Throughout this

section, we set the pattern i → βi according to our benchmark calibration, i.e. the first line of

Table 1. In Figure 9, the blue solid curve represents the benchmark case of full sophistication

(π = 1) where optimal taxes do not depend on σ. Each dashed curve represents a life-cycle

pattern where sophistication level starts at π at the beginning of life and is constant until period

10 when it jumps to 1 and in period 11 it jumps back to π. Then, there is a second jump in period

25, but this is a permanent one: agent remains fully sophisticated from then on. We repeat this

numerical analysis for π = 0.3, 0.5, 0.7, and 0.9. As evident from Figure 9, the level of optimal

subsidies differ significantly from the benchmark case with full sophistication only in periods

which are followed by a sharp change in the level of sophistication in the subsequent period.

For instance, for π = 0.3, the level of sophistication in period 9 is 0.3 whereas it is 1 in period 10.

As a result, as the figure shows, optimal period 9 subsidies are significantly larger compared

to the benchmark case. Similarly, a significant decline in sophistication from 1 in period 10 to

0.3 in period 11 implies much lower optimal subsidies compared to the benchmark case. On

the other hand, since sophistication level is 0.3 in both periods 11 and 12, optimal subsidies in

period 11 are roughly identical to the case of fully sophisticated benchmark. In other words,
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when the level of sophistication does not change across periods, its level is not quantitatively

important for the level of optimal taxes. We also analyze the effect of sophistication on optimal

subsidies when the level of sophistication changes smoothly over the life cycle. We assume π

increases concavely. This experiment is summarized in Figure 10, where we confirm that the

level of sophistication matters for optimal taxes only when it changes sharply between two

adjacent periods.

Finally, we do robustness checks for σ different from 2. As Figure 10 suggests, as σ moves

away from 1, the effect of sophistication becomes more significant. However, even when σ =

5, the difference between optimal capital subsidies in the benchmark model and the partially

sophisticated model is around 0.05% for the first period and this difference decreases to below

0.01% after the fourth period. Figure 10 suggests a qualitative pattern regarding how optimal

taxes are affected by sophistication level for a given level of σ. When σ = 0.5, the optimal

subsidies under partial sophistication are given by the dotted line that lies below the solid

curve, which also represents optimal taxes for σ = 0.5 under full sophistication. On the other

hand, for all σ > 1 in the figure, we see that optimal subsidies under partial sophistication are

higher than optimal subsidies under full sophistication at every age level. These observations

suggest a particular pattern: that for σ > 1(< 1), optimal taxes increase (decrease) with the

level of sophistication. It can be formally shown that this pattern is quite general.30

So, there are two major conclusions derived from the above set of experiments. First, as

long as the level of naivete is not changing abruptly from one period to another, the level opti-

mal capital subsidies over the life cycle is robust to various scenarios about how sophistication

changes with age. Second, as the last experiment shows, when the level of partial sophistica-

tion is changing smoothly (or not changing at all), the level optimal capital subsidies over the

life cycle is not significantly affected by our choice of the coefficient of constant relative risk

30An earlier related result is given in O’Donoghue and Rabin (2003a) which shows that, when we model partial

sophistication a la O’Donoghue and Rabin (1999), if σ > 1(< 1), then more sophisticated people over-consume less

(more). O’Donoghue and Rabin (2003a) does not analyze taxes but the tax implication of their finding is obvious:

if σ > 1(< 1), then more sophisticated people should be taxed more (less) heavily. It can be shown that this result

is valid under our way of modeling partial sophistication as well (the derivations are available upon request).
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aversion.
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Figure 9: Sensitivity with respect to partial sophistication (jumps in π)

5 Conclusion

This paper studies optimal capital taxation in an economy where agents face self-control prob-

lems. In line with evidence suggested by personality psychology and experimental studies we

assume that the severity of the self-control problem changes over the life cycle. We restrict

attention to CIES utility functions and focus on linear Markov equilibria. We derive explicit

formulas which allow us to compute optimal taxes given the evolution of self-control problem

over the life cycle. We show that if agents ability to self-control increases concavely with age,

then capital should be subsidized and the subsidy should decrease with age.

Capital subsidies should start somewhere between 3% and 18% at the beginning of the life

cycle and decline monotonically with age to somewhere between 0% and 1%, depending on
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the particular parameterization of the model. If we translate them into subsidies to capital

income, these are very large numbers. Perhaps more importantly, we show they are much larger

than the savings subsidy we would obtain in models with constant self-control, at almost all

ages. Our model is probably too simple for delivering precise policy predictions. Nevertheless,

our analysis suggests that researchers who take self-control problems seriously should also

carefully measure the evolution of self-control problems over the life cycle before making policy

suggestions.

Finally, we compare our optimal subsidies with those implied by the 401(k) plan. If we

exclude the very last periods before retirement - where the subsidy rate in the 401(k) essentially

mimics the employer matching rate - the subsidy levels in the two cases are of comparable

magnitudes. A marked difference however emerges in the life-cycle pattern of them: the 401(k)

plan implies an increasing pattern of subsidies while the optimal subsidies decrease over the

life cycle.

