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Abstract

We bring together the theories of duality and dynamic programming. We show

that the dual of a separable dynamic optimization problem can be recursively de-

composed. We provide a dual version of the principle of optimality and give con-

ditions under which the dual Bellman operator is a contraction with the optimal

dual value function its unique fixed point. We relate primal and dual problems,

address computational issues and give examples.
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1 Introduction

Many dynamic economic relationships can be formulated as planning problems sub-

ject to limited commitment or private information frictions. These problems often

admit recursive formulations in which utility promises to agents serve as state vari-

ables. Under these formulations, the planner’s objective is a weighted sum of initial

promise values, while future promise values enter into the problems’ incentive con-

straints.1 A direct (primal) approach to calculating optimal values and policies in
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such settings requires prior recovery of the endogenous set (or correspondence) of

feasible state variables. To avoid this difficulty, we propose an alternative “recursive

dual” approach. The approach replaces a dynamic (economic) optimization with its

dual and reformulates the latter as a dynamic programming problem on a dual co-

state space. We show that recursive economic problems always have recursive duals

and that the associated (dual) Bellman operator is a contraction on an appropriate

domain of candidate value functions. The recursive dual solves the dual rather than

the original “primal” problem. We give sufficient conditions for the optimal payoffs

and solutions from the dual and the primal to coincide. For problems in which these

conditions are not satisfied, we provide a numerical check for primal optimality.

To introduce the dual recursive approach, we use a risk sharing problem with

limited commitment and recursive preferences. In this problem, a planner seeks to

maximize a Pareto weighted sum of agent utilities subject to resource and no default

constraints. The dual of the problem is defined using a Lagrangian that incorporates

these constraints and laws of motion for utility promises to the agents. It involves an

outer minimization over multipliers (on all resource and no default constraints) and

costates (on all laws of motion) and an inner maximization over consumption alloca-

tions. The recursive structure of the original problem is inherited by the dual with

the costates serving as dual state variables. In particular, the dual value function

(on a domain of costates) is a fixed point of a dual Bellman operator. This operator

updates candidate value functions via an outer minimization over current constraint

multipliers and future costates and an inner maximization over current consump-

tion and future utility promises. Additive separability of the Lagrangian can be ex-

ploited to break the inner maximization into a family of simpler maximizations that

are coordinated by the multipliers and costates. These simpler maximizations can

be solved in parallel and sometimes have analytical solutions avoiding the need for

numerical maximization in the inner step completely. The optimal dual value func-

tion is convex and positively homogenous in costates and finite on S ×RnI
+ , where

S is the set of shocks and RnI
+ the set of costates for the nI agents. The positive

homogeneity property implies that the dual value function is fully defined on the

compact set S × C+, where C+ is the intersection of the unit sphere with RnI
+ . Thus,

the dual state space is simple and is immediately given. This is in contrast to the

usual (primal) recursive approach to this problem in which the state space is the

endogenous set of incentive-feasible utility promises. The dual Bellman operator is a

contraction (on an appropriately defined interval of functions and with respect to an

alternative Thompson metric). Thus, it is natural to apply value iteration to calculate

the optimal value function. We do so, calculating solutions to two and three agent
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problems. The strict concavity of the objective and constraint functions combined

with the structure of the constraint set ensures that the allocation computed via the

recursive dual approach is (up to numerical error) a solution to the original problem.

The remainder of the paper extends and rigorously proves in a general environ-

ment results discussed in the limited commitment setting. Specifically, it considers

a family of dynamic recursive optimizations that encompasses many economic ap-

plications. The objective and constraints of these optimizations are functions of

current actions and recursively evolving state variables. In the context of particular

applications, the state variables have interpretations as capital, utility promises or

inflation. They may be backward-looking (i.e. functions of past actions and shocks

and an initial condition such as physical capital) or forward-looking (i.e. functions

of current and future actions and shocks as the utility promises were in the limited

commitment case). As before, a dual problem is associated with these optimizations

via a Lagrangian. In general, to accommodate laws of motion for state variables that

are non-linear in states, the Lagrangian must explicitly include these laws of motion

along with other constraints.2 In this general setting we formally develop the com-

putational merits of the recursive dual approach. We give conditions for the dual

Bellman operator to be a contraction on a space of convex, positively homogenous

and readily approximable functions. As in the limited commitment case, the (co)state

space may be restricted to the corresponding unit sphere or its intersection with the

non-negative orthant. We describe how in the general case the dual Bellman again

involves minimizations over multipliers that coordinate low dimensional and some-

times analytically solvable maximizations. Finally, we provide theoretical conditions

for the equality of dual and primal values and stronger conditions for equality of

solutions. For situations in which these conditions fail, we provide a numerical ex

post check of dual-primal equivalence.

Derivation of the contraction result presents special challenges. The recursive

dual features an unbounded value function and an unbounded constraint corre-

spondence. For problems with unbounded value functions, a common procedure

following Wessels (1977), is to show that there is a set of functions closed and

bounded with respect to a more permissive weighted sup norm that contains the

optimal value function and on which the Bellman is a contractive self-map. How-

ever, this approach requires that the continuation state variables and, hence, the

continuation value function cannot vary "too much" on the graph of the constraint

correspondence. Since the dual Bellman operator permits the choice of multipliers

2If laws of motion are linear in states, then state variables can be substituted from the problem via
iteration on their laws of motion. Both states and laws may then be excluded from the Lagrangian.
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from an unbounded set, this condition is only guaranteed in the dual setting if addi-

tional non-binding constraints on multipliers are found. Instead, we show that the

Bellman is contractive with respect to an alternative metric on a space of functions

sandwiched between two (unbounded) functions. We show through examples that

such bounding functions are often available.

The paper proceeds as follows. After a brief literature review, Section 2 uses a lim-

ited commitment model with recursive preferences to introduce the recursive dual

approach. Section 3 introduces a general class of stochastic, infinite-horizon deci-

sion problems. In Section 4, a decision maker’s problem from this class is paired

with its dual and a recursive formulation of the latter obtained. A Bellman-type

principle of optimality for the dual problem is established. Section 5 gives a con-

traction result for recursive dual problems. Section 6 relates values and solutions

to primal and dual problems. Section 7 concludes. The published appendix con-

tains proofs. Details of numerical implementation, additional calculations from the

limited commitment case and further examples are contained in online appendices.

The important special case of problems with laws of motion and constraints that are

quasi-linear in primal states is also considered there.

Literature Our method is related to, but distinct from, that of Marcet and Mari-

mon (2011). These authors propose solving dynamic optimizations by recursively

decomposing a saddle point operation. They restrict attention to concave problems

with constraints (including laws of motion) that are linear in forward-looking state

variables. They substitute forward-looking states out of the problem using their laws

of motion and absorb a subset of constraints into a Lagrangian. Laws of motion for

backward-looking primal states (e.g. capital) are left as explicit restrictions. They

then recursively decompose a saddle point of this Lagrangian (on the constraint set

defined by the backward-looking laws of motion). This approach requires that a

saddle point exists in all sub-problems after all histories.

Our approach cleanly separates dualization of the primal from recursive decom-

position of the dual. We show that the latter is available under weak separability

conditions, much weaker than those assumed by Marcet and Marimon (2011): the

recursive dual is available for all recursive problems and can be used to obtain an

upper bound on payoffs. Theoretical sufficient conditions for equality of optimal

dual and primal values and solutions are stronger than those guaranteeing recur-

sive decomposition. However, several of Marcet-Marimon’s restrictions can still be

dispensed with. The requirements that constraints are linear in forward-looking

state variables and that every continuation problem has a saddle can be dropped.
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Moreover, when these theoretical conditions are not satisfied, we propose a numer-

ical procedure for checking primal optimality of a dual solution. We also go beyond

Marcet and Marimon (2011) in proving that the dual Bellman operator is a contrac-

tion and in describing how to numerically implement the recursive dual approach.3

Messner et al. (2012) consider the relationship between primal and dual Bellman

operators. They restrict attention to concave problems without backward-looking

state variables and with laws of motion that are linear in forward-looking ones. Thus,

their setting is less general than the present one: it excludes problems such as

default with capital accumulation, risk sharing with non-expected utility and optimal

monetary policy. In addition, they do not provide contraction results or a numerical

implementation. In an important extension of Marcet and Marimon (2011), Cole and

Kubler (2012) show how recursive methods using dual variables can be adapted to

give sufficient conditions for an optimal solution under weak concavity conditions.

Their method expands the state space to incorporate realizations of an end-of-period

lottery over the extreme points of flat regions of the continuation value function. This

approach permits optimal policies to be isolated in the convexifications of otherwise

non-concave problems. We leave integration of Cole and Kubler (2012)’s insights into

our framework for future work. In a continuous time setting Miao and Zhang (2015)

solve a limited commitment problem using a recursive dual approach. In this specific

setting, Miao and Zhang (2015) obtain a sharp characterization of a solution to the

problem. In contrast, we consider discrete time settings (where the mathematics is

quite different) and develop a method applicable to a range of problems.

Abreu et al. (1990) provide a recursive characterization of payoff sets in repeated

games. Applied to our setting, their formulation gives an alternative recursive primal

approach to our recursive dual one. Numerical implementations of this approach

have been provided by Chang (1998) and Judd et al. (2003). We discuss these in

online Appendix F. The technical complications involved in the application of primal

recursive methods to economics problems have prompted economists to adopt re-

cursive formulations that replace or supplement standard "primal" state variables

with "dual" ones. Examples include Kehoe and Perri (2002), Marimon and Quadrini

(2006), Acemoğlu et al. (2010), Chien et al. (2011) and Aiyagari et al. (2002). De-

spite their widespread use, thorough analysis of these methods is limited and their

application has often been ad hoc.

3For some problems, Marcet and Marimon (2011)’s recursive saddle Bellman operator is available
and resembles our dual Bellman. However, in these cases, our Bellman operator implements a fairly
straightforward inf-sup operation, whereas theirs involves a more difficult saddle point operation. In
other cases, the recursive saddle Bellman operator is not available or is available, but is quite different
from ours. In particular, several of the examples considered in this paper and its appendices either
cannot be handled by Marcet and Marimon (2011)’s formulation or would be handled differently.
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2 The Dual Recursive Method: An Example

This section uses a model of risk sharing with limited commitment and recursive

preferences to introduce the dual recursive method. Limited commitment mod-

els with standard expected utility preferences have found application in macroeco-

nomics, finance and development.4 The extension to recursive preferences illustrates

the flexibility of our method and is of independent interest. To maximize accessibility

for practitioners our tone is heuristic throughout this section. Formal derivations of

results in a more general setting are given in later sections.

