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Abstract

We study optimal taxation of savings in an economy where agents face self-control prob-

lems, and we allow the severity of self-control to change over the life cycle. We focus on

quasi-hyperbolic discounting with constant elasticity of inter-temporal substitution utility

functions and linear Markov equilibria. We derive explicit formulas for optimal taxes that

implement the efficient (commitment) allocation. We show, analytically, that if agents’ abil-

ity to self-control increases concavely with age, then savings should be subsidised and the

subsidy should decrease with age. We also study the quantitative effects of age-dependent

self-control problems and find that the optimal subsidies in our environment are much larger

than those implied by models with constant self-control. Finally, we compare our optimal

subsidies with those implied by the 401(k) plan. Although the subsidy levels in the two

cases are of comparable magnitudes, the 401(k) plan implies an increasing pattern of subsi-

dies while the optimal subsidies decrease over the life cycle.
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Economists traditionally assume that people discount streams of utility over time expo-

nentially. An important implication of exponential discounting is that under this assumption

people have time-consistent inter-temporal preferences: How an individual feels about a given

inter-temporal tradeoff is independent of when he is asked. However, laboratory and field

studies on inter-temporal choice have cast doubt on this assumption.1 This evidence suggests

that discounting between two future dates gets steeper as we get closer to these dates. Such

time-inconsistent inter-temporal preferences capture self-control problems. Naturally, all this

evidence on self-control problems have led many economists to model this phenomenon and

study its positive and normative implications.2

In this paper, we study optimal capital taxation over the life cycle in the presence of self-

control problems. A common modelling assumption in the literature on self-control problems is

that the degree of self-control problem is constant over time. This contrasts with the significant

body of empirical research indicating that, like many other personality traits, people’s ability

to self-control changes as they age. Using an experimental approach to measuring self-control

problems, one of the conclusions Ameriks et al. (2007) reach is summarised in the following

quotation:

“A particularly interesting finding in Table 4 is the profound reduction in the scale of self-control

problems as individuals age, which shows up only when one uses the absolute value of the self-control

measure. Older individuals experience fewer self-control problems, either of overconsumption or under-

consumption, than do their younger counterparts. This finding is certainly consistent with the common

view that temptation falls with age, and has important connections with actual consumption behaviour

over the life cycle. Models that allow for such a time-changing self-control parameter retirement may be

necessary to explain the absence of a spike in consumption spending at the point when retirement assets

become fully liquid.”

Another set of evidence for changing levels of self-control problems comes from literature

that investigates inter-temporal discounting over the life span. This research has shown that

1See DellaVigna (2009) for a survey of field studies and Frederick et al. (2002) for a survey of experimental

studies. Also, see Laibson et al. (2007) for evidence of self-control problems in consumption asset holdings panel

data.
2Three main models that have been proposed to capture self-control problems are the hyperbolic discounting

model of Laibson (1997), the temptation model of Gul and Pesendorfer (2001), and the planner doer model of

Thaler and Shefrin (1981).
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the discrepancy between short term and long term discount rates falls with age predicting a

life-cycle developmental trend toward increased self-control. Read and Read (2004) is an ex-

perimental study which estimates hyperbolic discount functions for three different groups of

individuals: young adults, middle-aged, and old adults, with average ages of 25, 44, and 75.

The authors find that the discrepancy between the short-term and the long-term discount rates

is significantly higher for the young adults relative to the middle-aged. Similarly, this dis-

crepancy is significantly higher for middle-aged adults compared to the old adults group, for

which, they conclude the discrepancy virtually vanishes. Green et al. (1999) estimates hyper-

bolic discount functions for two groups of adults, young and old, with mean ages of 20 and 70

respectively, and finds that the discrepancy between short-term and long-term discount rates

that exists for young adults disappears as people get old.3

A third set of evidence for changing self-control problems comes from personality psychol-

ogy. As Ameriks et al. (2007) states ”personality psychologists associate self-control with consci-

entiousness, one of the ‘big five’ personality factors.”4 There is a long list of empirical studies in

personality psychology that show that conscientiousness, and in particular its lower-level facet,

self-control, changes with age.5 For example, in their survey article on personality development

in adulthood, Caspi et al. (2003) conclude that: ”it appears that the increase in conscientiousness

is one of the most robust patterns in personality development, especially in young adulthood.”

In this paper, we extend the traditional models of self-control to allow for varying degrees

of self-control problem over the life cycle, and study optimal capital taxation. In our model,

agents make consumption and savings decisions facing self-control problems at all ages. In

the last period of their lives, people make consumption and bequest decisions knowing that

they are going to be replaced by their offspring next period. We model preferences that exhibit

self-control problems through the quasi-hyperbolic discounting framework of Laibson (1997),

3For more empirical work on life-span analysis of inter-temporal discounting, see also Green et al. (1994) and

Green et al. (1996).
4Actually, Ameriks et al. (2007) validates this relationship between conscientiousness and the measure of self-

control used in the experiment (the EI gap) and finds that ”the data reveal a strong relationship between the

conscientiousness questions and the absolute value of the EI gap.”
5For example, see John et al. (2003) and Helson et al. (2002). Ameriks et al. (2007) also, through their experimen-

tal finding, show that there is a profound reduction in the scale of self-control and conscientiousness problems as

individuals age.
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which builds on the seminal works of Strotz (1955) and Phelps and Pollak (1968). We extend the

Laibson (1997) model by allowing for the degree of self-control problem to change over time.

We assume people are sophisticated, meaning they anticipate future self-control problems.

In this environment, we define efficient (or commitment) allocation as the allocation that

would arise in the absence of self-control problems. It is given by the solution to a fictitious

social planner’s consumption-saving problem where the planner future utilities exponentially.

In our environment, this preference corresponds to the preference of an initial generation par-

ent. The main exercise in this paper is to examine the optimal tax policy that implements the

efficient allocation. In this sense, this paper is a normative exploration of optimal paternalis-

tic tax policy regarding life-cycle saving behaviour. It is well-known that in models of quasi-

hyperbolic discounting there is multiplicity of equilibria.6 We restrict attention to the (unique)

linear Markov equilibrium of our economy.

We derive closed form formulas for optimal age-dependent capital taxes. Our closed form

solution represents the equilibrium obtainable as the limit of the equilibria of finite-period

economies. We show that optimal capital taxes can be positive as well as negative in different

periods of life and they can be increasing, decreasing, or changing non-monotonically with age,

depending on what we assume about the evolution of self-control problem over the life cycle.

This ambiguity result about the qualitative properties of optimal taxes shows that researchers

who take self-control problems seriously should also take the evolution of self-control problems

over the life cycle seriously before making policy suggestions. This result also questions the ba-

sic presumption in the literature that self-control problems always imply optimality of saving

subsidies, which, as we show, arises from the assumption of constant self-control over age.

Our closed form tax formulas are obtained assuming agents have constant elasticity of inter-

temporal substitution (CEIS) preferences. The formulas are valid (i) if CEIS coefficient is one

(the utility function is logarithmic) or (ii) for any CEIS coefficient if the economy is in a steady-

state. Using these formulas, we prove that if, as suggested by the available empirical evidence,

the degree of self-control increases with age, then capital should indeed be subsidised in all

periods. We also prove that, if self-control increases concavely with age, then optimal capital

subsidies should decrease with age.

We study the quantitative effects of age-dependent self-control problems in a calibrated ver-

6For discussions of multiplicity of equilibria, see, among others, Laibson (1994) and Krusell and Smith (2003).
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sion of our model and find that the optimal subsidies in our model with decreasing self-control

problems are much larger than those implied by a model with constant self-control problems. We also

compare our optimal subsidies with those implied by the 401(k) plan. If we exclude the very

last periods before retirement - where the subsidy rate in the 401(k) essentially mimics the em-

ployer matching rate - the subsidy levels in the two cases are of comparable magnitudes. A

marked difference emerges however: the 401(k) plan implies an increasing pattern of subsidies

while the optimal subsidies decrease over the life cycle.

Our benchmark model assumes perfectly altruistic parents, making it equivalent to a stan-

dard infinite horizon framework. Section 3.1 allows for imperfect altruism and generalises our

optimal tax formulas to take into account the finite life time effects of Krusell et al. (2010). We

find that, in our model, the effect of age-dependent self-control dominates the finite time effect

induced by imperfect altruism: optimal capital subsidies decrease over the life cycle even when

parents do not care at all about their offsprings (i.e., when finite life time effect is the strongest).

In Section 3.2, we extend the finite horizon version of the model developed in Section 3.1 with

borrowing constraints to study the life-cycle consumption implications of our model. We find

that, even though our model abstracts from important life cycle issues such as child-rearing and

health, life-cycle consumption profiles implied by our calibrated self-control patterns capture

key features of empirical life-cycle consumption profiles fairly well.