The existence of illiquid assets does not change our optimal tax results as long as there are
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no borrowing constraints. More precisely, in Appendix D we use a three periods example to

show that a tax system that is optimal in an environment without illiquid assets is still optimal

in the same environment with an illiquid asset as long as we complement the tax system with

an appropriate tax on the illiquid asset.
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A Proofs

A.1 Proof of Proposition 1.

In this section, we provide the proof of our main result, Proposition 1, for the general setup where the

economy starts from any initial level of capital stock and prices change over time. In order to do so, we

first define the parent’s problem under taxes in the general setup.

Preparation to the proof.

Let k0 be the initial level of capital stock and {k∗t }t be the sequence of the efficient capital levels that

start from k0. We know that the commitment allocation is recursive in kt. Let K : IR → IR be the function

describing the evolution of the aggregate level of capital in the commitment allocation:

k∗t+1 = K(k∗t ).

Agents face a price sequence satisfying:

R(kt) = f ′(kt),

w(kt) = f (kt)− f ′(kt)kt,

that is, it is generated by a capital stock sequence {k∗t }t where the capital stock is generated by K. Since

the problem is recursive, a government which aims to implement the efficient allocation will use the

same taxes in any two periods if the age of the agent and the capital stock in those periods are the

same. Therefore, without loss of generality, we define taxes as functions of age and capital stock as

follows: τi(kt) is the savings (capital) tax agent at age i = 0, 1, .., I pays if the capital stock in that period

is kt. Government (per-period) budget feasibility requires the lump-sum rebate to satisfy: Ti(kt) =

R(kt)τi(kt)bi(kt; τ).

To describe the problem of the agents, we define the policy functions bi(·, kt ; τ) describing the op-

timal behavior of the agent i as function of bi−1 given the level of aggregate capital kt, the taxes τ :=

{τi(·), Ti(·)}i and what he believes other agents’ rules will be, and that the evolution of capital follows

the rule K. When agent n is deciding bn, his evaluation of the effect of his choice on bi, i > n will be

described by the function bi(bi−1(...bn+1(bn, k∗t ; τ)...), k∗t+i−n−1; τ), k∗t+i−n; τ), where for all t, s, we define

k∗t+s = K(K(...(k∗t )...)), where the K function has been applied s times. To simplify notation, we will

denote this mapping simply as bi(..(bn)..)).

Finally, our notation will be simplified if we let k be the level of capital stock already in place in

the last period of a parent and k′ or k1 refer to the capital stock next period and ki refer to the level

of capital stock i periods after the period in which capital stock was k, namely: ki = K(K(...(k)...)),

where the function K has been applied i times. In the problem below, the function K is fixed to that
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of the commitment allocation. Of course, the function describing the evolution of aggregate capital in

equilibrium is part of the fixed point argument as it must satisfy market clearing.

Parent’s Problem along the Transition

V (b, k; τ) = max
b0

u (R(k) (1 − τI) b + w(k) + TI − b0) +

+δ

[

I−1

∑
i=0

δiu
(

R(ki+1) (1 − τi) bi(...(b0)..) + w(ki+1) + Ti − bi+1

)

+ δIV
(

bI(...(b0)..), kI+1; τ
)

]

s.t. for all b0

b1(b0, k1; τ) = arg max
b̂1

u
(

R(k1) (1 − τ0) b0 + w(k1) + T0 − b̂1

)

+

+δβ1





π1

{

∑
I−1
i=1 δi−1u

(

R(ki+1) (1 − τi) bi(...(b̂1)..) + w(ki+1) + Ti − bi+1(...(b̂1)..)
)

+ δI−1V
(

bI(...(b̂1)..), kI+1; τ
)}

+ (1 − π1)W1

(

b̂1, k2; τ
)





s.t. for all b1

b2(b1, k2; τ) = arg max
b̂2

u
(

R(k2) (1 − τ1) b1 + w(k2) + T1 − b̂2

)

+δβ2





π2

{

∑
I−1
i=2 δi−2u

(

R(ki+1) (1 − τi) bi(...(b̂2)..) + w(ki+1) + Ti − bi+1(...(b̂2)..)
)

+ δI−2V
(

bI(...(b̂2)..), kI+1; τ
)}

+ (1 − π2)W2

(

b̂2, k3; τ
)





s.t. for all b2

...

s.t. for all bI−2

bI−1(bI−2, kI−1; τ) ∈ arg max
b̂I−1

u
(

R(kI−1) (1 − τI−2) bI−2 + w(kI−1) + TI−2 − b̂I−1

)

+ δβ I−1 (1 − πI−1)WI−1

(

b̂I−1, kI ; τ
)

+δβ I−1

[

πI−1

{

u
(

R(kI) (1 − τI−1) b̂I−1 + w(kI) + TI−1 − bI(...(b̂I−1)..)
)

+ δV
(

bI(...(b̂I−1)..), kI+1; τ
)}]

s.t. for all bI−1

bI(bI−1, kI ; τ) = arg max
b̂I

u
(

R (1 − τI−1) bI−1 + wI−1 + TI−1 − b̂I

)

+ δβ I

[

πIV
(

b̂I , kI+1; τ
)

+ (1 − πI)WI

(

b̂I , kI+1; τ
)]

where the functions Wi for i = 0, 1, .., I − 1 solve:

Wi (b, k; τ) = max
b′

u
(

R (1 − τi) b + wi + Ti − b′
)

+ δWi+1

(

b′, k′; τ
)

;

with

WI (b, k; τ) = max
b′

u
(

R (1 − τI) b + wI + TI − b′
)

+ δW0

(

b′, k′; τ
)

.