2.1 A Limited Commitment Setting

Let i ∈ I = {1, . . . , nI} denote an agent and s ∈ S = {1, . . . , nS} a current shock. Let

st = (s1, . . . , st) ∈ S t be a shock history of length t = 1, 2, . . . , ∞. Shocks are assumed

to evolve according to a Markov process with transition matrix π. Let π(s′|s) denote

the probability of transitioning from shock s in the current period to s′ in the next

period and let πt(st|s0) denote the induced probability of shock history st conditional

on initial shock s0. Shocks impact the joint endowment of the agents and the default

utility option obtained by an agent on leaving the group. Let γ : S → R++ give the

endowment of the group after each shock and let w : S → R
nI , w(s) = {wi(s)}i∈I , give

agents’ default utility options.

Agents derive utility from consumption. Let A := ×i∈I [ai, ai] ⊂ R
nI
+ be a set of

possible per period consumption levels for the group. Agents’ choices at each history

are collected into a consumption plan: a = {at}∞
t=0, with a0 ∈ A and for t ≥ 1, at :

S t → A. The i-th component of at represents the consumption of the i-th agent at

date t and is denoted ai
t; the st-continuation of a consumption plan a is denoted

a|st = {at+τ(st, ·)}∞
τ=0. Denote the set of such consumption plans by A. The payoff to

the i-th agent from consumption plan a given initial shock s0 is given by the function

Vi(s0, a), where Vi satisfies the Kreps-Porteus/Epstein-Zin recursion:

Vi(st, a|st) =

[
(1− δ)[ai

t(s
t)]1−σ + δ

{
∑

s′∈S

[
Vi(s′, a|(st, s′))

]1−ρ
π(s′|s)

} 1−ρ
1−σ

] 1
1−σ

, (U)

4Economists have studied risk sharing without commitment amongst family members, partners
in businesses, villagers in developing economies, countries in sovereign debt markets and so on.
Thomas and Worrall (1988) and Kocherlakota (1996) provide theoretical analyses of economies with
two agents. Ligon et al. (2002) extend the analysis to a setting with finite (and more than two) agents
and provide an empirical application. Numerical analysis, however, has been limited to games played
by two or a continuum of agents. The latter reduce to one sided commitment problems at endogenous
market clearing shadow prices. We are not aware of any analysis of the risk sharing model with
limited commitment that uses preferences different from the standard expected utility.

6



with 0 < σ, 0 < ρ and 0 < δ < 1. Here 1/σ is the intertemporal elasticity of substi-

tution (IES), ρ the coefficient of relative risk aversion (CRRA) and δ the intertemporal

discount factor. The compactness of A ensures that V = {Vi}i∈I takes its values in

a bounded set V . The planner attaches Pareto weight λi ≥ 0 to the i-th agent’s date

zero payoff and evaluates consumption plans according to:

∑
i∈I

λiVi(s0, a). (O)

To be feasible a plan a must satisfy for all t ≥ 0, st ∈ S t, the no default constraints,

for each i ∈ I , Vi(st, a|st)− wi(st) ≥ 0, (D)

and the resource constraints,

γ(st)−∑
i∈I

ai
t(s

t) ≥ 0. (R)

The no default constraints ensure that each agent is better off remaining in the risk

sharing arrangement than taking her outside option. The planner must trade off her

desire to smooth an agent’s share of the endowment over time against the need to

respond to large outside option shocks. The latter require raising a given agent’s

consumption in order to satisfy the no default constraint. The planner’s problem is:

P∗0 = sup
a∈A

∑
i∈I

λiVi(s0, a) s.t. ∀t ≥ 0, st ∈ S t, (D) and (R). (PP)

2.2 The Dual Problem and the Recursive Dual Approach

Given a consumption plan a, define a corresponding promise plan v = {vt}∞
t=0 accord-

ing to v0 := V(s0, a) = {Vi(s0, a)}i∈I ∈ V , and for all t ≥ 1, st ∈ S t,

vt(st) := V(st, a|st) = {Vi(st, a|st)}i∈I ∈ V . (1)

Let p := (a, v) denote a plan for both consumption and utility promises. It is readily

verified that p is feasible if and only if it is consistent with the utility recursion (U)

and the no default (D) and resource (R) constraints, i.e. if ∀t ≥ 0, st ∈ S t, zv
t (p)(s

t) =

zv(vt(st), st, at(st), vt+1(st, ·)) = 0, where:

zv(v, s, a, v′) :=
{[

(1− δ)[ai(s)]1−σ + δ
{

∑
s′∈S

[
v′,i(s′)

]1−ρ
π(s′|s)

} 1−σ
1−ρ
] 1

1−σ − vi(s)
}

i∈I
,
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and zh
t (p)(s

t) = zh(st, at(st), vt+1(st, ·)) ≥ 0, where:

zh(s, a, v′) :=


{[

(1− δ)[ai]1−σ + δ
{

∑
s′∈S

[
v′,i(s′)

]1−ρ
π(s′|s)

} 1−σ
1−ρ
] 1

1−σ − wi(s)
}

i∈I

γ(s)−∑i∈I ai(s)

 .

The utility recursion can be interpreted as a law of motion for utility promises. Let

q := (m, y) be a multiplier plan, where m = {mt}∞
t=0 are non-negative multipliers on

the no default and resource constraints and y = {yt}∞
t=0 are non-negative multipli-

ers on the law of motion for promises, i.e. are costates for promises. Define the

Lagrangian:

L (p, q) :=λ · v0 +
∞

∑
t=0

∑
S t

δt{yt(st) · zv
t (p)(s

t) + mt(st) · zh
t (p)(s

t)}πt(st|s0).

The planner’s problem may then be re-expressed as the sup-inf problem:5

P∗0 := sup
p

inf
q

L (p, q). (SI)

Problem (SI) delivers both the optimal value P∗0 and the set of solutions to (PP). The

planner’s dual problem interchanges the inf and sup operations:

D∗0 := inf
q

sup
p

L (p, q). (IS)

Towards a recursive formulation of the dual problem (IS), define the dual value func-
tion D∗ for all possible weightings of initial utilities y0 ∈ RnI

+ :

D∗(s0, y0) := inf
q

sup
p

y0 · v0 +
∞

∑
t=0

∑
S t

δt{yt(st) · zv
t (p)(s

t) + mt(st) · zh
t (p)(s

t)}πt(st|s0). (2)

Note that: D∗0 = D∗(s0, λ). The recursive dual formulation of (IS) decomposes (2) into

sub-problems linked by shocks and costates on utility promises. Since the latter

weight agent payoffs it is natural to interpret them as endogenously evolving Pareto

weights. The recursive formulation is conveniently expressed in “time invariant”

5The domain of the Lagrangian is the product of a space of plans P (inclusive of promises) and
non-negative multipliers Q (inclusive of costates on promises). Precise definitions are given in later
sections. Note that although the law of motion for promises is an equality constraint, the mono-
tonicity of the problem in these promises permits the relaxation of this constraint to an inequality.
Consequently, the assumption that costates are non-negative is unrestrictive.
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notation. Let y ∈ RnI
+ be a costate for the current period and let q = (m, y′) be

a current dual choice, where m ∈ RnI+1
+ is a multiplier on the current constraints

zh(s, p) ≥ 0 and y′ ∈ RnI×nS
+ is a state-contingent vector of costates for the next period.

Let p = (a, v′) denote a current primal choice, where a ∈ A is current consumption and

v′ ∈ VnS is a state-contingent vector of continuation utility promises. The following

dynamic programming result obtains.6

Result 1 (Bellman). The continuation dual function D∗ satisfies the Bellman equation:

∀s, y) ∈ S ×RnI
+ , D∗(s, y) = inf

q
sup

p
J(s, y; q, p) + δ ∑

s′∈S
D∗
(
s′, y′(s′)

)
π(s′|s), (3)

where the current dual function J is given by:

J(s, y; q, p) := y ·
{[

(1− δ)[ai]1−σ + δ
{

∑
s′∈S

[
v′,i(s′)

]1−ρ
π(s′|s)

} 1−σ
1−ρ
] 1

1−σ
}

i∈I

+ m · zh(s, p)− δ ∑
s′∈S

y′(s′) · v′(s′)π(s′|s). (4)

The recursive dual problem (3) incorporates an inf-sup operation over current dual

and primal choices. Its objective is the sum of a current dual function J and a dis-

counted expected continuation dual function D∗. The current dual function J (defined

in (4)) describes the shadow value of delivering utility to the agents inclusive of the

benefit from relaxing the no default and resource constraints and net of the shadow

cost of future utility promises. Heuristically, if agent i’s outside option wi(s) is large,

the value of the element in zh(s, p) corresponding to this agent’s no default constraint

is reduced. The interaction of the inf and sup operations in (3) then lead to the choice

of a higher multiplier mi on the i-th agent’s no default constraint, higher continua-

tion promises for agent i, v′,i(·), and higher costate y′,i(·) choices. The latter transmit

the need for higher agent i utility to the future period. As noted, they function as

endogenously evolving Pareto weights.

Let G denote a candidate set of dual value functions containing D∗. The dual
Bellman operator B implied by (3) is given by for D ∈ G and each (s, y) ∈ S ×RnI

+ ,

B(D)(s, y) = inf
q

sup
p

J(s, y; q, p) + δ ∑
s′∈S

D(s′, y′(s′))π(s′|s). (5)

Thus, from (3), D∗ is a fixed point of a Bellman operator: D∗ = B(D∗). In addi-

tion, plans for consumption (and multipliers) that solve the dual problem (IS) may be

recovered directly from the policy correspondences associated with B(D∗). Finally,

6The proof is a special case of Proposition 3 in Section 4.
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the consumption plan consistent with these correspondences also attains the opti-

mum in the original optimization (PP).7 The recursive dual formulation has several

convenient features from the point of view of computation.

1. Contractivity. Subject to the existence of certain bounding functions that de-

fine an appropriate domain G for the dual Bellman operator B, this operator

is a contraction.8 B then has a unique fixed point, convergence of a value it-

eration from any D0 in G to D∗ is ensured and both error bounds and rates of

convergence are available.

2. The state space is simple and exogenously given. The value function D∗ is real-

valued at all (s, y) ∈ S ×RnI
+ .9 Moreover, D∗ is positively homogenous imply-

ing that it is fully defined on S × C+, where C+ is the intersection of the unit

sphere with RnI
+ . Thus, the dual value function is fully determined on a simple

compact set that can serve as the dual state space. This contrasts with the

situation under primal recursive approaches that use utility promises to keep

track of histories. Under these approaches the state space is an endogenously

determined set of promises.