Related Literature. Our paper is related to a number of recent papers that have explored the

implications of self-control problems for optimal paternalistic taxation. O’Donoghue and Rabin

(2003) and O’Donoghue and Rabin (2006) analyse models of paternalistic taxation of unhealthy

goods. More closely related is Krusell et al. (2010), which analyses optimal taxation of sav-

ings in an economy where agents live finitely many periods and have self-control problems à

la Gul and Pesendorfer (2001).7 First, they prove that the optimal policy prescriptions of the

quasi-hyperbolic model and the temptation model are identical when the utility function is log-

arithmic or when it is CEIS and the temptation parameter goes to infinity. Second, they show

that savings should be subsidised and that this subsidy should be increasing with time due to finite

life time effect.8 Our work differs from this paper most importantly by allowing for chang-

7Krusell et al. (2002) also analyse optimal taxation of savings under self-control problems but their main focus

is on an environment where the government as well as the people face issues of time-inconsistency.
8It is indeed straightforward to show that, in the infinite horizon version of their model, the subsidies would

be constant.
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ing levels of self-control problems over the life cycle: like all papers prior to ours, Krusell et al.

(2010) assume that the degree of self-control problem is constant over time. The implications of

modelling age-dependent self-control problems turn out to be significant. First, by assuming

empirically plausible patterns of self-control problems over the life cycle, we show, analytically,

that capital subsidies should actually be decreasing with age. Section 3.1 shows that this result

continues to hold even when we extend the model to take into account the finite life time effects

of Krusell et al. (2010). Second, we find that, for an agent with a given level of self-control prob-

lem, the age-dependence of self-control model imply much higher levels of optimal subsidies

relative to the ones implied by the constant self-control model.

Another important paper that is related to ours is Imrohoroglu et al. (2003) which studies

the role of social security in a model where agents have self-control problems. They consider a

rich overlapping generations model with uninsurable unemployment shocks and liquidity con-

straints, and find that social security is not very useful in helping agents solve their self-control

problems. Ours is a theory of capital subsidies under complete markets. One advantage of

our analysis is that, whenever utility is logarithmic, our results are robust to many dimensions

of heterogeneity - such as the life-cycle wage profile and the wealth distribution - whereas the

normative predictions in models with incomplete markets may obviously depend on all these

features.

As discussed above, an immediate implication of age-dependent self-control problems is

that capital taxes should be age-dependent. The age-dependence result is also a feature of two

sets of earlier contributions that analyse benefits of age-dependent capital income taxes with

time-consistent agents. First, in the Ramsey taxation tradition, Erosa and Gervais (2002) shows

that, in life-cycle economies, if the government has access to age-dependent linear capital and

labor income taxes, the resulting optimal tax system features age-dependence both for capital

and labor income. Second, the New Dynamic Public Finance literature calls for age-dependence

in optimal capital and labor income tax codes (e.g., Farhi and Werning (2013) and Golosov et al.

(2011)). The forces generating age-dependence in the current paper, however, are completely

different from the forces in these papers.9 Therefore, our paper complements this literature by

9The optimality of age-dependence in Erosa and Gervais (2002) is a direct implication of time-dependent con-

sumption and labor plans that is valid even in the steady state due to life cycle changes in people’s productivity.

In the New Dynamic Public Finance models, capital is taxed in order to deter people from joint deviation of saving
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providing a new mechanism through which capital taxes should depend on age. As such, in

this paper, the life-cycle pattern of optimal capital taxes depends on features of the environment

that are neglected by these papers.

The rest of the paper is organised as follows. Section 1 lays down the basiline model whereas

Section 2 analyses optimal subsidies both qualitatively and quantitatively. In Section 3, we

consider imperfect altruism extension and the life-cycle consumption implications of of the

calibrated self-control model. Section 4 concludes. The proofs of propositions, the procedure

we employ to approximate quasi-hyperbolic discount functions, and the analysis of optimal

subsidies under partial sophistication and in the presence of an illiquid asset are presented in a

separate online Appendix.

1 Model

The economy is populated by a continuum of a unit measure of dynasties who live for a count-

able infinity of periods, t = 1, 2, . . . , where each agent within a dynasty is active for I + 1 peri-

ods. In the first I periods, agents make consumption saving decisions facing different degrees

of self-control problems at different ages. In the last period of their lives, agents decide how

much to consume and bequeath to their offspring, who replace them in next period. People are

altruistic and they anticipate their offspring’s self-control problems.We use quasi-hyperbolic

discounting framework formalised by Laibson (1997) to model self-control problems as fol-

lows. An agent in his ultimate period of life (we refer to this agent as the parent hereafter) has

the following preferences over dynastic consumption stream:

u(c0) + δu(c1) + δ2u(c2) + · · ·+ δIu(cI) + δI+1u(c′0) + . . .

where c0, ci, and c′0 refer to the the consumption levels of the current parent, the offspring at

age i, and the offspring when he becomes a parent, respectively. u is the instantaneous utility

function and δ refers to both the discount factor and the altruism factor. The offspring has

and shirking. Since people at different ages (and contingencies) have different levels of accumulated wealth and

future prospects, they have different tendencies to save, and hence, the corrective taxes depend on age.
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different preferences at different ages. His preferences are given by

u(ci) + βiδ
[

u(ci+1) + δu(ci+2) + · · ·+ δI−iu(c′0) + . . .
]

, at age i ∈ {1, ..., I − 1},

u(cI) + β Iδ
[

u(c′0) + . . .
]

, at age I.

When βi = 1 for all i, all agents at all ages are time-consistent as there is no self-control problem.

Throughout the paper we will assume that βi < 1, meaning individuals postpone their planned

savings when the date of saving comes. Prior to the current paper, the literature has assumed

βi = β for all i, meaning the degree of self-control problem is constant as people age. Following

the large body of empirical findings provided by personality psychologists and experimental

studies, we allow for the severity of self-control problems, βi to depend on i. In the baseline

model, we assume people are fully sophisticated, meaning they fully anticipate the self-control

problems faced by future selves and descendants. In Appendix C, we analyse a version of the

model in which people are only partially aware of their self-control problems. 10

The instantaneous utility function, u, is of the CEIS form with elasticity parameter σ > 0 :

u(c) =
c1−σ

1 − σ
, for σ %= 1;

= log(c), else.

Production takes place at the aggregate level according to the function F(k, l), where k is ag-

gregate capital and l is aggregate labor. The production function satisfies the usual neoclassical

properties together with the Inada conditions:

F1, F2 > 0 ; F11, F22 ≤ 0; and lim
k→0

F1 = ∞; lim
k→∞

F1 = 0.

Labor is inelastically supplied, so at all dates l = 1. Define f (k) = F(k, 1) + (1 − d)k, where d

refers to the fraction of capital that is forgone due to depreciation. There is a credit market in

which agents can trade one period risk-free bonds and capital as perfectly substitutable assets.

Since at any given date there is not cross-sectional heterogeneity, all agents have the same level

of asset holdings. Hence, letting bt be the amount of asset holdings of the agent alive in period

t, the credit market clearing condition is kt = bt.

10See Ariely and Wertenbroch (2002) for behavioural evidence on partial sophistication.
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1.1 The Efficient Allocation

The efficient or – as we use interchangeably throughout the paper – the commitment allocation is

the allocation that would arise in the absence of self-control problems. It is given by the solu-

tion to a fictitious social planner’s consumption-saving problem where the planner discounts

exponentially with discount factor δ. In our environment, this preference corresponds to the

preference of an initial generation parent. By taking a long-term perspective and evaluating

welfare according to the initial parent’s preference, we are following much of the literature.11

The following Euler Equations characterise the efficient allocation, which we denote with an

asterisk throughout the paper:12

u′(c∗i ) = δ f ′(k∗i )u
′(c∗i+1), for i ∈ {0, 1, . . . , I − 1}, and (1)

u′(c∗I ) = δ f ′(k∗I )u
′(c′∗0 ), . . .

1.2 Implementing the Efficient Allocation

Since people in this economy face self-control problems, laissez-faire market equilibrium cannot

attain the commitment allocation. Our main interest in this paper is to find and characterise a

tax system that implements the commitment allocation in the market environment. We call such

a tax system optimal. We proceed by defining a market equilibrium with taxes. It is important

to note that from the outset we restrict the set of taxes that are available to the government to

linear taxes on savings coupled with lump-sum rebates (throughout the paper we call this the

set of linear taxes). In general, it is not obvious that there is a linear tax system that implements

the efficient allocation. However, since we focus our attention to linear equilibria, a linear tax

system that implements the efficient allocation exists. We will verify this claim in Section 2.

1.3 Markov Equilibrium with Taxes

For notational simplicity, here in the main text, we only present the stationary version of the

model where the level of aggregate capital stock starts from its steady-state level, k. The prices

11See DellaVigna and Malmendier (2004), Gruber and Koszegi (2004) and O’Donoghue and Rabin (2006), for ex-

ample.
12We do not state the transversality condition but the commitment allocation will converge to a steady state with

positive capital as long as k0 > 0.
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at the steady state are given by

R = f ′(k) and w = f (k)− f ′(k)k. (2)

In such a world, the only index we need to carry around is the age index i. In Appendix A.1,

we provide the general setup where the economy starts from an arbitrary level of capital stock

and prices change over time. We prove our main result, Proposition 1, for the general case, and

show that if the utility function is logarithmic, then optimal taxes do not depend on whether

the economy is at a steady state or in a transition.