Letting bi and ki+1 be the saving level in period i and aggregate capital stock in period i + 1, define (we
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disregard the tax dependence for notational simplicity):

Γi(bi, ki+1) = R(ki+1)(1 − τi(k
i+1))bi + w(ki+1) + Ti(k

i+1) + Gi(k
i+1),

Gi(k
i+1) =

Ti+1(k
i+2) + w(ki+2)

R(ki+2) (1 − τi+1(ki+2))
+

Ti+2(k
i+3) + w(ki+3)

i+3

∏
j=i+2

R(kj)
(

1 − τj−1(kj)
)

+ ... +
TI(k

I+1) + w(kI+1)
I

∏
j=i+2

R(kj)
(

1 − τj−1(kj)
)

+ ...,

ci+1(bi, ki+1) = Mi+1Γi(bi, ki+1),

where Gi(k
i+1) is the total net present value of future lump-sum taxes and wages, and Γi(bi, ki+1) is the

net present value of wealth available to agent at the beginning of age i + 1 when the level of aggregate

capital stock today is ki+1, the agent saved bi in the previous period, and Mi+1 is the fraction consumed

out of that wealth. It follows from the flow budget constraint in period i + 1 that if the stated consump-

tion rule is part of an optimal policy, agent’s saving in period i + 1 must satisfy for all bi:

bi+1(bi, ki+1; τ) = R(ki+1)
(

1 − τi(k
i+1)

)

bi + w(ki+1) + Ti(k
i+1)− Mi+1Γi(bi, ki+1).

Note that, using

∂bi+1(bi, ki+1; τ)

∂bi
= R(ki+1)

(

1 − τi(k
i+1)

)

− Mi+1
∂Γi(bi, ki+1)

∂bi
= (1 − Mi+1)R(ki+1)

(

1 − τi(k
i+1)

)

,

it is relatively simple algebra to show that, under the consumption rule given above, net present value

of wealth between any two consecutive periods is related as follows: for all i = 1, ..., I

Γi(bi(bi−1, ki; τ), ki+1) = R(ki+1)(1 − τi(k
i+1))(1 − Mi)Γi−1(bi−1, ki) (8)

and

Γ0(b0(b, k; τ), k1) = R(k1)(1 − τ0(k
1))(1 − M0)ΓI(b, k),

where

ΓI(b, k) = R(k)(1 − τI(k))b + w(k) + TI(k) + GI(k)

is the net present value of wealth available to the parent when the level of aggregate capital stock today

is k and the parent saved b in the previous period.

Using the above recursion, it is possible to express consumption as follows:

ci+1(bi(..(b)..), ki+1) = Qi(k)Mi+1ΓI (b, k) ,

where bi(..(b)..) is the shortcut for the nested policy we describe above and

Qi(k) := Πi
s=0 (1 − Ms) R(ks+1)

(

1 − τs(k
s+1)

)

,
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with ks+1 = K(..(k)..), where the map K is applied s + 1 times as usual.

Now using linearity of the policy functions and the first-order approach, we can rewrite the parent’s

problem as:

V (b, k; τ) = max
M0

u (M0ΓI (b)) + δ

[

I−1

∑
i=1

δiu (Qi−1(k)MiΓI (b)) + δIV
(

(1 − MI)QI−1(k)ΓI (b) , kI+1; τ
)

]

(9)

s.t. for all i ∈ {1, ..., I − 1}

(MiQi−1(k)ΓI (b, k))−σ= δβi









πiR(k
i+1)(1 − τi(k

i+1))







∑
I
j=i+1 δj−(i+1)

(

MjQj−1(k)ΓI (b, k)
)−σ

Mj
Q j−1(k)

Qi(k)

+δI−iV ′(bI(..(b)..), kI+1; τ)(1 − MI)
QI−1(k)

Qi(k)







+ (1 − πi)W ′
i

(

bi(..(b)..), ki+1; τ
)









(MI QI−1(k)ΓI (b, k))−σ = δβ I

[

πIV
′
(

bI(..(b)..), kI+1; τ
)

+ (1 − πI)W ′
I

(

bI(..(b)..), kI+1; τ
)]

.

Core proof of Proposition 1.

We will prove that facing the sequence of efficient capital levels and the taxes specified in Proposition

1, people will choose the efficient allocation, thereby verifying both (1) that the sequence of the efficient

capital levels is actually part of equilibrium under the taxes described in Proposition 1, and (2) that under

the taxes specified by Proposition 1, people choose the efficient allocation.