3. The inf sup operation defining B may be reduced to an inf operation. In general,

additive separability in the current dual function with respect to the elements

of the primal choice p can be exploited to reduce the inner sup operation to a

collection of simpler, parallelizable sup operations. Sometimes these simpler

sup operations have analytical solutions that can be substituted into J avoiding

the need for any numerical maximization and reducing the application of B to

a collection of minimizations over dual variables only. In the current setting,

agent utilities may be (monotonically) transformed by applying the function ṽ :=
v1−σ

1−σ . The planner’s problem can then be re-expressed in terms of transformed

utilities. The law of motion for such utilities is:10

ṽi =
1− δ

1− σ
[ai]1−σ +

δ

1− σ

{
∑

s′∈S

[
(1− σ)ṽ′,i(s′)

] 1−ρ
1−σ

π(s′|s)
} 1−σ

1−ρ

. (6)

The (time) additive separability of (6) may be exploited to re-express the indirect

7These results follow from Propositions 4, 7 and 8 below.
8This result is proved in a general setting in Theorem 2. The proof specializes to the limited

commitment setting. In the online appendices bounding functions for this setting are derived.
9We prove this in a general setting in Proposition 2 below.

10To ensure that the transformed problem is concave the restriction ρ ≥ σ is needed. To ensure
that agent payoffs are bounded, if σ < 1, consumptions must be bounded below by an arbitrarily
small a > 0. In general no default constraints will ensure that this last restriction is non-binding.

10



current dual objective J∗(s, y; q) := supp∈A×VnS J(s, y; q, p) as:

J∗(s, y; q) = mnI+1γ(s)−∑
i∈I

miwi(s) + sup
A

∑
i∈I

{
1− δ

1− σ
(yi + mi)[ai]1−σ −mnI+1ai

}

+ sup
VnS

∑
i∈I

{
δ

1− σ
(yi + mi)

{
∑
S

[
(1− σ)ṽ′,i(s′)

] 1−ρ
1−σ

π(s′|s)
} 1−σ

1−ρ − δ ∑
S

y′,i(s′)ṽ′,i(s′)π(s′|s)
}

.

(7)

The component suprema in (7) are simple and easily calculated. When (s, y; q)
are such that the choices of a and v′ are interior, then analytic solutions are

available, the value of J∗ is:

J∗(s, y; q) =
σ

1− σ ∑
i∈I

[
(1− δ)(yi + mi)

] 1
σ
(mnI+1)

σ−1
σ −∑

i∈I
miwi(s) + mnI+1γ(s), (8)

and the co-states satisfy:

∀i ∈ I , yi + mi =

{
∑

s′∈S
{y′,i(s′)}

1−ρ
σ−ρ π(s′|s)

} σ−ρ
1−ρ

.

For these (s, y, q) values no explicit inner maximization is necessary.

2.3 Numerical Results

This section reports numerical results from a two agent version of the limited com-

mitment problem.11 Its goal is to highlight a few qualitative properties of the model.

A complete quantitative analysis is deferred to later work. Given Result 1, approxi-

mations to D∗ and the associated policy functions are obtained via value iteration.12

To illustrate qualitative properties of the model, the discount factor is set to 0.8,

σ to 1.5 and ρ to 5. Three shocks are assumed (in this two agent economy). In shock

state s, agent s’s outside option is set equal to the utility obtained from a constant

endowment stream equal to a high 52% of the aggregate endowment, while the other

agent has an outside utility option equal to the utility from a constant endowment

stream equal to a low 25% of the aggregate endowment. In the the third shock state

both outside options are set to the low value. The aggregate endowment is held

constant at 1.2 (i.e., γ(s) = 1.2 ∀s). The Markov transition matrix takes values of 0.9

11Implications of the policy functions for the dynamics of the optimal allocation are most easily
deduced in the two agent case. Results from a three agent version are given in online Appendix B.

12Details of the numerical implementation, including details of the approximation of the value
functions, are given in online Appendix B.
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on its leading diagonal; off diagonal elements are set to 0.05.
Figure 1 plots policies as a function of the normalized costate (“Pareto weight”) for

agent 1 ψ = y1

(y1+y2)
. Consider panel a. This shows both agents’ no default multipliers

mi in state 1 (in which agent 1’s outside option is high and agent 2’s low). There are

three regions. In the first, agent 1’s costate is relatively low (below 0.56) and only

agent 1’s no default constraint binds. Agent 1’s multiplier (the solid line) is positive,

while agent 2’s (the dashed line) is zero. In the second region, agent 1’s costate is

intermediate (between 0.56 and 0.81), neither agents’ no default constraint binds

and both agents’ multipliers are zero. In the third region, agent 1’s costate is high

(above 0.81) and only agent 2’s no default constraint binds. In this region agent

1’s multiplier is zero, while agent 2’s is positive. Panel b shows agent consumption

for s = 1; panel c shows the continuation costate if the economy remains in state

s = 1. Each of these policy functions has a floor and ceiling structure: constant in

regions 1 and 3 when a no default constraint binds and for agent 1 (resp. agent

2) increasing (resp. decreasing) otherwise. In region 1, agent 1’s future costate is

raised to 0.56. This translates into the future utility reward needed to maintain

agent 1 in the risk sharing arrangement. In region 3, agent 1’s costate is reduced

to 0.81. This translates into the future utility reward needed to maintain agent 2 in

the risk sharing arrangement. In region 2 (with no binding default constraint), agent

1’s future costate is slightly reduced, while agent 2’s is slightly raised by an equal

amount. Hence, if shock s = 1 persists, agent 1’s costate is gradually reduced to

0.56, while agent 2’s is raised. This feature of the optimal risk sharing arrangement

stems from the assumption that ρ is greater than σ, which implies that agents have

a preference for the early resolution of risk and a dislike of cross-state variation

in utility. The presence of a no default constraint for agent 2 impedes full utility

smoothing across states and ensures that there is always a chance that in the future

agent 1’s utility decreases. Consequently, absent binding no default constraints on

agent 1, it is profitable to tilt agent 1’s utility profile towards the present and away

from future shock state s′ = 1 and, hence, reduce future period utility dispersion.

Agent 1’s normalized costate in future state s′ = 1 is correspondingly reduced. This

feature is absent from limited commitment models under the standard assumption

of expected utility13 and reversed if ρ < σ. Panel d shows the response of costates to

a repeated s = 3 shock. In the s = 3 state both agents’ outside options are low. As in

panel c, binding no default constraints introduce floors and ceilings into the updated

costate function (although now, the floor for agent 1 is at a lower level). Between this

13See Alvarez and Jermann (2001) who find that policy functions for continuation utilities lie on the
45 degree line when no default constraints do not bind and agents have expected utility preferences.
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Figure 1: In panels a-d, solid lines give agent 1’s policy, dashed lines agent 2’s policy,
the 45 degree line is indicated by dots. Policies are given as functions of agent 1’s
normalized costate. Panel a shows multipliers on the no default constraints if s = 1;
panel b agent consumption in s = 1; panels c and d the costates associated with
remaining in state 1 and state 3 respectively. Panels e and f show a 250 period
simulation. Shocks are given in the left panel, agent 1’s consumption in the right.
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floor and ceiling, agent 1’s updated costate function crosses the 45 degree line and

has a slope less than one. Again, absent binding no default constraints, recursive

preferences introduce additional deterministic dynamics which, in this case, create

a force for equality and equal division of the endowment. Panels e and f report a

simulation of the optimal consumption policy. Initially, agent 1’s costate is such

that if shocks s = 1 and s = 3 are drawn then neither agents’ no default constraint

binds. Consistent with the properties of the policy functions described above, agent

1’s consumption steadily falls towards 0.65 and remains there. After the draw of the

first s = 2 shock, agent 2’s no default constraint binds and agent 1’s consumption is

reduced to 0.55. Thereafter, agent 1’s consumption jumps on entering state s = 1 or

2, while drifting towards 0.6 (an equal sharing of the aggregate endowment) in s = 3.
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0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

T
h
o
m
p
s
o
n
m
e
t
r
i
c

I t er a t i o n

(b) Thompson Metric

Figure 2: Value Function Convergence. Panel a shows the calculated value function at
iterations 1 (solid line), 10 (dotted line) and 25 (dash dot line) at D(ψ, 1− ψ). Bounding
value functions D and D are shown with circles. Panel b reports Thompson metric
distances between iterates.

Figure 2 shows successive value functions calculated during the value function

iteration. Results for other parameter values and for a three agent economy are

reported in online Appendix B.

2.4 Primal Recursive Approach

We conclude this section by describing an alternative (primal) recursive approach to

solving the limited commitment problem. Define Ĩ := {2, 3, . . . , nI} to exclude agent

1’s label and let Ṽ := ×i∈Ĩ [a
i, ai] be a set of possible promises for agents in Ĩ. For

each s ∈ S, let X̃ ∗(s) be the set of feasible initial payoffs for these agents (i.e. the set

14



of payoffs for agents in Ĩ that are initial elements of a feasible promise plan given

initial shock s). Let P̃∗(s0, ṽ0) be the best possible feasible payoff to agent 1 given

initial shock s0 and feasible utility promise ṽ0 to the other agents. Problem (PP) can

then be restated as:14

P∗0 = sup
ṽ0∈X̃ ∗(s0)

λ1P̃∗(s0, ṽ0) + ∑̃
I

λiṽi
0. (9)

An optimal action and promise plan can be obtained by repeatedly solving:

(a∗t (s
t), ṽ∗t+1(s

t, ·)) = argmax
(a,ṽ′)

[
(1− δ)[a1]1−σ + δ

{
∑

s′∈S

[
P̃∗(ṽ(s′))

]1−ρ
π(s′|st)

} 1−σ
1−ρ
] 1

1−σ
(10)

s.t. γ(st)−∑
i∈I

ai ≥ 0; ∀s′, ṽ′(s′) ∈ X̃ ∗(s′);

∀i ∈ Ĩ , ṽi,∗
t (st) =

[
(1− δ)[ai]1−σ + δ

{
∑

s′∈S
[ṽ′,i(s′)]1−ρπ(s′|st)

} 1−σ
1−ρ
] 1

1−σ ≥ wi(st);

and
[
(1− δ)[a1]1−σ + δ

{
∑

s′∈S

[
P̃∗(ṽ′(s′))

]1−ρ
π(s′|st)

} 1−σ
1−ρ
] 1

1−σ ≥ w1(st),

starting from (s0, ṽ∗0). However, solution of (9) and (10) requires prior recovery of

(X̃ ∗, P̃∗). One approach is to formulate (X̃ ∗, P̃∗) as the fixed point of a monotone (but

not contractive) operator on a space of candidate value functions P and state space

correspondences X . We describe this approach in detail in online Appendix B.4.