Let τi be the savings (capital) tax agent i = 0, 1, . . . , I pays. Tax proceeds are rebated in

a lump-sum manner in every period. Denote the lump-sum rebate in period i by Ti and let

τ = {τi, Ti}I
i=0. For each set of taxes, we define the policy functions bi(·; τ) for i = 0, 1, . . . , I,

describing the optimal level of asset holdings of agent i given prices and taxes. When agent of

age n is deciding bn, his evaluation of the effect of his choice on bi, i > n will be described by the

(nested) function bi(bi−1(...bn+1(bn; τ)...; τ); τ), which will be referred to as bi(...(bn)...)) so as to

simplify notation. In addition, in order to only deal with functions, we assume each agent’s

solution is unique, a property satisfied by our closed form solution involving linear policies. Of

course, in case of multiple solutions, our policy functions correspond to appropriate selections

from the policy correspondences.

A Stationary Markov equilibrium with taxes τ consists of a level of capital k, prices R, w, value

function V(·; τ) and policy functions {bi(·; τ)}I
i=0 such that: (i) the prices satisfy (2); (ii) the value

functions and the policies are consistent with the parent’s problem described below; (iii) the government

budget is satisfied period-by-period and markets clear: Ti = Rτibi(k; τ) and bi(k; τ) = k for all i.

We now formally define the parent’s problem. Let V (b; τ) be the value of a parent’s problem

who had b units of assets in his last period before parenthood and faces the tax system τ. The

parent chooses his bequest b0 and does not have any direct control over b1, . . . , bI. Note that his

preferences are not aligned with his offspring’s (in a given period i, parent’s discount factor is δ

whereas offspring’s is βiδ). The parent foresees this misalignment of preferences, and correctly

forecasts future policies.
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The parent’s value and the policies are given by the solution to the following problem:

V (b; τ) = max
b0

u (R (1 − τI) b + w + TI − b0)

+δ

{

I−1

∑
i=0

δiu (R (1 − τi) bi(...(b0)...) + w + Ti − bi+1(...(b0)...)) + δIV (bI(...(b0)...); τ)

}

s.t. for all b0

b1(b0; τ) = arg max
b̂1

u
(

R (1 − τ0) b0 + w + T0 − b̂1

)

+ δβ1u
(

R (1 − τ1) b̂1 + w + T1 − b2(b̂1)
)

+δβ1

{

I−1

∑
i=2

δi−1u
(

R (1 − τi) bi(...(b̂1)...) + w + Ti − bi+1(...(b̂1)...)
)

+ δI−1V
(

bI(...(b̂1)...); τ
)

}

s.t. for all b1

b2(b1; τ) = arg max
b̂2

u
(

R (1 − τ1) b1 + w + T1 − b̂2

)

+ δβ2u
(

R (1 − τ2) b̂2 + w + T2 − b3(b̂2)
)

+δβ2

{

I−1

∑
i=3

δi−2u
(

R (1 − τi) bi(...(b̂2)...) + w + Ti − bi+1(...(b̂2)...)
)

+ δI−2V
(

bI(...(b̂2)...); τ
)

}

. . .

bI−1(bI−2; τ) = arg max
b̂I−1

u
(

R (1 − τI−2) bI−2 + w + TI−2 − b̂I−1

)

+δβ I−1

{

u
(

R (1 − τI−1) b̂I−1 + w + TI−1 − bI(b̂I−1)
)

+ δV
(

bI(b̂I−1); τ
)}

(3)

s.t. for all bI−1

bI(bI−1; τ) = arg max
b̂I

u
(

R (1 − τI−1) bI−1 + w + TI−1 − b̂I

)

+ δβ IV
(

b̂I ; τ
)

. (4)

To understand the nested nature of policies better, let us analyse the definition of policies

in (3) and (4). First, constraint (4) describes how self I chooses bI. This agent chooses bI an-

ticipating correctly that next period when he becomes a parent he will face an offspring with

self-control problems, and the offspring will face an offspring with self-control problems, and

so on. Second, consider constraint (3) which defines how self I − 1 chooses bI−1. Being sophis-

ticated, self I − 1 knows that his followers will have self-control problems. In particular, self

I − 1 knows that self I chooses bI according to (4). We have just seen that the last constraint,

(4), enters the parent’s problem in at least two ways: first, in the definition of self I’s policy

function and then as a constraint in the definition of self I − 1’s policy function. These two dif-

ferent constraints are represented by a single constraint, (4), because the parent and self I − 1′s

sophisticated belief agree about how self I will behave. Similarly, the constraint describing self

I − 1’s policy is also a constraint in the constraint that describes self I − 2’s policy, and self
This article is protected by copyright. All rights reserved. 



I − 2’s policy is also a constraint of self I − 3’s, and so on. Thus, actually the constraint that

describes the policy of self i enters parent’s problem in i different places but since these are all

identical constraints, we represent them with just one constraint that describes self i′s policy.

We restrict attention to linear equilibria, meaning equilibria in which policy functions are

linear in net present value of current wealth. Mathematically, defining Γi−1(b; τ) to be the net

present value of wealth available to an agent at the beginning of age i with asset level b and

under tax system τ, we derive closed form solutions of the form ci(b; τ) = Mi(τ)Γi−1(b; τ).

2 Optimal Taxes

In this section we analyse optimal capital taxes in the model introduced in Section 1. Proposi-

tion 1 characterises optimal taxes when utility is logarithmic.

Proposition 1 Suppose u(c) = log(c). The optimal taxes are given by:

1 − τ∗
i =

1

βi
(1 − δ + βi+1δ) , for i ∈ {0, 1, . . . , I},

with β0 = β I+1 = 1.

Proof. Relegated to Appendix A.1.

The main task in proving Proposition 1 is to compute linear policies, Mi(τ), which we do

as follows. The assumption of linearity of policy functions implies that offspring’s problems at

all ages are strictly concave maximisation problems. This implies that the first-order optimal-

ity conditions are not only necessary but also sufficient. As a result, in the parent’s problem,

we can replace the constraints that take the form of maximisation problems with the corre-

sponding first-order optimality conditions. Using the the first-order approach and a version of

a guess and verify method, we find analytic expressions for the value function V and the vector

of constants Mi(τ) describing equilibrium linear policies. Then, we use the policy functions

to compute Euler equations that describe people’s optimality conditions regarding savings at

different ages in equilibrium. The comparison of these equilibrium Euler equations with the

planner’s Euler equations, given by (1), gives the optimal distortions (taxes) that need to be

created to implement the commitment allocation.
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It might be important to stress that - as shown in Appendix A.1. - Proposition 1 holds

regardless of whether the economy is in a steady state or in a transition. In particular, since

agents do not face binding liquidity constraints, the expressions for taxes hold for any life-cycle

path of wages. In Appendix C, we also prove that, under the logarithmic utility assumption, the

optimal taxes given by Proposition 1 are valid independent of whether we assume people are

aware of their future self-control problems or not.

Proposition 2 shows that if the economy is in a steady state, then the optimal taxes charac-

terised in Proposition 1 for the σ = 1 case are valid for any σ > 0.

Proposition 2 Assume k is such that δ f ′(k) = 1. Then, for any σ > 0, optimal taxes are given by the

exact same expressions as in Proposition 1.

Proof. Relegated to Appendix A.2.

The tax formula for in Proposition 1 consists of two components. The first component, 1
βi

, is

easier to understand. Because of his current self-control problem, self i discounts tomorrow by

an extra βi and hence wants to under-save relative to the efficient allocation. By factoring the

after tax return with 1
βi

, we can exactly offset the extra discounting, thereby getting rid of this

under-saving motive. We call this first part of the tax formula the current component. Clearly,

the current component is always greater than one, i.e., it always calls for a subsidy.

The second component of the tax formula, (1 − δ + βi+1δ) , is there to correct deviations in

current savings caused by suboptimal actions of future selves. This part the tax formula, which

we refer to as the future component, is always less than one, meaning it calls for a tax on savings.

Intuitively, from self i’s perspective, self i+1 is under-saving due to his self-control problems

(βi+1 < 1.) Thus, self i’s welfare would go up if he can make self i+1 increase his savings, which

self i can achieve by increasing his own savings since, under our parametric assumptions, self

i+1’s savings is strictly increasing in self i’s savings. This discussion implies that self i has an

additional marginal benefit of saving in equilibrium when βi+1 < 1 relative to the case where

βi+1 = 1. It is this extra benefit that makes self i save more relative to the commitment level.