Guess

V (b, k; τ) = D log(ΓI (b, k)) + B(k),

Wi(b, k; τ) = Di log(Γi (b, k)) + Bi(k), for i = 0, .., I

where D and D0, D1, .., DI , B0, ..., BI are constants of the parent’s and naive self-i’s value functions.

STEP 1: Compute the coefficients for the naive value functions, D0, .., DI .

If we let k′ = K(k), from the first-order condition for the Wi problem, we have (after tedious calcula-

tions):

bi (b, k; τ) =
R(k)(1 − τi(k))b + w(k) + Ti(k)− [Gi+1(k

′) + w(k′) + Ti+1(k
′)] [δR(k′)(1 − τi+1(k

′))Di+1]
−1

1 + [δR(k′)(1 − τi+1(k′))Di+1]
−1

R(k′)(1 − τi+1(k′))
.

Plugging this in the value function, and performing some tedious re-arrangements, we get for i =

0, 1, .., I:

Di = (1 + δDi+1)

and

DI = (1 + δD0) .
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Thus,

D0 = D1 = .. = DI =
1

1 − δ
.

STEP 2: Compute the coefficients for parent’s value function, D.

Take D1, .., DI from above. Compute V ′ and W ′
i for i = 0, 1, .., I in terms of D, Di using the guesses

for value functions:

V ′(bI(..(b)..), kI+1; τ) = DR(kI+1)(1 − τI(k
I+1))(ΓI(b, k)QI(k))

−1, (10)

W ′
i (bi(..(b)..), ki+1; τ) = DiR(k

i+1)(1 − τi(k
i+1))(ΓI(b, k)Qi(k))

−1,

where we used the recursion (8).

Plugging these in the constraints described in problem (9), we get for all i ∈ {1, ..., I − 1}:

(MiQi−1(k))
−1 = δβiR(k

i+1)(1 − τi(k
i+1)) (Qi(k))

−1

[

πi

{

∑
I
j=i+1 δj−(i+1) + δI−iD

}

+ (1 − πi) Di

]

and

(MI QI−1(k))
−1 = δβ I R(1 − τI(k

I+1)) (QI(k))
−1 [πI D + (1 − πI) DI ] .

Now, using the marginal condition describing self-I behavior, it is easy to show that

MI(D) =
1

1 + β Iδ(πI D + (1 − πI) DI)
.

Similarly, use other constraints defining the policies to compute Mi(D) for i = 1, .., I − 1 :

Mi(D) =
1

1 + βiδ
(

πi

{

∑
I
j=i+1 δj−(i+1) + δI−iD

}

+ (1 − πi) Di

) .

Taking first-order condition with respect to bequests in the parent’s problem (9) and plugging in the

Mi(D) from above, we get:

M0(D) =
1

1 + δ
(

∑
I−1
j=0 δj + δI D

) .

Now verify the value function to compute D :

D log (ΓI (b, k)) + B(k) = log (M0(D)ΓI (b, k))

+δ

[

I−1

∑
i=0

δi log (Qi(k)Mi+1(D)ΓI (b, k)) + δI
{

D log (ΓI (b, k) QI(k)) + B(kI+1)
}

]

,
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which implies

D =
I

∑
i=0

δi + δI+1D

and hence

D =
1

1 − δ
.

By plugging D in the formula for Mi(D), we compute

Mi =
1 − δ

1 − δ + βiδ
, for all i ∈ {1, .., I}, (11)

M0 = 1 − δ.

Now we turn to taxes that implement the efficient allocation. The constraint that describes self-i’s be-

havior for i ∈ {1, .., I − 1} becomes the following once we plug in the derivatives of the value functions

from (16) :

(MiQi−1(k)ΓI (b, k))−1 = δβiR(k
i+1)(1− τi(k

i+1)) (Mi+1Qi(k)ΓI (b, k))−1

[

πi

{

∑
I
j=i+1 δj−(i+1) + δI−iD

}

+ (1 − πi) Di

]

Mi+1.

(12)

The comparison of (12) with the efficiency condition (1) gives the optimal tax as:

(

1 − τ∗
i (k

i+1)
)

=
1

βi

([

πi

{

∑
I
j=i+1 δj−(i+1) + δI−iD

}

+ (1 − πi) Di

]

Mi+1

)−1

=
1

βi
(1 − δ + βi+1δ) .

For self-I, the constraint describing his behavior in problem (9) reads as follows:

(MI QI−1(k)ΓI (b, k))−1 = δβ I R(kI+1)(1 − τI(k
I+1)) (M0QI(k)ΓI (b, k))−1 [πI D + (1 − πI) DI ] M0,

and the comparison of this with the efficiency condition gives

(

1 − τ∗
I (k

I+1)
)

=
1

β I
.