This approach suggests an algorithm for computing (X̃ ∗, P̃∗) that relies on repeated

application of the operator to a bounding pair (X̃0, P̃0) with X̃0 ⊃ X̃ ∗ and P̃0 ≥ P∗. The

algorithm is practical if there are two agents (nI = 2), since then X̃ ∗ is simply a fam-

ily of intervals indexed by the shock. Thus, the iteration occurs on a space of value

functions and end points for the intervals. For problems with nI > 2, the iteration

involves higher dimensional optimizations and approximation, repeated calculation

and updating of the state spaces in X̃n(s) ⊂ RnI−1, s = 1, . . . , nS. In addition the opera-

tors used to update value functions and domains in these iterations, while monotone,

are not contractions. Consequently, error bounds and convergence criteria are not

available.15

14This approach is suggested by a formulation of Kocherlakota (1996), who considered the case
with two agents (nI = 2), i.i.d. shocks and expected utility preferences. See also Chapter 20 (Sections
20.7-20.10) in Ljungqvist and Sargent (2012) and the analysis of Alvarez and Jermann (2001). A
related and more widely applicable approach is discussed in Appendix F.

15A recent promising approach is suggested by Cai et al. (2016) who, in a different setting, re-
lax the incentive constraints with penalty functions and use adaptive splines to prevent penalties
proliferating.
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3 The Decision Maker’s Problem

This section describes an abstract recursive choice problem that can be specialized to

give many problems considered in the literature including the limited commitment

problem of Section 2. Further examples, including optimal monetary policy and

dynamic insurance with private information, are given in online Appendix E. Later

sections formally develop the dual recursive method in this context.

Shocks and Action Plans. The process for shocks is denoted and defined as be-

fore. Transition matrix π is assumed to be strictly positively valued: for all s, s′ ∈ S,

π(s′|s) > 0.16 A nonempty set A ⊂ RnA contains actions potentially available to a

decision-maker at each date. The notation for an action plan remains: a = {at}∞
t=0,

with a0 ∈ A and, ∀t ≥ 1, at : S t → A. Let A = A∞ denote the set of action plans and

a|st the st-continuation of action plan a.

States and Constraints. Let V ⊂ RnV be a bounded set of “forward-looking” states

similar to the utility promises of the last section and let v = {vt}∞
t=0, with v0 ∈ V and

for t ≥ 1, vt : St → V , be a plan for such states. To accommodate (amongst other

things) agent utility promises consistent with non-expected utility, we assume that

the law of motion for forward-looking states is constructed from a pair of functions

Wv : S × A ×RnV → R
nV and Mv : S × VnS → R

nV . Plans a and v satisfy the law of

motion if for all t ≥ 0 and st ∈ S t,

vt(st) = Wv[st, at(st), Mv[st, vt+1(st, ·)]]. (11)

Further assume that for each (s, a) ∈ S ×A,17

Wv[s, a, Mv[s, ·]] : VnS → V . (12)

As in Section 2, forward-looking state variables often describe the payoffs of agents

facing dynamic incentive constraints (with the decision-maker a planner maximiz-

ing a weighted sum of agent payoffs). Wv then corresponds to a “time aggrega-

16The assumption of a finite number of shocks is maintained. This restriction and that of a positive
transition avoid technical complications and streamline our presentation. Neither are essential for
our main results.

17Many models incorporate stronger conditions that ensure a unique plan v can be associated
with every a. Most commonly, Wv is assumed to be Lipschitz continuous with respect to its third
argument and Mv is assumed to be positively homogenous with respect to its second argument. If, in
addition, Wv is bounded with respect to a ∈ A, then (12) holds and any plan a defines a unique plan
v. Marinacci and Montrucchio (2010) obtain a related result by assuming concavity of aggregators.
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tor” that gives the current state as a function of current actions and a certainty

equivalent of future states, while Mv is a “stochastic aggregator” that generates

the certainty equivalent. For example, if the problem involves a single agent with

time additive-expected utility preferences, then Wv[s, a, µ] = (1 − δ)u(s, a) + δµ and

Mv[s, v′] = ∑s′∈S v′(s′)π(s′|s).
We enrich the environment of the previous section by allowing for “backward-

looking” states that have an initial condition and that are determined prior to the

realization of the current shock. This enables us to accommodate capital into our

framework. Given a bounded set K ⊂ RnK , a plan for backward-looking states (with

initial condition k̄) is a sequence: k = {kt}∞
t=0, with k0 = k̄ and for t ≥ 1, kt : St → K. Let

Wk : K× S ×A → R
nK define a law of motion for backward-looking states. An action

plan a and a plan for backward-looking states k (with initial condition k̄) satisfy this

law of motion if for all t ≥ 0 and st+1 ∈ S t+1,18

kt+1(st+1) = Wk[kt(st), st, at(st)]. (13)

The image of Wk, Wk[K,S ,A], is assumed to be a bounded set.

Additional constraints are constructed from actions and state variables according

to for all t ≥ 0 and st ∈ S t,

H[kt(st), st, at(st), {vt+1(st, s′)}s′∈S ] ≥ 0, (14)

where H : K × S × A × VnS → R
nH is bounded. In applications these inequalities

capture incentive, resource and, perhaps, other constraints. Define K∗(s) to be the

set of k̄ such that (s, k̄) is the initial condition for some triple of plans (k, a, v) satisfying

(13), (11) and (14).

Assumption 1. For all s ∈ S, K∗(s) 6= ∅.

Remark 1. Some problems such as those in Section 2 may lack backward-looking

states. In these cases backward-looking states are dropped from H and no law

of motion for backward looking states is associated with the problem. Simplified

versions of the arguments that follow go through.

Decision maker’s objective The decision-maker maximizes a function of the initial

values of the forward-looking states: F : S × V → R. Typical examples include situ-

18The law of motion (13) constrains kt+1 to be st-measurable. In our development of the dual
recursive approach, it will be convenient to have this restriction explicit in the constraints, rather
than implicit in the definition.
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ations, as in Section 2, in which a planner maximizes a weighted sum of incentive

constrained agent payoffs and F(s, v0) = λ · v0, with λ a vector of Pareto weights.

Problem Statement. Define a primal plan p to be an action plan a augmented with

a pair of plans for backward and forward-looking states k = {kt}∞
t=0 and v = {vt}∞

t=0.

The set of primal plans is given by:

P =

p = (a, k, v)

∣∣∣∣∣∣∣
a0 ∈ A, ∀t ≥ 1, at : S t → A,
k0 ∈ K, ∀t ≥ 1, kt : S t → K,
v0 ∈ V , ∀t ≥ 1, vt : S t → V

 .

We consider decision-maker problems of (or that can be expressed in) the form:

P∗0 := sup F[s0, v0] (P)

subject to p ∈ P, k0 = k̄ and ∀t, st,

kt+1(st+1) =Wk[kt(st), st, at(st)], (15)

vt(st) =Wv[st, at(st), Mv[st, vt+1(st, ·)]], (16)

and H[kt(st), st, at(st), vt+1(st, ·)] ≥ 0. (17)

The limited commitment problem from Section 2 can be accommodated in this frame-

work (by removing the backward-looking states and specializing the definitions of F,

Wv and Mv). Other examples are described in online Appendix E.

Remark 2. Classical problems in economic dynamics (e.g. those considered in Stokey

et al. (1989)) are accommodated by the framework described above. In these the

decision-maker’s payoff is the only “forward-looking state variable”, i.e. F(s, v0) =

v0 ∈ R, and this state variable does not appear in the function H. In addition, for all

(s, k) ∈ S ×K there is an (a, k′) ∈ A×K such that k′ = Wk[k, s, a] and H[k, s, a] ≥ 0. In

such cases, repeated substitution of the law of motion of forward-looking variables

into the objective eliminates these variables completely and standard dynamic pro-

gramming arguments can be applied: the decision maker’s optimal value function

(on the exogenously given domain S ×K) satisfies a typical Bellman equation.

Assumption 2 provides sufficient conditions for the existence of an optimal plan.

Assumption 2. (Continuity and Compactness) For all s ∈ S, Wv[s, ·, ·], Mv[s, ·] and
Wk[·, s, ·] are continuous, and H[·, s, ·, ·] and F[s, ·] are upper semicontinuous. In ad-
dition, A,K and V are compact.

18



Proposition 1. Let Assumptions 1 and 2 hold and let k̄ belong to K∗(s0) in (P). Then
P∗0 > −∞ and an optimal solution p∗ to (P) exists.

Proof. See Appendix A.

4 Recursive Dual

This section begins by defining a Lagrangian for (P). The Lagrangian involves the

product of an infinite number of constraint values and multipliers. To compress

notation, constraint values are collected into an object called a constraint process
and multipliers into an object called a dual plan. Definitions of these follow. The

recursive dual approach is developed.

4.1 Lagrangians and Dual Problems

Notation for the Lagrangian. A constraint process evaluates constraint functions

inclusive of laws of motion in (15), (16), (17) at a given primal plan. For each primal

plan p, define zk
0(p) := k̄− k0 and, for all t ≥ 1 and st ∈ S t, define:

zk
t (p)(s

t) := Wk[kt−1(st−1), st−1, at−1(st−1)]− kt(st).

Then zk(p) = {zk
t (p)}∞

t=0 gives the values of the backward-looking law of motion con-

straints (inclusive of the initial condition) at p. Similarly, define for all t ≥ 0, st ∈ S t,

zv
t (p)(s

t) := Wv[st, at(st), Mv[st, vt+1(st, ·)]]− vt(st)

and zh
t (p)(s

t) := H[kt(st), st, at(st), vt+1(st, ·)]. Then zv(p) = {zv
t (p)}∞

t=0 and zh(p) =

{zh
t (p)}∞

t=0 give the values of the forward-looking law of motion and H constraints at

p. These terms are collected into the constraint process z(p) = {zk(p), zv(p), zh(p)}.
The boundedness assumptions placed on primitives and the countable number of

constraints ensure that for all p ∈ P ⊂ `∞, z(p) ∈ `∞, where `∞ is the set of sup-

norm bounded sequences: {{xn}∞
n=1|xn ∈ RnK+nV+nH , supn∈N ‖xn‖E < ∞}, with ‖ · ‖E

the relevant Euclidean norm.