The future component of the tax formula calls for a tax in order to offset this extra return, and

ensure self i does not over-save. The reader might still feel puzzled by our argument: after

all, when facing the optimal taxes, self i + 1 saves the efficient amount. Notice, however, that

from self i’s perspective, self i + 1 is still under-saving (at the new price that is inflated by the
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subsidy), and hence future component of the tax is still needed.

Obviously, the sign of the optimal capital tax depends on whether the current or the future

component dominates. For constant self-control (i.e., βi ≡ β < 1), the current component

always dominates, implying an optimal negative tax (i.e., optimality calls for a saving subsidy).

We will see below that when βi changes with age, depending on the pattern of change, either

component may dominate, and the optimal tax can in general be positive or negative.

Notice that τ∗
0 is only shaped by the future component. It is hence always positive. Since it

is applied to the wealth transferred to future generations, τ∗
0 can be interpreted as a bequest tax.

In this paper, we do not analyse taxation of wealth transferred across generations. We study

this topic in detail in Pavoni and Yazici (2013b).

2.1 Lessons for Capital Taxation

Propositions 1 and 2 imply several general lessons for capital taxes which are summarised be-

low in a series of corollaries.

Corollary 3 (Age-dependence) Optimal capital taxes are age-dependent. In particular, depending on

how the degree of self-control changes with age: (i) Optimal capital taxes might be positive or negative at

different ages. (ii) Optimal capital taxes might be increasing or decreasing with age at different ages.

Proof. (i) For an example of τi > 0, set βi+1 ≈ 0 and βi > 1 − δ. For an example of τi < 0, set

βi = βi+1 = β < 1. (ii) See the brown line with crosses in Figure 1 for an example.

The optimal capital taxes depend on age as long as the degree of self-control problems de-

pend on age. Figure 1 plots various life cycle profiles of self-control on the left panel and the

corresponding optimal taxes on the right panel. The figure shows that, under constant self-

control of β = 0.5, depicted by blue dots, the subsidy is also constant over the life cycle at

4%. Corollary 3 also states that, unlike the common presumption in the literature, it might be

optimal to tax people with self-control problems. However, although a theoretical possibility,

optimal capital taxes can be positive in our model only under parameter specifications that

seem to be inconsistent with data. Figure 1 shows that the model can generate a few periods

of positive optimal capital taxes only when βi declines sharply with age, as depicted by the

brown crosses. As we discuss in Section 2.2, increasing level of self-control problems with age

(βi declining with i) is at odds with empirical findings. The orange dashed line and the light
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blue solid line in Figure 1 display self-control patterns that are increasing with age. In both

cases, capital should be subsidised. Then, whether subsidies should increase or decrease with

age depends on the curvature of βi.
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Figure 1: Left panel: Examples of constant, decreasing, concave increasing and convex increasing pat-

terns self-control problems over the life cycle. Right panel: Corresponding optimal capital subsidies.

Corollaries 4 and 5 below characterise quite sharply the sign and the monotonicity proper-

ties of optimal capital taxes over the life cycle under the assumption that self-control problems

decrease concavely with age (βi is increasing and concave in i). This pattern is in line with

the available empirical evidence and agrees with the self-control profiles we calibrate in Sec-

tion 2.2.13 Corollary 4 shows that if the severity of self-control problems decline with age, then

13Several different strands of literature provide evidence on this pattern of self-control problems. First, re-

search on inter-temporal discounting over the life span has shown that short term discount rates fall with age

predicting a life-cycle developmental trend toward increased self-control. See, in particular, Green et al. (1999),

and Read and Read (2004). Second,Ameriks et al. (2007) finds that ’EI gap,’ the measure of self-control problem

used in the paper’s experiment, decreases concavely with age. Finally, personality psychologists associate self-

control with conscientiousness, one of the ‘big five’ personality factors, and in the words of Caspi et al. (2003) ‘it

appears that the increase in conscientiousness is one of the most robust patterns in personality development, espe-

cially in young adulthood.’ John et al. (2003) estimates conscientiousness as a quadratic function of age and finds

that the quadratic age term has a negative coefficient ‘indicating that the rate of increase [in conscientiousness]

was greater at younger ages than at older ages.’ Roberts et al. (2006) also estimates a concave conscientiousness
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capital should be subsidised at all ages.

Corollary 4 (Optimality of Capital Subsidies) If βi+1 ≥ βi, for all i ≥ 1, optimal capital tax is

negative for all ages.

Proof. 1 − τ∗
i = 1

βi
(1 − δ + βi+1δ) > βi+1

βi
≥ 1.

Corollary 5 shows that, if people’s ability to self-control increases concavely with age, then

capital subsidies should decrease with age.

Corollary 5 (Decreasing Capital Subsidies) If 0 ≤ βi+1 − βi ≤ βi − βi−1 for all i ≥ 1 (concavity),

then optimal capital subsidies decrease with age.

Proof. 1 − τ∗
i−1 = 1−δ

βi−1
+ βiδ

βi−1
>

1−δ
βi

+ βiδ
βi−1

>
1−δ
βi

+ βi+1δ
βi

= 1 − τ∗
i , where the first and second

inequalities follow from βi−1 < βi and βi+1 − βi ≤ βi − βi−1, respectively.

The result of Corollary 5 differs from Krusell et al. (2010) which concludes that in any finite

economy with constant self-control, capital subsidies should be increasing with age. The op-

timality of increasing subsidies in their case is due to the finite life time people face, and this

element is missing from our analysis due to our assumption of perfect altruism. In Section 3.1,

we show that the finite life time effect is quantitatively small within the relevant parameter

space, implying that the optimality of decreasing subsidies with age is generally optimal.

2.2 Quantitative Analysis

In this section, we quantitatively analyse optimal capital taxation over the life cycle assuming

either one of the justifications of the tax formulas in Proposition 1 hold: either utility is loga-

rithmic or the economy is at a steady state. In order to conduct a numerical analysis, we have

to choose values for the parameters of the model. Individuals are assumed to be born at the

real time age of 25 and they live 51 years, so they die at the end of age 75. Observe that the

tax formulas do not depend on the constant relative risk aversion coefficient σ, the shape of

the production function F, or the depreciation rate, d. Therefore, we do not specify values for

pattern.
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these parameters.14 The only parameter values needed for the analysis are the true yearly dis-

count factor δ and the evolution of self-control with age, {βi}51
i=1. Here, βi represents the level

of self-control problem at real age of i + 24.

We set the long-run yearly discount factor δ = 0.96. This value corresponds to the bench-

mark estimate in a constant self-control model with σ = 1 by Laibson et al. (2007). The self-

control vector, {βi}
51
i=1 , is calibrated as follows. We assume the relationship i → βi takes the

following functional form:

βi = a − d exp

{

51 − i

b

}

. (5)

An advantage of this functional form over some other - perhaps simpler - forms is that it is

relatively easy to ensure that it satisfies a key condition of our model, namely βi ≤ 1 for all

i ∈ {1, ..., 51}.15 This form is also flexible in the sense that it allows for both concave and

convex and decreasing and increasing patterns of self-control over the life cycle. This flexibility

is important as we do not want to - a priori - put any restrictions on the self-control pattern. We

calibrate the parameters of the self-control function in (5) in two alternative ways.

RR Calibration. Read and Read (2004) conducts a survey with 129 respondents between the

ages of 19 and 89 in which respondents are asked to make a large number of time discounting

decisions on both computerised and paper-and-pencil questions. The study estimates hyper-

bolic discount functions for three age groups: young, middle-aged, and older adults, with mean

ages of 25, 44, and 75, respectively. Unlike quasi-hyperbolic discount functions, which have one

short-term and one long-term discount factors (β and δ), hyperbolic discount functions allow

many different discount factors depending on the length of delay for future reward. This im-

plies that the hyperbolic discount functions estimated in Read and Read (2004) are not readily

available for our study. Therefore, our calibration strategy works in two stages. First, for each

age group, we find the β that best approximates the hyperbolic discount function for that group.

We assume that the β at the mean age of a group is equal to the β that is approximated for that

group (for example, β at age 25 equals β of young adults). Second, we use the β for ages 25, 44,

14Observe that if we want the taxes computed using the formulas in Proposition 1 to be valid under any σ, then

we need to assure that the interest rate R or the deeper parameters of the production function F and d satisfy the

steady-state condition R = f ′(k) = F′(k, 1)− d = δ−1, where k refers to steady-state level of capital stock.
15To be precise, βi is bounded above by 1 with this functional form under the assumption that a = 1 + d. As we

see when we discuss our calibration exercises in the next section, this assumption is empirically supported.
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and 75 (or correspondingly for periods i = 1, 20, and 51) to pin down the parameters a, b, and d

of the functional form in (5).

For the older adults group, the approximation stage is quite simple because Read and Read

(2004) finds that the older adults group display exponential discounting. The authors write:

“Green et al’s major result- that younger people show hyperbolic discounting while older peo-

ple show exponential discounting - is supported by our data.” This implies that a single (long-

term) discount factor, δ, is sufficient to describe the behaviour of older adults, implying this

group has β = 1. Since age 75 corresponds to period 51 in our period, this gives us our first

calibration target, β51 = 1, which implies a = 1 + d when plugged in (5).