Finally, a comparison of the following first-order condition of the parent

(M0ΓI (b, k))−1 = δR(k1)(1 − τ0(k
1))(M1Q0(k)ΓI (b, k))−1

[

∑
I−1
i=0 δi + δI D

]

M−1
1

with the corresponding optimality condition gives

1 − τ∗
0 (k

1) = (1 − δ + β1δ) .
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A.2 Proof of Proposition 2.

If we plug in the constraint defining the policy of the agent at age i + 1 in the constraint of agent at age

i, we get:

u′ (ci) = δβiR(1 − τi)u
′ (ci+1)







1 +
∂bi+1(bi)

∂bi

(

1
βi+1

− 1
)

R(1 − τi)







,

which renders optimal taxes as:

(1 − τ∗
i ) =

1

βi

1

1 +
∂bi+1(b

∗
i )

∂bi

(

1
βi+1

−1
)

R(1−τ∗
i )

.

Under CEIS utility and linear policies, we have:

∂bi+1(bi)

∂bi
= (1 − Mi+1)R(1 − τi).

Now plug this in the tax formula above to get the CEIS specific tax formula:

(1 − τ∗
i ) =

1

βi

1

1 + (1 − M∗
i+1)

(

1
βi+1

− 1
) . (13)

When Rδ = 1, in the efficient allocation we have c∗i = c∗i+1 for all i. This means

c∗i = M∗
i Γi−1(b

∗
i−1) = c∗i+1 = M∗

i+1Γi(b
∗
i )

which, using the relationship Γi(bi) = R(1 − τi)(1 − Mi)Γi−1(bi−1) implies

M∗
i =

M∗
i+1R(1 − τ∗

i )

1 + M∗
i+1R(1 − τ∗

i )
. (14)

Plugging (13) in (14), we get a system of (I + 1) equations in (I + 1) unknows (M∗
0 , ..., M∗

I ) that fully pin

down agents policies when they face optimal taxes, for the CEIS case:

M∗
i =

M∗
i+1R 1

βi

1

1+(1−M∗
i+1)

(

1
βi+1

−1
)

1 + M∗
i+1R 1

βi

1

1+(1−M∗
i+1)

(

1
βi+1

−1
)

Clearly, the solution to this system does not depend on σ. In fact, it is easy to show that the logarithmic

utility solution given by equation (11) satisfies the above system of equations, meaning it is an equi-

librium. Plugging (11) in the formula for taxes, (13), we get that optimal taxes are the same as the

logarithmic utility case.
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A.3 Proof of Proposition 6.

The proof of Proposition 6 follows the proof of Proposition 1 very closely. The important difference is

that the altruism factor, γ, can be any number in [0, 1]. In this case, the maximization problem of the

parent is identical to (9), except that the objective function has the general altruism factor:

V (b, k; τ) = max
M0

u (M0ΓI (b))+γδ

[

I−1

∑
i=1

δiu (Qi−1(k)MiΓI (b)) + δIV
(

(1 − MI)QI−1(k)ΓI (b) , kI+1; τ
)

]

.

(15)

We will prove that facing the sequence of efficient capital levels and the taxes specified in Proposition

6, people will choose the efficient allocation, thereby verifying both (i) that the sequence of the efficient

capital levels is actually part of equilibrium under the taxes described in Proposition 6, and (ii) that under

the taxes specified by Proposition 6, people choose the efficient allocation.

Note that since we assume full sophistication, meaning πi = 1 for all i, the naive value function do

not appear in the planner’s problem. Therefore, we only guess and verify parental value function.

Guess

V (b, k; τ) = D log(ΓI (b, k)) + B(k),

where D is the constant of the parent’s value function.

Compute V ′ in terms of D using the guess for value function:

V ′(bI(..(b)..), kI+1; τ) = DR(kI+1)(1 − τI(k
I+1))(ΓI(b, k)QI(k))

−1,

where we used the recursion (8).

Plugging these in the constraints described in problem (9), we get for all i ∈ {1, ..., I − 1}:

(MiQi−1(k))
−1 = δβiR(k

i+1)(1 − τi(k
i+1)) (Qi(k))

−1

[

I

∑
j=i+1

δj−(i+1) + δI−iD

]

and

(MI QI−1(k))
−1 = δβ I R(1 − τI(k

I+1)) (QI(k))
−1

D.

Now, using the marginal condition describing self-I behavior, it is easy to show that

MI(D) =
1

1 + β IδD
.

Similarly, use other constraints defining the policies to compute Mi(D) for i = 1, .., I − 1 :

Mi(D) =
1

1 + βiδ
{

∑
I
j=i+1 δj−(i+1) + δI−iD

} . (16)
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Taking first-order condition with respect to bequests in the parent’s problem (9) and plugging in the

Mi(D) from above for all i, we get:

M0(D) =
1

1 + δ
(

∑
I−1
j=0 δj + δI D

) .

Now verify the value function to compute D :

D log (ΓI (b, k)) + B(k) = log (M0(D)ΓI (b, k))

+γδ

[

I−1

∑
i=0

δi log (Qi(k)Mi+1(D)ΓI (b, k)) + δI
{

D log (ΓI (b, k) QI(k)) + B(kI+1)
}

]

,

which implies

D = 1 + γδ

(

I−1

∑
i=0

δi + δI D

)

and hence

D =
1 + γδ ∑

I−1
i=0 δi

1 − δI+1γ
.