A dual plan contains summable multipliers for the various constraints facing the

decision-maker. Let yk = {yk
t}∞

t=0, with yk
t : S t → R

nK , denote multipliers (costates) for

the backward-looking law of motion and yv = {yv
t }∞

t=0, with yv
t : S t → R

nV , multipliers

(costates) for the forward-looking law of motion. Let m = {mt}∞
t=0, with mt : S t → R

nH
+ ,

denote multipliers for the H-constraints. Collect these various multipliers into a dual
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plan q = {m, yk, yv} and define the set of dual plans:

Q =

{
q

∣∣∣∣∣ ∞

∑
t=0

∑
S t

δt{‖mt(st)‖E + ‖yk
t (s

t)‖E + ‖yv
t (s

t)‖E}πt(st|s0) < ∞

}
,

with δ ∈ (0, 1] a normalizing discount.19 Define the Lagrangian:

L (p, q) =F[s0, v0] + 〈q, z(p)〉,

where:

〈q, z(p)〉 =
∞

∑
t=0

∑
S t

δt{mt(st) · zh
t (p)(s

t) + yk
t (s

t) · zk
t (p)(s

t) + yv
t (s

t) · zv
t (p)(s

t)}πt(st|s0)

is a weighted sum of constraint process terms. Since for each p ∈ P, z(p) ∈ `∞, it

follows that for each q ∈ Q, 〈q, z(p)〉 ∈ R.

Primal and Dual Problems. The decision-maker’s primal problem (P) may be re-

expressed as a sup-inf problem:

P∗0 := sup
p∈P

inf
q∈Q

L (p, q). (SI)

Its dual interchanges the inf and sup operations:

D∗0 := inf
q∈Q

sup
p∈P

L (p, q). (IS)

Discussion of the relation between these problems is deferred until Section 6. Instead

in the remainder of this section a recursive formulation of (IS) is pursued.

4.2 Recursive Dual

The recursive dual approach decomposes (IS) into sub-problems linked by costates.

Notation for the Recursive Dual. Following the notation of Section 2, let y =

(yk, yv) ∈ Y := R
nK+nV denote a pair of costate variables on current laws of motion.

Let q = (m, y′) be a current dual choice with m ∈ RnH
+ a current H-constraint multiplier

19In most economic problems the aggregator over forward states incorporates discounting over
time and a certainty equivalent operator over future states. For these problems it is convenient to
normalize multipliers by the discount and by the probability distribution. We do so.
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and y′ = (yk′, yv′) ∈ YnS a tuple of continuation costates for the next period’s laws of

motion. Denote the set of current dual choices by Q = R
nH
+ × YnS. Let p = (a, k, v′)

be a current primal choice with a ∈ A a current action, k ∈ K a current backwards-

looking state and v′ ∈ VnS a tuple of continuation forward-looking states, one for each

future shock s′. Let P := A×K× VnS denote the set of current primal choices.

Extracting the first three terms from 〈q, z(p)〉, the Lagrangian in (IS) may be ex-

panded as:

D∗0 = inf
q∈Q

sup
p∈P

F[s0, v0]− yv
0 · {v0 −Wv[s0, a0, Mv[s0, v1(·)]]}+ yk

0 · (k̄− k0)

+ m0 · H[k0, s0, a0, v1(·)] + δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s0), (18)

with 〈q, z(p)|s1〉 the continuation of 〈q, z(p)〉 from period 1 after the realization of s1,

i.e. 〈q, z(p)〉 = m0 · zh
0(p) + yk

0 · zk
0(p) + yv

0 · zv
0(p) + δ ∑s1∈S〈q, z(p)|s1〉π(s1|s0).

Central to subsequent analysis is the following continuation dual problem which

fixes the initial costates y0 and removes the term F[s0, v0] − yv
0 · v + yk · k̄ from the

objective in (18):

D∗(s0, y0) = inf
Q(y0)

sup
P(v0)

−yk
0 · k0 + yv

0 ·Wv[s0, a0, Mv[s0, v1(·)]] (19)

+ m0 · H[k0, s0, a0, v1(·)] + δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s0).

In (19), Q(y0) omits y0 = (yk
0, yv

0) from Q and P(v0) omits v0 from P. We call D∗ the

dual value function. In general, “inf-sup” operations on arbitrary functions can yield

values of −∞ or +∞. We now show that, in fact, D∗ is typically real-valued. This has

implications for the dual (co)state space which is described later in the section.

Proposition 2. D∗(s, y) < ∞ for all (s, y) ∈ S × Y . If, in addition, Assumption 1 holds,
then D∗ : S × Y → R.

Proof. See Appendix A.

Collecting terms in (19) involving the initial current primal choice p0 = (k0, a0, v1)

gives the current dual payoff J:

J(s0, y0; q0, p0) = −yk
0 · k0 + yv

0 ·Wv[s0, a0, Mv[s0, v1(·)]] + m0 · H[k0, s0, a0, v1(·)]
− δ ∑

s1∈S
yv

1(s1) · v1(s1)π(s1|s0) + δ ∑
s1∈S

yk
1(s1)π(s1|s0) ·Wk[k0, s0, a0], (20)

where the terms in the second line of (20) are extracted from δ ∑S〈q, z(p)|s1〉π(s1|s0)
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in (19). Proposition 3 relates D∗0 , D∗ and J and gives the key dynamic programming

result for dual value functions.

Proposition 3 (Value functions). The value D∗0 satisfies:

D∗0 = inf
y∈Y

sup
v∈V

F[s0, v]− yv · v + yk · k̄ + D∗(s0, yk, yv). (21)

Moreover, D∗ satisfies the functional equation:

D∗(s, y) = inf
q∈Q

sup
p∈P

J(s, y; q, p) + δ ∑
s′∈S

D∗
(
s′, y′(s′)

)
π(s′|s), (22)

where y′(s′) = (yk′, yv′)(s′) and

J(s, y; q, p) =− yk · k + yv ·Wv[s, a, Mv[s, v′]] + m · H[k, s, a, v′]

− δ ∑
s′∈S

yv′(s′) · v′(s′)π(s′|s) + δ ∑
s′∈S

yk′(s′)π(s′|s) ·Wk[k, s, a]. (23)

Proof. See Appendix A.

The first stage problem (21) generates the initial costates; (22) then gives the dual

Bellman equation. Moving from the dual problem (IS) to the recursive dual problems

(21) and (22) involves interchanging an infimum operation over future dual variables

with a supremum operation over current primal variables. The additive separability

of the Lagrangian in these variables ensures that this interchange of operations does

not alter the optimal value. See the proof of Proposition 3 for details.

Remark 3. Our recursive dual formulation relies entirely on dual costate variables yt

to summarize the past. Note that this implies that the supremum component of the

inf-sup operations in (22) is static, i.e. is of the form J∗(s, y; q) := supP J(s, y; q, p), and

is embedded into a rather standard looking Bellman equation:

D∗(s, y) = inf
q∈Q

J∗(s, y; q) + δ ∑
s′∈S

D∗
(
s′, y′(s′)

)
π(s′|s). (24)

Remark 4. The primal "state" variables k and v continue to appear in the recursive

dual problem. However, these variables are no longer passed between sub-problems

and in this sense no longer function as state variables. They are used to “penalize”

choices of continuation costates and, hence, align them with current costates and

multipliers. Notice that in the recursive dual framework k and v are restricted to the

exogenous set K× VnS and not the endogenous X ∗.
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Definition 1. Let F denote the set of functions D : S × Y → R ∪ {−∞}. Define the
dual Bellman operator B : F → F , ∀(s, y) ∈ S × Y ,

B(D)(s, y) = inf
q∈Q

sup
p∈P

J(s, y; q, p) + δ ∑
s′∈S

D
(
s′, y′(s′)

)
π(s′|s).

Theorem 1 recasts D∗ as a fixed point of B. It is a corollary of Proposition 3.

Theorem 1. D∗ = B(D∗).

The following lemma is a straightforward consequence of the definition of B.

Lemma 1 (Monotonicity). If D1, D2 ∈ F and for all (s, y) ∈ S × Y , D1(s, y) ≥ D2(s, y),
then for all (s, y) ∈ S × Y , B(D1)(s, y) ≥ B(D2)(s, y).

State Spaces. Theorem 1 provides a dynamic programming formulation of the dual

of the decision-maker’s problem. It locates this dynamic programming problem on a

state space of dual costate variables. Proposition 2 below shows that in the dual set-

ting (with bounded primal variables and a non-empty feasibility set), the dual value

function D∗ is finite-valued on all of S × Y (= S ×RnK+nV ). Thus, the effective dual

state space on which value functions are finite is immediately determined. In addi-

tion, as shown in Lemma 2 below, D∗(s, ·) is positively homogenous of degree one.

This has the advantage that once the dual value functions D∗(s, ·) are determined

on the unit sphere C = {y ∈ Y | ‖y‖ = 1}, then they are determined everywhere

via positive scaling. From a practical point of view, the state space may be identi-

fied with S × C. In some problems further refinement of the state space is natural

and convenient. For example, in Section 2 and in many Paretian problems, it is

natural to consider only non-negative initial values for Pareto weights. It is then

usual for costates to remain non-negative and for the state space to be correspond-

ingly restricted. Thus, in Section 2, the state space was set equal to S × C+ with

C+ = {y ∈ RnK+nV
+ | ‖y‖E = 1}. Approximation of value functions on C (or C+) is dis-

cussed in online Appendix A. However, the homogeneity of candidate value functions

combined with the unboundedness of the current dual set Q disrupts the conven-

tional approach to proving that B is a contraction. This is addressed in Section 5.

Calculations The dual Bellman operator involves an outer minimization over dual

variables q ∈ Q = R
nH
+ × YnS and an inner maximization over primal variables p ∈

P = A × K × VnS parameterized by q. These operations involve only simple con-

straints defined by product sets (i.e. p ∈ P and q ∈ Q). Moreover, any additive

separability in the functions Wk, Wv and H can be exploited to decompose the inner
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maximization into component maximizations that can be run in parallel. In some

cases some or all of these component maximizations are sufficiently simple that they

can be solved analytically. Thus, less and sometimes no inner step numerical max-

imization is needed. Additive separability may be across different pairs of actions

and forward-looking states (ai, v′,i(·)), i ∈ I, (for example corresponding to the ac-

tions and continuation payoffs of different agents); it may be across actions a and

forward-looking states v′(·) (corresponding to time additive separability in payoffs) or

across the components of v′(s′), s′ ∈ S (corresponding to state additive separability

in payoffs, i.e. expected utility). There is also often additive separability between the

backward-looking state and other actions. The examples in Section 2 and online Ap-

pendix E and the quasilinear set up discussed below in Subsection 4.3 have different

degrees of separability.