For the young adults and middle-aged groups, the approximation procedure chooses β us-

ing a least squares procedure: that is, β is chosen to minimise the sum of the squares of errors

between the yearly discount factors that are implied by the hyperbolic discount function and

our (δ, β) model. The details of our approximation procedure can be found in Appendix B.

The β′s that come out of our approximation procedure are 0.525 and 0.732 for the age 25 and

age 44 groups, respectively. Thus, we set β1 = 0.525 and β20 = 0.732 as the two other calibra-

tion targets. These two targets allow us to identify the remaining parameters of the self-control

function (5), b and d. The calibration targets and the calibrated parameter values are reported

in the upper panel of Table 1.

GMO Calibration. This calibration uses a strategy that is quite similar to RR calibration except

that the calibration targets come from two other studies. Two of the targets of GMO calibration

come from Green et al. (1999) which is an earlier paper that also uses an experimental approach

to estimate hyperbolic discount functions. They do so for two groups of adults: the young

and the old, with average ages of 20 and 70, respectively. Similar to Read and Read (2004),

Green et al. (1999) also finds that the inter-temporal discounting behaviour of their old adults

group can be best described by exponential discounting function. Therefore, we set β for this

group to be 1. Using the exact same approximation procedure we use in RR calibration, we find

β for the age 20 group to be 0.362. Then, we identify (5) for the 51 periods starting at age 20 and

ending at age 70. Thus, we set β1 = 0.362 and β51 = 1. The latter again implies that a = 1 + d

as in the RR calibration. We have two parameters, b and d to be identified and only one target

β1 = 0.362. We still need one more calibration target to identify b and d. We use the average
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RR Calibration

Parameters Targets Source

d=0.795 β at age 25 = 0.525 RR

b=106.74 β at age 44 = 0.732 RR

a=1+d β at age 75 = 1 RR

GMO Calibration

Parameters Targets Source

d=0.055 β at age 20 = 0.362 GMO

b=19.73 Average β = 0.818 LRT

a=1+d β at age 70 = 1 GMO

Table 1: This table reports the two alternative calibration exercises that we conduct for self-control

pattern over the life cycle. The acronyms GMO, LRT, and RR stand for Green et al. (1999), Laibson et al.

(2007), and Read and Read (2004), respectively. a, b and d are the parameters of the self-control function

in expression (5).

level of self-control problems in the economy, call it βavg, as an additional target. We take βavg

to be 0.818 in our benchmark analysis following the estimate of Laibson et al. (2007) for σ = 1

for a constant self-control model. The calibration targets and calibrated parameter values are

reported in the lower panel of Table 1.

It is important to notice that period 1 in GMO calibration does not refer to period 1 in our

model since in our model people are 25 in period 1 whereas people are 20 in period 1 of GMO

calibration. The period 1 in the calibration rather refers to the first period of calibrated self-

control function (5). Thus, the β of the agent in the first period of his life (at age 25) is equal to

β6 according to (5), which equals 0.517. Similarly, we need to determine β for agents between

the ages of 70 and 75 since the function (5) defines self-control problems only for the ages

between 20 and 70. Given that according to Green et al. (1999) self-control problems already

vanish by age 70, we set β = 1 for agents at ages between 70 and 75.

Now, we summarise our results.16 First, in both of our calibrations, self-control problems

decrease with age, and thus, it is always optimal to subsidise life-cycle savings. The red dots

16The matlab files used for all our simulations are available online. We refer to the README.pdf file for details.
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and the solid green line on the left panel of Figure 2 represent the RR and GMO calibrations

of the evolution of self-control problems over the life cycle, respectively. The corresponding

lines on the right panel display the corresponding optimal subsidies. In the RR calibration, the

optimal subsidies start about 6% and decrease slowly to about 1% at the end of the life cycle.

In the GMO calibration, the subsidies start at a significantly higher 8.5% but decrease more

sharply to 0% at the end of the life cycle. The optimality of declining subsidies in both cases is

expected given Corollary 4 and Corollary 5 and the concavely increasing pattern of βi with i in

both calibrations. The fact that GMO optimal subsidies start higher and decline more steeply is

due to the fact that the GMO self-control pattern is substantially more concave than that of RR.

25 30 35 40 45 50 55 60 65 70 7570
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Age

β

β over Lifecycle

 

 

25 30 35 40 45 50 55 60 65 70 75
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Capital Subsidies over Lifecycle

Age

−τ

 

 
RR Calibration
GMO Calibration

RR Optimal Subsidies
GMO Optimal Subsidies

Figure 2: Left panel: Life cycle patterns of self-control problems under Read and Read (2004) (RR) and

Green et al. (1999) (GMO) calibrations. Right panel: Corresponding optimal subsidies.

We conduct sensitivity analysis with respect to our choice of functional form for the self-

control function given in (5). We do so by assuming a quadratic form: βi = Ai2 + Bi + C. For

the RR calibration targets, the quadratic calibration gives a βi pattern that is virtually identical

to the original calibration. The implied optimal subsidies are virtually identical as well. For

the GMO calibration targets, the implied βi pattern rises strictly above one toward the end of

the life cycle and stays above one until the end. This is inconsistent with the evidence found

in both papers which calls for short term discount rates that are (weakly) larger than long term
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discount rates at all ages. The fact that quadratic function cannot be bounded above by one is

one of the reasons why we have adopted the functional form in (5).17

We conclude this section by summarising the general pattern of optimal taxes that emerges

in virtually all of our simulations: optimal taxes are negative, - i.e., they are in fact subsidies,

and these subsidies typically decline with age.

2.3 How Large Are the Optimal Subsidies Relative to Existing Ones?

Observe that in our computations the tax base is the gross return on asset holdings. Most actual

tax systems, however, tax asset income. If we translate our numbers into subsidies on capital

income, we find that optimal subsidy at age 25 is 217%, and subsidies decline to 10% by age

65.18 These are obviously large numbers. In this section, we compare these numbers with

existing saving subsidies in the United States.

Tax-deferred retirement accounts are the main channel through which savings are subsidised

in the United States. Probably, the most well-known tax-deferred saving account in the United

States is the classical 401(k). Each dollar invested into a classical 401(k) is deductible from

taxable income. Moreover, the taxes on the returns to 401(k) are deferred till retirement. This

means, instead of paying taxes on interest or dividend income earned every year, the person

pays tax based only on the income generated at the date of retirement, according to the tax rate

faced by the agent at that date. Moreover, it is quite likely that, at retirement age, contributors

face lower marginal taxes than when they invested into the plan. As we see below, this feature

may generate considerable saving subsidies, and, importantly, these subsidies depend on where

the agent is over her life cycle. Consider an agent who is at age i and is facing a marginal income

tax rate τ
y
C based on the income tax bracket she falls in currently. Suppose there are N periods

before she retires. If she invests $1 today in 401(k), with the current tax deduction, this is as if

she invests $ 1
1−τ

y
C

. If τ
y
R is the income marginal tax rate at retirement age, the agent will receive

17See Pavoni and Yazici (2013a) for an extensive sensitivity analysis of optimal subsidies regarding the levels of

β1 and βavg for the case of Green et al. (1999) calibration.
18Denoting the capital income tax by τk

i , the relation between our taxes and tax on capital income is given by:

1 − τk
i = R(1−τi)−1

R−1 . As a consequence, for τ1 = −8.67% and τ41 = −0.41%, and under R = 1/1.04, we have

τk
1 = −217% and τk

41 = −10%.
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$RN 1−τ
y
R

1−τ
y
C

at retirement. This implies a yearly saving subsidy of19

(

1 − τ
y
R

1− τ
y
C

)
1
N

− 1. (6)

This saving subsidy depends on a person’s age in two ways. First, people’s income tend to

depend on where they are on their life cycle, which implies the tax deduction they receive,

τ
y
C, effectively depends on their age. Second, a person’s age determines how far away she is

from retirement, N, which clearly affects the subsidy rate in (6). Observe that in computing the

implied 401(k) subsidy rate in (6), we take the tax base as the gross return on asset holdings to

make it comparable to the optimal subsidies we have computed earlier in this section.