Now we turn to taxes that implement the efficient allocation. The constraint that describes self-i’s be-

havior for i ∈ {1, .., I − 1} becomes the following once we plug in the derivatives of the value functions

from (16) :

(MiQi−1(k)ΓI (b, k))−1 = δβiR(k
i+1)(1 − τi(k

i+1)) (Mi+1Qi(k)ΓI (b, k))−1

[

I

∑
j=i+1

δj−(i+1) + δI−iD

]

Mi+1.

(17)

The comparison of (17) with the efficiency condition (1) gives the optimal tax as:

1 − τ∗
i (k

i+1) =
1

βi

([

I

∑
j=i+1

δj−(i+1) + δI−iD

]

Mi+1

)−1

,

which, using (16), implies

1 − τ∗
i (k

i+1) =
1

βi

1 + βi+1δ
(

1 + δ + ... + δI−i−2 + δI−i−1D
)

1 + δ + ... + δI−i−1 + δI−iD
.

For self-I, the constraint describing his behavior in problem (9) reads as follows:

(MI QI−1(k)ΓI (b, k))−1 = δβ I R(kI+1)(1 − τI(k
I+1)) (M0QI(k)ΓI (b, k))−1 DM0,
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and the comparison of this with the efficiency condition gives

1 − τ∗
I (k

I+1) =
1

β I
.

Finally, a comparison of the following first-order condition of the parent

(M0ΓI (b, k))−1 = γδR(k1)(1 − τ0(k
1))(M1Q0(k)ΓI (b, k))−1

[

∑
I−1
i=0 δi + δI D

]

M−1
1

with the corresponding optimality condition gives

1 − τ∗
0 (k

1) =
1 + β1δ

(

1 + δ + ... + δI−2 + δI−1D
)

1 + δ + ... + δI−1 + δI D
.

B Computational Procedure

B.1 Guess:

Guess

V (b; τ) = D(τ)
(ΓI (b))

1−σ

1 − σ
,

Wi(b; τ) = Di(τ)
(Γi (b))

1−σ

1 − σ
,

where D and Di for i = 0, 1, .., I are constants of the parent’s and naive self-i’s value functions. Ob-

serve that these constants depend on the tax system, τ. In what follows, for notational simplicity this

dependence will be implicit.

B.2 Characterizing equilibrium value function constants for a given tax sys-

tem τ:

STEP 1: Computing equilibrium D0, .., DI .

From the first-order conditions for the Wi problem, we have: for all i ∈ {0, 1, .., I − 1}

Di =

[

[δR(1 − τi+1)Di+1]
− 1

σ R(1 − τi+1)

1 + [δR(1 − τi+1)Di+1]
− 1

σ R(1 − τi+1)

]1−σ (

1 + δ
Di+1

[δR(1 − τi+1)Di+1]
− 1−σ

σ

)

, (18)

DI =

[

[δR(1 − τ0)D0]
− 1

σ R(1 − τ0)

1 + [δR(1 − τ0)D0]
− 1

σ R(1 − τ0)

]1−σ(

1 + δ
D0

[δR(1 − τ0)D0]
− 1−σ

σ

)

.
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Given taxes, the solution to these I + 1 equations give us I + 1 unknowns, D0, .., DI.

STEP 2: Computing equilibrium D.

From our guess of the value function, we have

V ′ (bI ; τ) = D(ΓI (bI))
−σR(1 − τI),

and by envelope we have

V ′ (bI ; τ) = R(1 − τI)u
′ (c0) = R(1 − τI) (M0ΓI (bI))

−σ ,

which together imply

D = M−σ
0 . (19)

B.3 Characterizing optimal tax system, τ∗:

The incentive constraints for agents i = 1, ..I together with parent’s optimality condition with respect to

bequest decision characterize the solution to the parent’s problem and hence the equilibrium for a given

tax system, τ. Comparison of these I + 1 equations with the corresponding commitment Euler equations,

we immediately see that optimal taxes must satisfy:

For all i ∈ {0, .., I − 2}, (20)

(

1 − τ∗
i+1

)

=
1

βi+1









[

πi+1

{

∑
I
j=i+2 δi−(i+2)

(

M∗
j

Q∗
j−1

Q∗
i+1

)1−σ

+ δI−(i+1)D∗
(

Q∗
I

Q∗
i+1

)1−σ
+ (1 − πi+1) D∗

i+1

}]

M∗−σ
i+2









−1

(1 − τ∗
I ) =

1

β I

(

[πI D∗ + (1 − πI) D∗
I ]

M∗−σ
0

)−1

(1 − τ∗
0 ) =









[

∑
I
i=1 δi−1

(

Mi
Q∗

i−1

Q∗
0

)1−σ
+ δI D∗

(

Q∗
I

Q∗
0

)1−σ
]

M∗−σ
1









−1

,

where D∗ and D∗
i are the values associated with the efficient allocation computed according to (19) and

(18) evaluated at the optimal taxes.
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B.4 Iteration

1. Before starting the iteration, compute efficient consumption and saving allocations (c∗i , b∗i )
I
i=0 ac-

cording to:

c∗0 = Rb
(RI+1 − 1)

RI+1

1

∑
I
i=0

(

(Rδ)
1
σ

R

)i
,

for all i ∈ {0, .., I − 1}, c∗i+1 = c∗i (Rδ)
1
σ ,

b∗0 = Rb − c∗0,

for all i ∈ {0, .., I − 1}, b∗i+1 = Rb∗i − c∗i+1.