Policies. For arbitrary sets C and E and function r : E× C → R ∪ {−∞, ∞}, define

the argminmax operation:

argminmax
C|E

r(e, c) =

{
(c∗, e∗)

∣∣∣∣∣c∗ ∈ argmin
c∈C

sup
e∈E

r(e, c) and e∗ ∈ argmax
e∈E

r(e, c∗)

}
.

The solution to the dual (IS) is given by:

Λ := argminmax
Q|P

L (p, q).

On the other hand, the solution to the recursive dual is described by a policy set:

G0 = argminmax
Y|V

F[s0, v]− yv · v + yk · k̄ + D∗(s0, yk, yv)

and a policy correspondence

G(s, y) = argminmax
Q|P

J(s, y; m, y′, p) + δ ∑
s′∈S

D∗
(
s′, y′(s′)

)
π(s′|s).

The next proposition relates policies from the dual and the recursive dual.

Proposition 4 (Policies). (q∗, p∗) ∈ Λ only if (y∗0 , v∗0) ∈ G0 and for each t ≥ 1, st ∈ S t,
(m∗t (s

t), y∗t+1(s
t), p∗t (s

t)) ∈ G(st, y∗t (s
t)). Conversely, (q∗, p∗) ∈ Λ if (y∗0 , v∗0) ∈ G0, for each

t ≥ 1, st ∈ S t, (m∗t (s
t), y∗t+1(s

t), p∗t (s
t)) ∈ G(st, y∗t (s

t)) and:

lim inf
T→∞

δT+1 ∑
ST+1

D∗(sT+1, y∗T+1(s
T+1))πT+1(sT+1|s0) ≥ 0. (T)
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Proof. Appendix A.

4.3 The Quasilinear Case

Many problems have constraint functions that are quasilinear in k and v, i.e.

Wk[k, s, a] = Bk(s)k− c(s, a),

Wv[s, a, Mv[s, v′]] = (1− δ)u(s, a) + δ ∑
s′∈S

Bv(s, s′)v′(s′)π(s′|s),

and H[k, s, a, v′] = Nk(s)k + h(s, a) + δ ∑
s′∈S

Nv(s, s′)v′(s′)π(s′|s),

for δ ∈ [0, 1), matrices Bk(s), Nk(s), Bv(s, s′) and Nv(s, s′), and functions c : S × A →
R

nK , u : S ×A → R
nI and h : S ×A → R

nH . Examples include the limited commitment

problem discussed in Section 2 specialized to the case of expected utility preferences

(i.e., ρ = σ) and all of the problems considered in Messner et al. (2012) (each of which

abstracts from backward-looking state variables). A Lagrangian of the form L (in-

clusive of laws of motion for states) may be associated with such problems and their

recursive duals derived as in Proposition 3. However, directly exploiting quasilin-

ear structure prior to the formulation of the Lagrangian leads to simplification. In

particular, when the matrices Br, r ∈ {k, v}, satisfy appropriate bounding conditions,

the primal states kt and vt can be substituted out of the problem using their laws of

motion. This leads to a modified Lagrangian and a simplified dual Bellman operator.

In models without backward-looking primal states this operator is:

B(D)(s, y) = inf
m∈RH

+

sup
a∈A

J(s, y; m, a) + δ ∑
s′∈S

D(s′, φ(s, y, m, s′))π(s′|s),

with φ(s, y, m, s′) = y · Bv(s, s′) + m · Nv(s, s′) and J(s, y; m, a) = y · u(s, a) + m · h(s, a). Note

that here continuation costates (for forward-looking primal states) are determined as

a function of past costates and multipliers on current states. The dual value function

D∗ is a fixed point of this (modified) dual Bellman (by arguments essentially identical

to those in Proposition 3). A detailed treatment of the quasilinear case is given in

online Appendix D.

5 Contraction

This section establishes sufficient conditions for B to be contractive on an appro-

priate space of functions. The combination of an unbounded dual value function
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and an unbounded dual constraint set is an obstacle to conventional approaches to

proving contractivity.20 Following Marinacci and Montrucchio (2010) and especially

Rinćon-Zapatero and Rodríguez-Palmero (2003), we pursue a different approach.

The idea is to restrict attention to spaces of scaleable real-valued (in practice positive

real-valued) functions such that for each function pair g1 and g2 in the space there

is a scaling factor b ∈ R++ satisfying bg1 ≥ g2 and bg2 ≥ g1. The distance between a

scaleable function pair (g1, g2) is identified with the log of the smallest scaling factor.

Scaleability of a set of candidate value functions is ensured via a renormalization in-

volving bounding value functions. Since the optimal dual value function is sub-linear

(i.e. convex and positively homogenous) in costates, attention may be restricted to

candidate value functions that are sub-linear. Consequently, it is sufficient to have

scaleability on the unit sphere in the costate space (i.e. on a compact set) and to

define distance measures accordingly. The interval of sub-linear functions between

the bounding value functions is a complete metric space. If B is a self-map on this

interval, then contractivity follows from monotonicity and concavity of B, (plus the

properties of the bounding value functions and the homogeneity of candidate value

functions). Thus, Blackwell’s Theorem is avoided.

The formal definition of sub-linearity follows.

Definition 2. A function D : Y → R ∪ {−∞} is sub-linear if (i) D(·) is convex and
(ii) D(·) is positively homogeneous of degree 1. A function D : S × Y → R ∪ {−∞} is
sub-linear if each D(s, ·) is sub-linear.

Lemma 2 indicates the importance of the previous definition for our setting.

Lemma 2. (i) D∗ is sub-linear. (ii) If D : S × Y → R ∪ {−∞} is sub-linear, then B(D) is
sub-linear.

Proof. See Appendix B.

The key assumption ensuring contractivity is the following. As before, let C = {y ∈
Y | ‖y‖E = 1} denote the unit sphere in RnK+nV .

Assumption 3. There is a triple of bounding functions D : S × Y → R, D : S × Y → R

and D : S × Y → R and a number ε > 0 such that for all s, D(s, ·) is continuous and
positively homogeneous of degree 1, D(s, ·) is continuous, and for all (s, y) ∈ S × C, (i)
D(s, y) + ε ≤ D(s, y) ≤ D(s, y), (ii) D(s, y) ≤ B(D)(s, y) and B(D)(s, y) ≤ D(s, y) and (iii)
D(s, y) + ε < B(D)(s, y).

20When the optimal value function is unbounded and the constraint correspondence compact-
valued it is often possible to prove contractivity on a space of weight norm bounded functions. In the
dual setting, this approach is disrupted by the unboundedness of the constraint correspondence (for
multipliers and costates).
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We discuss the selection of bounding functions in the context of specific examples

in online-Appendices E and B.2. However, if D satisfies Assumption 3 (iii) and D ≤
D∗ ≤ D, then, from the monotonicity of B and Theorem 1, for all (s, y) ∈ S × C,

D(s, y) + ε < B(D)(s, y) ≤ B(B(D))(s, y) ≤ B(B(D∗))(s, y) = D∗(s, y) ≤ D(s, y),

and D may be set equal to B(D). Given a triple of functions D, D and D satisfying

Assumption 3, let:

G = {D : S × Y → R|D is sub-linear and D ≤ D ≤ D}.

Define the "Thompson-like" metric d : G × G → R+ according to for each D1, D2 ∈ G :

d(D1, D2) = sup
S×C

∣∣∣∣∣ln
(

D1(s, y)− D(s, y)
D(s, y)− D(s, y)

)
− ln

(
D2(s, y)− D(s, y)
D(s, y)− D(s, y)

)∣∣∣∣∣
≤ sup
S×C

ln

(
D(s, y)− D(s, y)
D(s, y)− D(s, y)

)
≤ sup
S×C

ln

(
D(s, y)− D(s, y)

ε

)
< ∞,

where the penultimate inequality and finiteness stem from Assumption 3.21 That

(G , d) is complete metric space is shown next.

Lemma 3. (G , d) is a complete metric space.

Proof. See Appendix B.

Proposition 5 verifies that B is a contraction on G . It relies on the concavity (and

monotonicity) of B rather than any discounting-type conditions. This makes it well

suited to the present setting where concavity of B is easy to show, but discounting

(with respect to a suitable bounding norm) is not.

Proposition 5. Let Assumption 3 hold. There is a ρ ∈ [0, 1) such that for all D1, D2 ∈
G , d(B(D1), B(D2)) ≤ ρd(D1, D2), i.e. B is a contraction on (G , d) with modulus of
contraction ρ.

Proof. See Appendix B.

Application of the contraction mapping theorem implies that B has a unique fixed

point in G .

Theorem 2. Let Assumption 3 hold and assume that D ≤ D∗ ≤ D. D∗ is the unique
fixed point of B in G . Also, there is a ρ ∈ [0, 1) such that for any D0 ∈ G , Bn(D0)

d→ D
with d(Bn(D0), D∗) ≤ ρnd(D0, D∗) ≤ ρnd(D, D).

21 In particular, D(s, y)− D(s, y) ≥ ε > 0 for all (s, y).
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Proof. From Lemma 2, D∗ is sub-linear and by assumption it is bounded below by

D and above by D. Thus, D∗ ∈ G 6= ∅. Also by Lemma 2, if D ∈ G , then B(D) is

sub-linear and by the montonicity of B and Assumption 3 it is bounded below by

D and above by D. Thus, B : G → G . By Proposition 5, it is contractive on G . The

desired results then stem from the contraction mapping theorem.

Remark 5. An immediate consequence of the previous (uniqueness) result is the

following ‘Verification Theorem’: Under the assumptions of Theorem 2, if D̂ is a fixed
point of B in the space of sub-linear functions bounded below by D and above by D,
then D̂ = D∗.

Remark 6. For application of Theorem 2, it is sufficient to know (i) that bounding

functions satisfying Assumption 3 and D ≤ D∗ ≤ D exist and (ii) that a given sub-

linear function D0 lies between D and D and can thus serve as an initial condition

in a value iteration. Explicit calculation of the bounding functions is unnecessary.

This contrasts with results relying on monotone (not contractive) operators, which

require an upper or lower bound to the true value function as an initial condition.

In addition, as always, the contraction result allows us to calculate error bounds

and rates of convergence and is, thus, an improvement on results relying only on

monotone iterations and pointwise convergence of iterates.