The 401(k) also allows employers to contribute to the worker retirement saving plans. The

most common methods of employer matching are the $1 per $1 up to 6% of pay and the $0.5 per

$1 up to 6% of pay.20 According to these options, if the saving rate is below 6%, then for each

dollar that a worker contributes to the 401(k) account, the employer contributes one (or, respec-

tively, one half) dollar. This means a worker investing one dollar is effectively investing $2
(1−τ

y
C)

into the plan when the employer matching is 1-to-1 and $1.5
(1−τ

y
C)

when the employer matching is

0.5-to-1. The formula in (6) can then be straightforwardly adapted to compute implied 401(k)

subsidies in the presence of employer matching.21

19The formula in (6) indicates that the implied subsidy rate of the 401(k) scheme is independent of the agent’s

saving rate. The 401(k) scheme, however, puts a cap on the amount agents can invest. In 2012, the maximal amount

for agents aged 50 or below was $17,000; older contributors faced an higher cap. The cap, however, is unlikely to

be binding for the median household with an average saving rate.
20According to a 2009 survey conducted by Hewitt Associates, $1 for $1 up to 6% pay is the most

common matching plan and is offered by 27% of all employers in their sample while $0.5 per $1 is

the second most common matching plan. ”Trends and Experience in 401(k) Plans.” Retrieved from

http://www.retirementmadesimpler.org/Library/Hewitt-Research-Trends-in-401k-Highlights.pdf
21Let a person’s annual income be w and his amount contributed to 401(k) be x. If x > 0.06w, meaning the person

is contributing more than 6% of his income, then in a one-to-one matching plan, the employer contributes 0.06w

dollars, which implies that for each dollar he invests he is effectively investing

x + 0.06w

x(1 − τ
y
C)

.

Therefore, in this case, the implied subsidy depends on the amount contributed. However, Thaler and Benartzi

(2004) report that the average saving rates into the SMarT plan (for the ‘control group’) are between 4.4% and 6.6%

(see page S174). Thus, in our computations of the implied 401(k) subsidies, we assume that contribution rate is
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Now, we compare the saving subsidies implied by a typical 401(k) plan to the optimal sub-

sidies implied by our model. In Figure 3, right panel, we report the life-cycle profile of the

median income per household head - between 25 and 66 years of age - in the period 2000-2006

and the corresponding marginal tax rates implied by the 2006 income tax code.22 In Figure 3,

left panel, we report the implied saving subsidies for several 401(k) plans together with the

optimal subsidies given by our model under the two calibrations. Three observations are im-

mediate. First, interestingly, the range of values for the subsidies implied by the 401(k) plan are

not very different from the optimal ones. Second, the subsidies implied by the 401(k) plan are

very much age-dependent. Third, the life-cycle pattern of the 401(k) subsidies is qualitatively

very different from the optimal ones as they are increasing over the life cycle. Existing subsidies

appear too low for young individuals and too high for individuals close to retirement.
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Figure 3: Left panel: Optimal saving subsidies and subsidies implied by the 401(k) plan according to

marginal income tax rates in 2006, at different levels of employer matching. Right panel: Median income

of U.S. household head over life cycle in 2000-2006 and implied marginal income taxes in the year 2006.

less than 6% and use the formula explained in the main text.
22The data for the life-cycle profile of the median income per household head in the period 2000-2006 is taken

from Heathcote et al. (2010).
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2.4 Comparison to the Constant Self-Control Model

In this section, we compare the optimal capital subsidies obtained in our model to those one

would obtain in a model where self-control problems are constant over the life cycle. For the

sake of brevity, we only discuss the comparison for the GMO calibration. The thick green line

on the left panel of Figure 4 displays the GMO calibration whereas the thin (and flat) green line

displays the corresponding constant self-control pattern in which people have β = 0.818 at all

ages, which is the value that corresponds to average β in the GMO calibration.

The thin green line on the right-hand panel of Figure 4 displays that the optimal subsidies

in the constant self-control model are constant at slightly below 1%, at 0.89% to be precise. In

our GMO simulation, optimal capital subsidies start as high as 8.5% at the beginning of the

life cycle. The fact that our subsidies are higher than those in the constant self-control model

in the early years of the life cycle might not be very surprising since people have bigger self-

control problems at earlier ages in our model. What is perhaps more surprising is that the level

of optimal subsidies remain higher than the ones implied by the constant self-control model

until as late as age 55 even though the left panel of Figure 4 shows that at 55 the agent in our

model has significantly more self-control than the agent in the constant self-control model (with

a β difference of about 0.1). This indicates that our model implies larger subsidies for similar

levels of current self-control problems. The comparison at age 42 makes this point clearer: at

42, agents in both models have virtually the same level of β ≈ 0.82. As the right panel of Figure

4 displays, the optimal subsidy in our model at this age, 2.14%, is much higher than the optimal

subsidy in the constant self-control model, 0.89% (in terms of subsidies on capital income the

comparison is 54% vs. 22%).

To see why the optimal subsidies in our model are significantly larger than the ones in con-

stant self-control model, rewrite the optimal tax formula given by Proposition 1 as

−τ∗
i = (1 − δ)

(

1

βi
− 1

)

+ δ
βi+1 − βi

βi
. (7)

The expression (7) decomposes optimal subsidy formula into two components. The first com-

ponent is the optimal subsidy that arises in a model if the self-control problem remains constant

at the current level, βi. The second component is the additional amount of subsidy needed due

purely to the change in the level of self-control problems. Obviously, as long as self-control

problem is decreasing with age, βi+1 > βi, this term calls for additional subsidisation of sav-
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ings. Since δ is typically close to one, the second component plays a quantitatively important

role in shaping capital subsidies and taxes.
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Figure 4: Left panel: Life cycle patterns of self-control problems under Read and Read (2004) (RR)

and Green et al. (1999) (GMO) calibrations, and under constant self-control model at β = 0.732 and

β = 0.818. Right panel: Corresponding optimal subsidies.

To grasp the intuition why our model implies higher subsidies, remember the decomposi-

tion of optimal taxes into the current and the future components, which we discuss following

Proposition 2. The current component is related to an agent’s current degree of self-control

problem and calls for under-saving. For agent at age 42, this component is the same between

our model and the constant self-control model. The future component summarises how much

a person over-saves to compensate for future self’s under-saving. Since people’s degree of self-

control improves with age in our model, the future component makes the agent save more

today in the constant self-control model relative to ours. As a result, an agent with the same

level of current self-control problem saves more in the constant self-control model, which im-

plies the required subsidy to make him save the right amount is going to be lower. Due to this

future component, optimal subsidies in our model remain higher than the one in the constant

self-control model even long after age 42 (until age 55).
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3 Imperfect Altruism and Life-Cycle Consumption Profile

In the main body of the paper, we have assumed that people are perfectly altruistic towards

their descendants. In Section 3.1, we remove this assumption and investigate the quantitative

importance of imperfect altruism on optimal subsidies. The main conclusion is that imperfect

altruism has little effect on both the level and pattern of optimal saving subsidies. In Section

3.2, we extend the finite life time version of the model developed in Section 3.1 by allowing

for borrowing constraints and use this model to study the life-cycle consumption implications

of our model. We find that, even though our model abstracts from important life cycle issues

such as child-rearing and health, life-cycle consumption profiles implied by our model under

calibrated self-control patterns capture the key properties of empirical life-cycle consumption

patterns fairly well.

3.1 Imperfect Altruism

Using a constant self-control model with sophisticated agents Krusell et al. (2010) find that opti-

mal saving subsidies should be increasing with age if agents face finite life times. In our baseline

model, the finite life time channel, which calls for increasing subsidies with age, is shut down

by the perfect altruism assumption. We now consider an extended version of our model allow-

ing for imperfect altruism and assess its quantitative importance in shaping optimal subsidies

over the life cycle.

A parent has the following preferences over dynastic consumption streams

u(c0) + γ
[

δu(c1) + δ2u(c2) + · · ·+ δIu(cI) + δI+1u(c′0) + δI+1γ
[

δu(c′1) + δ2u(c′2) + . . .
]

. . .
]

,

where this preference specification is equivalent to the one in the baseline model whenever the

altruism factor, γ, is equal to 1. When γ ∈ [0, 1), there is imperfect altruism. The finite life time

case of Krusell et al. (2010) corresponds to the case of γ = 0. The rest of the parent’s problem

is identical to the one in Section 1.3. Proposition 6 generalises the optimal tax formulas of

Proposition 1 to the case with a general altruism factor, γ. In the case of perfect altruism, γ = 1,

these formulas reduce back to the ones in Proposition 1.

Proposition 6 Suppose u(c) = log(c). For γ ∈ (0, 1], the optimal taxes are given by:

1 − τ∗
i =

1

βi

1 + βi+1δ
[

1 + δ + · · ·+ δI−i−2 + δI−i−1D
]

1 + δ + · · ·+ δI−i−1 + δI−iD
, for i ∈ {0, 1, . . . , I},
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where β0 = β I+1 = 1 and

D =
1 + δγ(1 + δ + · · ·+ δI−1)

1 − δI+1γ
.

Proof. Relegated to Appendix A.3.

Figure 5 displays the quantitative effects of the finite life time channel on the monotonicity

properties of optimal subsidies. The red dots represent optimal subsidies under RR calibration

with γ = 1, whereas the dashed red line represents those under RR calibration but with γ = 0.