2. Start with a guess for the efficient tax system τ = (τ0, .., τI), where is given by government’s period

budget constraint Ti = Rb∗i τi (for the initial guess we use optimal taxes in the logarithmic case).

3. Compute the linear policy functions according to formulas:

M0 =
c∗0

Rb(1 − τI) + TI + GI
=

c∗0
Rb + GI

,

For all i ∈ {0, 1, .., I − 1}, Mi+1 =
c∗i+1

Rb∗i (1 − τi) + Ti + Gi
=

c∗i+1

Rb∗i + Gi
,

where

GI =
1

1 −
[

RI+1 ∏
I
j=0(1 − τj)

]−1

I

∑
i=0

Ti + w

Ri+1 ∏
i
j=0(1 − τj)

and for all i ∈ {0, .., I − 1}

Gi =
Gi+1 + Rb∗i+1τi+1 + w

R(1 − τi+1)
.

4. Compute D and D1, ..DI according to (19) and (18) evaluated at the tax guess.

5. Now use the linear policies computed in step 3 and the value function constants computed in step

4 to compute taxes according to the system of equations describing optimal taxes (20).

6. If the taxes you compute in step 5 is the same as the taxes you started the last iteration, stop. If not,

use the taxes you computed in step 5 as the new guess and continue iteration.
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C Assessing bounds for the parameter β1

In this section, we explain how we refer to the work of Green, Myerson, and Ostaszewski (1999) to de-

termine a set of reasonable parameter values for the level of self-control problems of agents in period

one of our model, β1. Green, Myerson and Ostraszewski use experimental data collected from a group

of young adults (they also separately study children and older adults) to estimate their temporal dis-

counting function. The group of young adults has a mean age of 20, which corresponds to the age of the

agents in period one in our model.

They find that the following hyperbola-like function provides the best description for young adults’

discounting functions:

ζ(D) =
1

(1 + kD)s
,

where D is the length of delay to a future reward (measured in years) and k and s are parameters which

they estimate to be k = 0.618 and s = 0.368 for the young adult group. This function was originally

proposed by Green, Fry, and Myerson (1994).

Our aim is to find the best approximation to this estimated hyperbolic discount function among the

set of quasi-hyperbolic discount functions that are parameterized by two parameters, δ and β. As we do

all throughout the paper, we follow Laibson, Repetto, and Tobacman (2007) and set δ = 0.96, and choose

β that best matches the hyperbola estimated by Green, Myerson and Ostraszewski for young adults.

To do so, we first plot the discount factor as a function of years of delay implied by the hyperbolic

discount function given above. This is given by the thick solid black line in Figure 11 below. Then, we

generate yearly discounting by using δ = 0.96 and β = 0.2 in the quasi-hyperbolic discounting function.

This is the dashed blue line in Figure 11. Then, we increase β to 0.25, and find out that this quasi-

hyperbolic approximation of the thick black line, which is given by the green dashed line, dominates the

one with β = 0.2 since it lies closer to the black line for every value on the x-axis. Thus, 0.2 cannot be a

plausible value for β of young adults. Then, we keep generating new approximations by increasing β to

0.3, 0.4, 0.5, 0.6, 0.7, 0.75 and 0.8. In the figure, these different approximations are shown by dashed lines

of various colors, which shift upwards with every time β increases. With every increase in β up to and

including 0.7, the approximation gets closer to the black line for the vertical part of the black line but

gets further away regarding the horizontal part. Thus, we cannot dismiss any of these approximations

the way we dismissed the approximation generated by β = 0.2. From β = 0.7 to 0.75 and to 0.8, the

approximation gets worse regarding both the vertical and horizontal segments of the black line. This

means β = 0.75 approximation and approximations with β values higher than 0.75 are clearly dominated

by β = 0.7. Therefore, we conclude the range of β that is reasonable for the young agents is between 0.25

and 0.7.
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Figure 11: Assessing the upper and lower bounds for β1.