6 Relating Primal and Dual

The preceding sections established that the recursive dual supplies the optimal value

and solutions for the dual problem (IS). Consequently, if the dual problem supplies

the optimal value and an optimal plan for the original primal problem (P), then the

recursive dual does as well and the primal may be solved via dual value iteration.

This section discusses conditions for the dual and primal problems to have common

values and policies. It begins by recalling the classical weak duality inequality which

requires no additional assumptions. It then gives conditions in terms of the exis-

tence and properties of saddle points of the Lagrangian L . Next it gives sufficient

conditions for saddle existence (and, hence, equality of optimal values and necessity

of primal solutions for dual problems) in terms of primitives. Finally, a numerical

procedure is described for checking whether a primal plan obtained via the recursive

dual approach solves the primal problem.
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6.1 Saddles and Recursive Dual Policies

Without further restriction, classical weak duality implies that the optimal dual value

bounds the optimal primal value: D∗0 ≥ P∗0 . Thus, with no further assumptions the

recursive dual gives welfare bounds for optimal policies or policy improvements.

A well known sufficient condition for equality of optimal values, albeit not on prim-

itives, is that the Lagrangian admits a saddle point, i.e. there is a pair (p∗, q∗) ∈ P×Q
such that for all p ∈ P and q ∈ Q, L (p, q∗) ≤ L (p∗, q∗) ≤ L (p∗, q). Saddle existence

also ensures that if p∗ solves (P) and q∗ solves the dual (i.e. attains the minimum in

(IS)), then (q∗, p∗) ∈ Λ. The following proposition summarizes the situation.

Definition 3. A primal plan p̂ is consistent with the recursive dual policy if there is a
q̂ such that (ŷ0, v̂0) ∈ G0 and for t ≥ 1, st ∈ S t, (m̂t(st), ŷt+1(st), p̂t(st)) ∈ G(st, ŷt(st)).

Proposition 6. Assume that L admits a saddle point. Then the optimal dual and
primal values are equal: D∗0 = P∗0 . In addition, if p∗ solves (P), then it is consistent with
the recursive dual policy.

Proof. See Appendix C.

Proposition 6 only requires that L admits a saddle point. It does not require that

the Lagrangian associated with every (st, yt(st))-continuation problem has a saddle

point, as is the case in Marcet and Marimon (2011). Proving, or numerically check-

ing, the existence of a saddle point for L , while non-trivial, is less demanding than

doing so for all possible histories.

From Proposition 6 if a saddle exists, then the dual recursive problem gives the

optimal primal value and optimal primal plans are consistent with the recursive dual

policy. However, other (suboptimal) plans may also be consistent with the recursive

dual policy. Stronger conditions are needed to ensure that the "finite penalization"

implicit in the dual problem is "sharp enough" to pin down only primal solutions.22

A simple way to obtain a sufficiency result for policies is to require that the set of

plans consistent with the recursive dual policy is unique.23

Proposition 7. Assume that L has a saddle point. Let P̂ be the set of primal plans
that are consistent with the recursive dual policy. If p̂ is the unique element of P̂, then
p̂ is the unique solution of (P).

Proof. See Appendix C.
22This issue was emphasized by Messner and Pavoni (2015). Cole and Kubler (2012) describe a

procedure for augmenting a recursive saddle point problem with lotteries over the extreme points of
flat regions of the continuation value function that permits recovery of an optimal primal solution. It
remains to integrate their approach into our formulation.

23Note that uniqueness of multipliers is not needed.
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6.2 Concave Problems

For problems with only inequality constraints, a well known sufficient condition for

equality of optimal values and a minimizing dual multiplier (so called "strong dual-

ity") is that (i) the objective and constraint functions are defined on a convex domain

and are concave and (ii) the evaluation of the constraints at some primal choice lies

in the interior of the constraint space’s closed non-negative cone (a Slater condi-

tion). If, in addition, a solution to the optimization exists then it and the minimizing

multiplier constitute a saddle point.

There are two difficulties in applying these results to our setting. First, (P) incor-

porates equality constraints describing the laws of motion for states. Thus, standard

conditions for saddle existence are not directly applicable. We deal with this below

by imposing monotonicity assumptions on nonlinear laws of motion for states and

relaxing the corresponding constraints. In addition, we substitute forward-looking

state variables with quasilinear laws of motion from the problem (along with their law

of motion constraints). The classical sufficient conditions given above are then appli-

cable. A second difficulty stems from the fact that these conditions ensure multiplier

existence in the dual of the constraint space. In our setting this is `∞,?, the set of

all continuous linear functionals on `∞, not the more convenient space of summable

sequences `1 on which L is defined.24 However, as we show below our constraint

structure ensures that if a minimizing multiplier exists in `∞,?, then one exists in `1

as well.

We partition the elements of the forward-looking state v into two groups: v =

(vc, vl) and assume that V = V c×V l, with vr ∈ V r ⊂ Rnr , r = c, l, and each V r bounded.

In what follows, vc corresponds to a forward-looking state with a (fully) nonlinear

law of motion and vl corresponds to a forward-looking state with a quasilinear law

of motion. As indicated above, these different types of forward-looking states are

handled differently in the analysis below. Denote the aggregators describing laws of

motion for them by Wr and Mr, for r ∈ {c, l}. Corresponding to the earlier requirement

that Wv[s, a, Mv[s, ·]] : VnS → V , assume Wr[s, a, Mr[s, ·]] : (V r)nS → V r, r = c, l. Finally,

for r = c, l, let vr′ = {vr′(s)}s∈S ∈ (V r)nS. The following monotonicity, concavity and

quasilinearity assumptions are imposed upon the problem.

Assumption 4 (Monotonicity). (i) F[s0, ·] is increasing in vc. (ii) ∀(s, a) ∈ S ×A, Wc[s, a, ·],
Mc[s, ·] and Wk[·, s, a] are increasing. In addition, if Wk[k, s, a] ∈ K, then for all k′ ∈ K
with k′ > k, Wk[k′, s, a] ∈ K. (iii) ∀(s, a, vl′) ∈ S ×A× (V l)nS , H[·, s, a, ·, vl′] is increasing in
(k, vc′).

24Strictly, L is defined on a set of discounted and weighted multipliers. However, the unnormalized
multipliers are in `1 and L can be redefined to have `1 × P as its domain.
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Assumption 5 (Concavity and Quasilinearity). (i) F[s0, ·] is concave in all arguments
and linear in vl

0 ∈ Rnl . (ii) ∀s ∈ S , H[·, s, ·] is concave in all arguments and linear in
vl′. (iii) ∀s ∈ S , Wc[s, ·], Mc[s, ·] and Wk[s, ·] are concave in all arguments. (iv) ∀(s, a, vl′),
W l[s, a, Ml[s, vl′]] = (1 − δ)ul(s, a) + δ ∑s′∈S Bl(s, s′)vl′(s′)π(s′|s), with δ ∈ [0, 1), ul : S ×
A → V l a concave function, V l ⊂ Rnl a bounded set and each Bl(s, s′) a diagonal matrix
of size nl with all elements less than or equal to 1 in absolute value.

We also impose a Slater condition. Let zj(p) = {zj
t(p)}∞

t=0, j = k, h, l, c, denote the con-

straint process terms, with for j = l, c, zj
t(p)(s

t) = −vj
t(s

t) + W j[st, at(st), Mj[st, vj
t+1(s

t, ·)]].

Assumption 6 (Slater). There is a p̂ ∈ P such that zl(p̂) = 0 and inft,st zj
t(p̂)(s

t) > 0 for
j = k, c, h.

Proposition 8 establishes saddle point existence given a solution to the original

problem (P) and Assumptions 4 to 6. Note that the multiplier component of the

saddle point is in `1 rather than the larger and less convenient set `∞,?.

Proposition 8. Let Assumptions 2 and 4 to 6 hold and let k̄ ∈ K∗(s0). Then L admits
a saddle point. If p∗ is the primal component of a saddle point and q∗ ∈ `1 solves (IS),
then L (p∗, q∗) = D∗0 = P∗0 and the elements of (p∗, q∗) satisfy (yk∗

0 , yv∗
0 , v∗0) ∈ G0 and for

all t ≥ 1 and st ∈ S t, (m∗t (s
t), y∗t+1(s

t), p∗t (s
t)) ∈ G(st, y∗t (s

t)).

Proof. See Appendix C.

Remark 7. Proposition 8 applies to problems with a mixture of non-linear forward

and backward-looking states and quasilinear forward-looking states. Assumptions 4

and 5 may be reduced for simpler problems. For example, if ρ 6= σ, then the lim-

ited commitment problem in Section 2 involves only nonlinear forward-looking state

variables and those parts of Assumptions 4 and 5 relating to backward-looking or

quasilinear forward-looking constraints may be dropped. If ρ = σ, then preferences

are specialized to the expected utility form and, hence, the limited commitment prob-

lem involves only quasilinear forward-looking constraints. Then Assumption 4 and

parts of Assumption 5 are not needed.

The role of Assumption 4 is to permit a relaxation of the nonlinear law of mo-

tion constraints. Assumption 4 (i) and (ii) are satisfied in all settings in which the

forward-looking states are payoffs and the backward-looking states are capital (and

output is increasing in capital). Hence, they are quite natural. Assumption 4 (iii) is

more restrictive. An alternative is to supplement Assumption 4(ii) with the require-

ment that for all (k, s), Wk[k, s, ·] is decreasing in a and Wc[s, ·, m] is increasing in a,
to modify Assumption 4 (iii) to require that H[k, s, ·, ·, ·] is increasing in a, vc′ and vl′,
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and to strengthen Assumption 5 by assuming that ul(s, ·) is increasing in a and the

matrix Bl is positive. This configuration of assumptions is appropriate for models

of limited commitment with capital accumulation. In such models additional capi-

tal both increases production opportunities and the default values of uncommitted

agents. The net effect is to reduce (some elements of) H and to make it potentially

undesirable to take additional capital into a subsequent period. However, if each

agent’s utility is increasing in her consumption, then it is never desirable to discard

output and select an allocation in which the law of motion for capital is relaxed, i.e.

an allocation in which: kt+1(st) < Wk[kt(st−1), st, at(st)] := f (kt(st−1))−∑i∈I ai(st), with

f the production function. Instead, consumption will be raised, so relaxing both

current and past no default constraints. Thus, in this setting relaxation of the laws

of motion for capital and (if agents have non-standard preferences) agent utility does

not raise the optimal payoff or expand the solution set. Proposition 8 is applicable to

this setting after modification of Assumptions 4 and 5 along the lines described.25

6.3 Ex Post Check

The following proposition describes a numerical procedure for checking whether a

primal plan obtained via the recursive dual approach solves the primal problem. The

procedure does not require any concavity assumptions on primitives. We call a pair

(p̂, q̂) a candidate plan if it is obtained from the recursive dual policy correspondence:

(q̂k
0, q̂v

0, v̂0) ∈ G0, and ∀t ≥ 1 and st ∈ S t, (q̂t(st), p̂t(st)) ∈ G(st, ŷt(st)).