The comparison of the two lines shows that the finite life time effect is not strong enough to

overturn the optimality of subsidies declining with age. Similarly, the solid green line and the

dashed green line in Figure 5 display optimal subsidies under GMO calibration with γ = 1 and

γ = 0, respectively. The comparison in this case supports the earlier conclusion that optimal

subsidies decline with age even when we take into account the finite life time effect. Observe

that in both robustness exercises we set γ = 0. For γ ∈ (0, 1), the effect of finite life time on the

monotonicity properties of optimal subsidies would be even smaller.

We simulated our model adopting several different parameterisations of γ, δ and i → βi. The

optimality of decreasing saving subsidies is quite robust (details are available upon request).

What seems to play an important role to maintain robustness of the decreasing subsidy result

under various values of γ is that, in our model, self-control problems vanish towards the end

of the life cycle. Notice that the only way in which γ enters the subsidy formula in Proposition

6 is via D. Early in the life cycle, optimal subsidies are not sensitive to γ because the subsidy

formula for early periods discounts D repeatedly. The optimal subsidy formula for later periods

does not discount D heavily, but this time βi+1 converges to one, and the second fraction on the

right-hand side of the subsidy formula converges to one, making optimal subsidies insensitive

to γ.

Observe that, in Figure 5, for each calibration, the optimal subsidies are uniformly higher

in the model with imperfect altruism than those implied by the model with perfect altruism.

Mechanically, this is because the parameter γ enters into the formula for 1 − τ∗
i in Proposition

6 only through the constant D. It is easy to show that D is increasing in γ, which implies

that the subsidy is decreasing in γ since the subsidy is decreasing in D. Intuitively, the second

term in the formula of 1 − τ∗
i in Proposition 6 (the future component) is there because agent i

disagrees with agent i+ 1 regarding how agent i+ 1 should discount consumption in period i+

2 and onwards relative to consumption in i + 1 : from agent i′s perspective, the correct discount
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factor between consumption at date i + 1 and i + s is δs−1, whereas agent i + 1 discounts by

βi+1δs−1. To correct for the eventual under-saving of self i + 1, self i over-saves relative to the

efficient allocation, and to prevent this, the government taxes self i. If γ = 0, the disagreement

between self i and self i + 1 regarding the discounting between i + 1 consumption and future

consumption levels stop at the end of the current life cycle (D = 1), while for γ = 1, the

disagreement piles up for infinitely many generations (D = 1
1−δ ). As a result, when γ = 0,

there is less cumulative disagreement, which means self i is less motivated to over-save relative

to the efficient allocation, which implies the tax implied by the future component is lower.

Therefore, the overall subsidy is larger.
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Figure 5: Left panel: Life cycle patterns of self-control problems under Read and Read (2004) (RR) and

Green et al. (1999) (GMO) calibrations with γ = 0 and γ = 1. Right panel: Corresponding optimal

subsidies.

3.2 Life-cycle Consumption Implications of Self-Control Calibration

Throughout the paper, we motivate and calibrate the life-cycle pattern of self-control using ex-

perimental data. In this section, we would like to document the life-cycle profile of consump-

tion implied by our model as a partial validation of our calibration exercise.

This article is protected by copyright. All rights reserved. 



We take Gourinchas and Parker (2002) (GP hereafter) as our empirical reference. GP com-

putes life-cycle profiles of mean annual real disposable income and consumption using Con-

sumer Expenditure Survey (CEX) data, employing synthetic cohort techniques.23 They con-

struct their variables from a sample of roughly 40,000 households from 1980 to 1993. A graphi-

cal representation of the income and consumption profiles they compute can be found in Figure

2 (page 67) in GP.
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Figure 6: The blue dashed line and the black circles represent the life-cycle profiles of mean disposable

income and consumption between 1980 and 1993 as fitted by Gourinchas and Parker (2002). The red

crosses and the green solid line represent the simulated consumption profiles implied by our model under

self-control problems given by RR and GMO calibrations, respectively. The dash-dot line represents

the life-cycle consumption profile of a planner who discounts exponentially and faces the same liquidity

constraints that households face.

Clearly, our simple model cannot have the ambition of matching the life-cycle pattern of con-

sumption as closely as GP does. In particular, we abstract from income and health uncertainty,

and from all life cycle changes other than income and self-control. We assume households face

23Consumption is obtained by subtracting expenditure on education, medical care, and mortgage interest pay-

ments from total household expenditure. Disposable labor income is obtained by subtracting Social Security tax

payments, pension contributions, after tax asset and interest income, and those expenditures subtracted from con-

sumption from after-tax family income.
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a deterministic path of labor income which corresponds to the life-cycle profile of income con-

structed in GP. We also impose a constant (and exogenous) gross return to savings, R, and a

simple form of liquidity constraints: households cannot borrow at all. To be consistent with GP,

and given that our target is to get a life-cycle profile of consumption, we move away from the

infinite horizon model and assume households are not altruistic (γ = 0). We use this model to

compute two alternative life-cycle consumption profiles, one assuming self-control problems

evolve according to our RR calibration and another one according to GMO calibration. We set

the remaining parameters as follows. Agents are assumed to have logarithmic utility and we

set R = 1.0344 and δ = 1
R .24 Consistently with GP, agents start their working life at age 26 and

retire at 65. People begin their lives with zero assets. After retirement, agents are assumed to

leave for 10 more years and we set retirement income to zero.25

Figure 6 depicts life-cycle consumption profiles coming from RR and GMO simulations (red

dots and solid green line, respectively), together with life-cycle (fitted) income and consump-

tion profiles (blue dashed line and black circles, respectively) constructed in GP. All series are

plotted for the age range between 26 and 65.26 Figure 6 shows that both RR and GMO calibra-

tions of self-control profiles imply reasonable life-cycle consumption profiles. In particular, our

simple model of self-control is able to generate the concave pattern of consumption we observe

in the data. It matches the declining pattern of consumption in the second part of the life cycle

fairly well (for the GMO calibration the fit is, in fact, - surprisingly - quite remarkable), while

24We assume logarithmic utility mainly in order to use our closed form solutions; nonetheless, the relative risk

aversion coefficient of one is well in the range estimated by GP, 0.5 to 1.4, depending on the exact specification of

the model. The value of R is chosen to be consistent with GP, which estimates an average real return of 3.44% for

Moody’s AAA municipal bonds over the sample period.
25 GP does not guide us regarding the length of retirement period or retirement income as it reports neither of

them, and estimates a value of retirement and the implied ‘retirement wealth’ to best match moments on consump-

tion and savings. Instead of choosing these values to optimise the model’s fit, we set retirement income to zero

and retirement length to 10 years. For both calibrations, the consumption profiles simulated using the model with

20 years of post retirement life - not report for ease of graphical exposition - are virtually identical to the profiles

obtained from the 10 years model.
26Given the hump shaped pattern of income and the decreasing pattern of self-control, in all parametrisations,

agents are liquidity constrained early in life. After they start saving, they never become liquidity constrained

again. This characteristic of the model allows us to use the machinery we developed to solve the model without

liquidity constraints (leading to the closed form solution for taxes) to solve this model with liquidity constraints.

Further details on the numerical algorithm are available upon request.
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it is unable to match the flatter pattern of consumption we observe in the data during the first

part of the life cycle. GP argues that precautionary savings and measurement error play a cru-

cial role in explaining the consumption profile in the initial segment of the life cycle while our

model postulates deterministic income.27

It might be worthwhile discussing the optimal taxes implied by the model with liquidity

constraints. The black dash-dot line in Figure 6 represents the life-cycle consumption profile of

a planner who discounts exponentially and faces the same liquidity constraints that households

face. This is the commitment consumption profile that optimal subsidies target under borrow-

ing constraints. The figure shows that the consumption patterns of the commitment allocation

and the self-control model (for both calibrations) coincide until age 34. The optimal subsidies in

the borrowing constraint model starting with age 34 coincides with the optimal subsidies given

by Proposition 6 (for γ = 0) since after this period the commitment allocation requires people to

save. The optimal subsidies after age 34 corresponds to that shown by the thin dotted (green or

red depending on the calibrations) lines in Figure 5. During the ages between 25 and 34, the op-

timal subsidies are indeterminate. Intuitively, as long as subsidies are not too high during these

years, people will be borrowing constrained, and consume exactly their labor income, which is

what we see in the commitment allocation. Notice that, the subsidies given by Proposition 6

are optimal for these years as well as they lie within the range of optimal subsidies.

4 Conclusion

This paper studies optimal capital taxation in an economy where agents face self-control prob-

lems. In line with evidence suggested by personality psychology and experimental studies,

we allow for the severity of the self-control problem to change over the life cycle. We restrict

attention to CIES utility functions and focus on linear Markov equilibria. We derive explicit

formulas which allow us to compute optimal taxes given the evolution of self-control problem

over the life cycle. We show that if agents ability to self-control increases concavely with age,

27On page 49, GP writes: “The importance of the precautionary motive early in life implies that between 60 and 70

percent of non-pension wealth is due to precautionary savings, according to poor estimates and holding the real interest rate

fixed.” On page 67, GP also writes: “Consumption lies above income over the late twenties. Given that the CEX wealth

data, and better household wealth surveys, show modest increases in liquid wealth over these ranges, this feature seems likely

due to misreporting of income or consumption.”
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then capital should be subsidised and the subsidy should decrease with age.