D Introducing an Illiquid Asset

To simplify our analysis, consider a three period version of our model. With one difference: there is an

additional asset people can buy in period one. Also, again for simplicity, we assume β1 = 0. This asset,

denoted by d1, is illiquid in the sense that it does not pay in period two, but pays in period 3 an after tax

return Rd(1 − τd)d1. Self 2’s problem then is:

c2, c3 ∈ arg max
c2,c3

u(c2) + β̄2δu(c3)

s.t.

c2 +
c3

R(1 − τ2)
≤ R(1 − τ1)b1 + T1 +

T2

R(1 − τ2)
+

Rd(1 − τd)d1

R(1 − τ2)
≡ y1(b1, d1)

Let c2(y1), c3(y1) be the solution to the above problem when β̄2 = β2 and ĉ2(y1), ĉ3(y1) when β̄2 = 1.
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Self 1’s problem:

max
b1,d1

u(k0 − b1 − d1) + π1δ [u(c2(y1)) + δu(c3(y1))]

+(1 − π1)δ [u(ĉ2(y1)) + δu(ĉ3(y1))] .

Case 1. Government sets taxes such that

Rd(1 − τd) < R2(1 − τ1)(1 − τ2).

In this case, obviously d1 = 0. So, it is as if there are no illiquid assets; government prevents people from

using these assets through taxes. Then, simply by setting τ1, τ2 exactly equal to the efficient taxes in the

environment without illiquid asset, τ∗
1 , τ∗

2 , we implement the efficient allocation in the market with the

illiquid asset. Let us compute these taxes for future use. Since

u′(c2) = β2δR(1 − τ2)u
′(c3),

efficiency requires

(1 − τ∗
2 ) =

1

β2
.

To compute optimal period one tax, take first-order condition of the parent’s problem with respect to b1 :

u′(c1) = δ





π1

[

u′(c2(y1))c
′
2(y1)

∂y1(b1,d1)
∂b1

+ δu′(c3(y1))c
′
3(y1)

∂y1(b1,d1)
∂b1

]

+(1 − π1)
[

u′(ĉ2(y1))ĉ
′

2(y1)
∂y1(b1,d1)

∂b1
+ δu′(ĉ3(y1))ĉ

′
3(y1)

∂y1(b1,d1)
∂b1

]





where ∂y1(b1,d1)
∂b1

= R(1 − τ1) (For ease of exposition, assume the policies are differentiable).31 Therefore,

u′(c1) = δR(1 − τ1)

(

π1 [u
′(c2(y1))c

′
2(y1) + δu′(c3(y1))c

′
3(y1)]

+(1 − π1)
[

u′(ĉ2(y1))ĉ
′

2(y1) + δu′(ĉ3(y1))ĉ
′

3(y1)
]

)

which implies:

(1 − τ∗
1 ) =

u′(c∗1)

δR
(

π1

[

u′(c∗2)c
′
2(y

∗
1) + δu′(c∗3)c

′
3(y

∗
1)
]

+ (1 − π1)
[

u′(ĉ∗2)ĉ
′

2(y
∗
1) + δu′(ĉ∗3)ĉ

′

3(y
∗
1)
]) ,

where y∗1 is the net present value of wealth under the efficient allocation.

Case 2. Government sets taxes such that

Rd(1 − τd) ≥ R2(1 − τ1)(1 − τ2).

31It is well-known that in general we cannot guarantee even the continuity of the policy functions (e.g., see

Krusell and Smith (2003), and Harris and Laibson (2001)).
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Then, obviously, agents might be using d1 ≥ 0. In that case, since

u′(c2) = β2δR(1 − τ2)u
′(c3)

still holds, efficiency still requires

(1 − τ∗
2 ) =

1

β2
.

To see optimal taxes on the illiquid asset, consider the first-order condition with respect to d1 :

u′(c1) = δ





π1

[

u′(c2(y1))c
′
2(y1)

∂y1(b1,d1)
∂d1

+ δu′(c3(y1))c
′
3(y1)

∂y1(b1,d1)
∂d1

]

+(1 − π1)
[

u′(ĉ2(y1))ĉ
′

2(y1)
∂y1(b1,d1)

∂d1
+ δu′(ĉ3(y1))ĉ

′

3(y1)
∂y1(b1,d1)

∂d1

]





where ∂y1(b1,d1)
∂d1

= Rd(1−τd)
R(1−τ2)

. Therefore,

u′(c1) = δ
Rd(1 − τd)

R(1 − τ2)

(

π1 [u
′(c2(y1))c

′
2(y1) + δu′(c3(y1))c

′
3(y1)]

+(1 − π1)
[

u′(ĉ2(y1))ĉ
′

2(y1) + δu′(ĉ3(y1))ĉ
′

3(y1)
]

)

which implies:

Rd(1 − τd∗) =

= R(1 − τ∗
2 )

u′(c∗1)

δR
(

π1

[

u′(c∗2)c
′
2(y

∗
1) + δu′(c∗3)c

′
3(y

∗
1)
]

+ (1 − π1)
[

u′(ĉ∗2)ĉ
′

2(y
∗
1) + δu′(ĉ∗3)ĉ

′

3(y
∗
1)
])

= R(1 − τ∗
2 )R(1 − τ∗

1 ). (21)

As a result, when there is an illiquid asset, government can either prevent people from using this asset

by taxing it heavily or has to tax it according to (21). In either case, the taxes on period one and period

two liquid assets are exactly equal to the optimal taxes in the environment without illiquid assets.
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