In our calibrated quantitative exercises, we find that optimal capital subsidies start some-

where between 6% and 8% at the beginning of the life cycle and decline monotonically with

age to somewhere between 0% and 1%. If we translate the subsidies on capital into subsidies

on capital income, these are very large numbers. Perhaps more importantly, we show they are

much larger than the savings subsidy we would obtain in models with constant self-control, at

most ages. Our model is probably too simple for delivering precise policy predictions. Never-

theless, our analysis suggests that researchers who take self-control problems seriously should

also carefully measure the evolution of self-control problems over the life cycle before making

policy suggestions.

We also compare our optimal subsidies with those implied by the 401(k) plan. If we exclude

the very last periods before retirement - where the subsidy rate in the 401(k) essentially mimics

the employer matching rate - the subsidy levels in the two cases are of comparable magnitudes.

A marked difference emerges, however, in the life-cycle pattern of optimal subsidies: the 401(k)

plan implies an increasing pattern of subsidies while the optimal subsidies decrease over the

life cycle.

In Appendix C, we extend the model by allowing for different degrees of self awareness

(partial sophistication) about the existence of future self-control problems. We first prove that

when utility function is logarithmic, the optimal tax formulas are independent of the pattern

of partial sophistication. When CEIS coefficient is different from one, closed form solutions

for optimal taxes are unavailable. Our numerical experiments show that, as long as the level

of sophistication is not changing abruptly from one period to another, the pattern of optimal

capital subsidies over the life cycle is surprisingly robust to the degree of sophistication.

The existence of illiquid assets does not change our optimal tax results as long as there are

no borrowing constraints. More precisely, in Appendix D we use a three periods example to

show that a tax system that is optimal in an environment without illiquid assets is still optimal

in the same environment with an illiquid asset as long as we complement the tax system with

an appropriate tax on the illiquid asset.

Nicola Pavoni, Department of Economics, Bocconi University, via Roentgen 1, 20136 Milan, Italy

Hakki Yazici, Sabanci University, FASS, Orta Mahalle, Universite Caddesi No:27 Tuzla, 34956 Istanbul,

Turkey
This article is protected by copyright. All rights reserved. 



References

Ameriks, J., Caplin, A., Leahy, J. and Tyler, T. (2007). ‘Measuring self-control problems’, Ameri-

can Economic Review, vol. 97(3), pp. 966–972.

Ariely, D. and Wertenbroch, K. (2002). ‘Procrastination, deadlines, and performance: Self-

control by precommitment’, Psychological Science, vol. 13(3), pp. 219–224.

Caspi, A., Roberts, B.W., Robins, R.W. and Trzesniewski, K.H. (2003). Handbook of Life Course.

DellaVigna, S. (2009). ‘Psychology and economics: Evidence from the field’, Journal of Economic

Literature, vol. 47(2), pp. 315–372.

DellaVigna, S. and Malmendier, U. (2004). ‘Contract design and self-control: Theory and evi-

dence’, The Quarterly Journal of Economics, vol. 119(2), pp. 353–402.

Erosa, A. and Gervais, M. (2002). ‘Optimal taxation in life-cycle economies’, Journal of Economic

Theory, vol. 105(2), pp. 338–369.

Farhi, E. and Werning, I. (2013). ‘Insurance and taxation over the life cycle’, Review of Economic

Studies, vol. 810(2), pp. 596–635.

Frederick, S., Loewenstein, G. and O’Donoghue, T. (2002). ‘Time discounting and time prefer-

ence: A critical review’, Journal of Economic Literature, vol. 40(2), pp. 351–401.

Golosov, M., Troshkin, M. and Tsyvinski, A. (2011). ‘Optimal dynamic taxes’, National Bureau

of Economic Research, Inc.

Gourinchas, P.O. and Parker, J.A. (2002). ‘Consumption Over the Life Cycle’, Econometrica,

vol. 70(1), pp. 47–89.

Green, L., Fry, A. and Myerson, J. (1994). ‘Discounting of delayed rewards: A life-span compar-

ison’, Psychological Science, vol. 5, pp. 33–36.

Green, L., Myerson, J., Lichtman, D., Rosen, S. and Fry, A. (1996). ‘Temporal discounting

in choice between delayed rewards: The role of age and income’, Psychology and Aging,

vol. 11(1), pp. 79–84.

This article is protected by copyright. All rights reserved. 



Green, L., Myerson, J. and Ostaszewski, P. (1999). ‘Discounting of delayed rewards across

the life-span: Age differences in individual discounting functions’, Behavioural Processes,

vol. 46(1), pp. 89–96.

Gruber, J. and Koszegi, B. (2004). ‘Tax incidence when individuals are time-inconsistent: the

case of cigarette excise taxes’, Journal of Public Economics, vol. 88(9-10), pp. 1959–1987.

Gul, F. and Pesendorfer, W. (2001). ‘Temptation and self-control’, Econometrica, vol. 69(6), pp.

1403–1435.

Heathcote, J., Perri, F. and Violante, G.L. (2010). ‘Unequal we stand: An empirical analysis of

economic inequality in the united states: 1967-2006’, Review of Economic Dynamics, vol. 13(1),

pp. 15–51.

Helson, R., Jones, C. and Kwan, V.S.Y. (2002). ‘Personality change over 40 years of adulthood:

Hierarchical linear modeling analyses of two longitudinal samples’, Journal of Personality and

Social Psychology, vol. 83(3), pp. 752–766.

Imrohoroglu, A., Imrohoroglu, S. and Joines, D.H. (2003). ‘Time-inconsistent preferences and

social security’, The Quarterly Journal of Economics, vol. 118(2), pp. 745–784.

John, O.P., Gosling, S.D., Potter, J. and Srivastava, S. (2003). ‘Development of personality in

early and middle adulthood: Set like plaster or persistent change?’, Journal of Personality and

Social Psychology, vol. 84(5), pp. 1041–1053.

Krusell, P., Kuruscu, B. and Smith, A.J. (2002). ‘Equilibrium welfare and government policy

with quasi-geometric discounting’, Journal of Economic Theory, vol. 105(1), pp. 42–72.

Krusell, P., Kuruscu, B. and Smith, A.J. (2010). ‘Temptation and taxation’, Econometrica,

vol. 78(6), pp. 2063–2084.

Krusell, P. and Smith, A.A. (2003). ‘Consumption–savings decisions with quasi–geometric dis-

counting’, Econometrica, vol. 71(1), pp. 365–375.

Laibson, D. (1994). ‘Self-control and saving’, Ph.D. Dissertation.

This article is protected by copyright. All rights reserved. 



Laibson, D. (1997). ‘Golden eggs and hyperbolic discounting’, The Quarterly Journal of Economics,

vol. 112(2), pp. 443–477.

Laibson, D., Repetto, A. and Tobacman, J. (2007). ‘Estimating discount functions with consump-

tion choices over the lifecycle’, National Bureau of Economic Research.

O’Donoghue, T. and Rabin, M. (2003). ‘Studying optimal paternalism, illustrated by a model of

sin taxes’, American Economic Review, vol. 93(2), pp. 186–191.

O’Donoghue, T. and Rabin, M. (2006). ‘Optimal sin taxes’, Journal of Public Economics, vol. 90(10-

11), pp. 1825–1849.

Pavoni, N. and Yazici, H. (2013a). ‘Optimal life-cycle capital taxation under self-control prob-

lems’, .

Pavoni, N. and Yazici, H. (2013b). ‘Present-bias preferences and optimal taxation of parental

transfers’, .

Phelps, E.S. and Pollak, R.A. (1968). ‘On second-best national saving and game-equilibrium

growth’, The Review of Economic Studies, vol. 35(2), pp. 185–199, ISSN 00346527.

Read, D. and Read, N. (2004). ‘Time discounting over the lifespan’, Organizational Behavior and

Human Decision Processes, vol. 94(1), pp. 22–32.

Roberts, B.W., Walton, K.E. and Viechtbauer, W. (2006). ‘Patterns of mean-level change in per-

sonality traits across the life course: A meta-analysis of longitudinal studies’, Psychological

Bulletin, vol. 132(1), pp. 1–25.

Strotz, R.H. (1955). ‘Myopia and inconsistency in dynamic utility maximization’, The Review of

Economic Studies, vol. 23(3), pp. 165–180.

Thaler, R.H. and Benartzi, S. (2004). ‘Save more tomorrow (tm): Using behavioral economics to

increase employee saving’, Journal of Political Economy, vol. 112(S1), pp. S164–S187.

Thaler, R.H. and Shefrin, H.M. (1981). ‘An economic theory of self-control’, Journal of Political

Economy, vol. 89(2), pp. 392–406.

This article is protected by copyright. All rights reserved. 