Proposition 9. If (p̂, q̂) is a candidate plan satisfying (i) Condition (T), (ii) −ŷv
0 · v̂0 + ŷk

0 ·
k̄ + D∗(s0, ŷk

0, ŷv
0) ≤ 0 and (iii) feasibility of p̂ for (P), then p̂ is optimal for (P). In addition,

(p̂, q̂) is a saddle point for L .

Proof. See Appendix C.

Despite its simplicity, Proposition 9 is the basis of a useful ex post check of primal

optimality. Suppose the recursive dual problem has been solved and a fixed point

D̂ of the operator B obtained. If Assumption 3 and the condition D ≤ D∗ ≤ D are

satisfied and D̂ lies between the bounding functions D and D, then by Theorem 2,

D̂ = D∗. If the solution of the recursive dual delivers a candidate plan (p̂, q̂), then

Proposition 9 provides sufficient conditions for p̂ to be a solution to (P) and for the

existence of a saddle point of the associated Lagrangian. In practice, the value func-

tion D∗ and the policy correspondence G must be approximated via, say, a numerical

25Specifically, Proposition 8 is then applicable to the contracting problem in Cooley et al. (2004).
This is a limited commitment problem with default in which the production function is strictly con-
cave, but the outside option affine in capital (e.g. the entrepreneur can sell off capital after default).
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implementation of the value iteration described in Theorem 2, and the conditions in

Proposition 9 checked numerically to within some acceptable level of tolerance.

7 Conclusion

In many settings the (primal) state space of a dynamic economic problem is defined

implicitly and must be recovered as part of the solution to the problem. This compli-

cates the application of recursive methods. Associated dual problems have recursive

formulations in which costates are used to keep track of histories of past or feasible

future actions. The dual (co-)state space is immediately determined as RN (or, per-

haps, RN
+). Despite the unboundedness of the dual value functions and the lack of a

bounded constraint correspondence, contractivity of the dual Bellman operator (with

respect to the modified Thompson metric) may be established if suitable bounding

functions are available. In many problems they are.

A Proofs for Section 3 and Section 4

Proof of Proposition 1. Endow P with the product topology. Given s0, for all k ∈ K let:
C(s0, k) :=

{
p ∈ P | k0 = k, v0 ∈ V , and ∀t ≥ 1, . . . , st ∈ S t (15), (16), and (17) hold

}
.

Lemma 4. Given Assumption 2, ∀k ∈ K, C(s0, k) is compact in the product topology.

Proof. Under Assumption 2, A×K × VnS is compact. Hence, by the Tychonoff the-
orem, V × A × (A×K× VnS)∞ is compact in the product topology. Since C(s0, k) ⊂
V ×A× (A×K× VnS)∞ and closed subsets of compact spaces are compact, it suffices
to show that C(s0, k) is closed. Let {pn}∞

n=1 denote a sequence with each pn ∈ C(s0, k)
and such that pn converges in the product topology to p. Then for all t and st the
corresponding components of pn converge to those of p. The compactness of A, K
and V , continuity of Wk and Wv and upper semicontinuity of H then ensure that p is
in P and satisfies (15), (16), and (17). Thus, p ∈ C(s0, k).

The planner’s problem is: P∗0 = supp∈C(s0,k̄) F(s0, v0). By assumption F(s0, ·) is upper
semicontinuous. Since k̄ ∈ K∗(s0) and by Assumption 1, C(s0, k̄) 6= ∅. By Lemma 4,
C(s0, k̄) is compact. The desired result follows from Weierstrass’ theorem.

Proof of Proposition 2. To show D∗ < ∞, choose an arbitrary (s, y) ∈ S × Y . Then:

D∗(s, y) = inf
Q(y)

sup
P(v0)

−yk · k0 + yv ·Wv[s, a0, Mv[s, v1(·)]]

+ m0 · H[k0, s, a0, v1] + δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s)

≤ sup
p∈P
−yk · k0 + yv ·Wv[s, a0, Mv[s, v1(·)]] < ∞, (25)
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where the first inequality uses 0 ∈ Q(y) (and, hence, its feasibility for the infimum)
and the second inequality uses the boundedness of K and V and Wv[s, ·, Mv[s, ·]] :
A×VnS → V . Since (s, y) was arbitrary, D∗ < ∞.

To show that D∗ > −∞, note that Assumption 1 guarantees that for all s there is a
k̂0 ∈ K∗(s) and, so, a feasible primal plan p̂ ∈ P starting at (s, k̂0). Hence, for arbitrary
q ∈ Q(y),

sup
P
− yk · k0 + yv ·Wv[s, a0, Mv[s, v1(·)]] + m · H[k0, s, a0, v1(·)] + δ ∑

s1∈S
〈q, z(p)|s1〉π(s1|s)

≥ −yk · k̂0 + yv ·Wv[s, â0, Mv[s, v̂1(·)]] > −∞,

where the first inequality uses the fact that p̂ is feasible, but not necessarily maximal
at q. Since q was arbitrary, −yk · k̂0 + yv ·Wv[s, â0, Mv[s, v̂1(·)]] is a finite lower bound for
supP −yk · k0 + yv ·Wv[s, a0, Mv[s, v1(·)]] + m · H[k0, s, a0, v1(·)] + δ ∑s1∈S〈q, z(p)|s1〉π(s1|s)
and, so, for D∗(s, y). Since (s, y) was arbitrary, D∗ > −∞.

Proof of Proposition 3. We have:
D∗0 = inf

Q
sup

P
L (p, q) = inf

Y
inf

Q(y0)

sup
V

sup
P(v0)

F[s0, v0] + yk
0 · (k̄− k0)

+ yv
0 · (Wv[s0, a0, Mv[s0, v1(·)]]− v0) + m0 · H[k0, s0, a0, v1(·)] + δ ∑

s1∈S
〈q, z(p)|s1〉π(s1|s0)

= inf
Y

sup
V

yk
0 · k̄ + F[s0, v0]− yv

0 · v0 + inf
Q(y0)

sup
P(v0)

−yk
0 · k0 + yv

0 ·Wv[s0, a0, Mv[s0, v1(·)]]

+ m0 · H[k0, s0, a0, v1(·)] + δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s0), (26)

where the second equality uses the definitions of L , Y , Q(·), V and P(·) and the de-
composition property of inf and sup operations over product sets. The third equality
uses the additive separability of L . Once yk

0 and yv
0 are chosen, the Lagrangian is

additively separable in v0 and all other variables, including the remaining dual vari-
ables. Hence, given (yk

0, yv
0), the inf over these remaining dual variables and the sup

over v0 do not affect each other and may be interchanged. Combining (26) with the
definition of D∗ gives (21) in the proposition. For each (s, y) = (s, yk, yv) ∈ S × Y ,

D∗(s, y) = inf
Q(y)

sup
P(v0)

−yk · k0 + yv ·Wv[s, a0, Mv[s, v1(·)]]

+ m0 · H[k0, s, a0, v1] + δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s0)

= inf
Q(y)

sup
P(v0)

−yk · k0 + yv ·Wv[s, a0, Mv[s, v1(·)]] + m0 · H[k0, s, a0, v1(·)]

− δ ∑
s1∈S

yv
1(s1) · v1(s1)π(s1|s) + δ ∑

s1∈S
yk

1(s1) · {Wk[k0, s, a0]− k1(s1)}π(s1|s)

+ δ ∑
s1∈S

{
yv

1(s1) ·Wv[s1, a1(s1), Mv[s1, v2(s1, ·)]]

+ m1(s1) · H[k1, s1, a1(s1), v2(s1, ·)] + δ ∑
s2∈S
〈q, z(p)|s1, s2〉π(s2|s1)

}
π(s1|s),
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where the second equality expands 〈q, z(p)|s1〉. Once q0 = (m0, yk
1, yv

1) is chosen, p0 =
(k0, a0, v1) is independent of the remaining dual variables. Hence, given q0, the inf
over these dual variables and the sup over p0 may be interchanged to give:

D∗(s, y) = inf
Q

sup
P
−yk

0 · k0 + yv
0 ·Wv[s, a0, Mv[s, v1(·)]] + m0 · H[k0, s, a0, v1(·)] (27)

− δ ∑
s1∈S

yv
1(s1)v1(s1)π(s1|s) + ∑

s1∈S
yk

1(s1) ·Wk[k0, s, a0]π(s1|s)

+ δ inf
Q̃(q0)

sup
P̃(p0)

∑
s1∈S

{
− yk

1(s1) · k1(s1) + yv
1(s1) ·Wv[s1, a1(s1), Mv[s1, v2(s1, ·)]]

+ m1(s1) · H[k1, s1, a1(s1), v2(s1, ·)] + δ ∑
s2∈S
〈q, z(p)|s1, s2〉π(s2|s1)

}
π(s1|s),

where Q̃(q0) denotes the continuation of dual plans in Q after the exclusion of q0 and
P̃(p0) denotes the continuation of primal plans in P after the exclusion of p0. Then:

D∗(s, y) = inf
Q

sup
P
−yk

0 · k0 + yv
0 ·Wv[s, a0, Mv[s, v1(·)]] + m0 · H[k0, s, a0, v1(·)] (28)

− δ ∑
s1∈S

yv
1(s1)v1(s1)π(s1|s) + ∑

s1∈S
yk

1(s1) ·Wk[k0, s, a0]π(s1|s)

+ δ ∑
s1∈S

{
inf

Q(y1(s1))

sup
P(v1(s1))

−yk
1(s1) · k1(s1) + yv

1(s1) ·Wv[s1, a1(s1), Mv[s1, v2(s1, ·)]]

+ m1(s1) · H[k1, s1, a1(s1), v2(s1, ·)] + δ ∑
s2∈S
〈q, z(p)|s1, s2〉π(s2|s1)

}
π(s1|s).

= inf
Q

sup
P
−yk

0 · k0 + yv
0 ·Wv[s, a0, Mv[s, v1(·)]] + m0 · H[k0, s, a0, v1(·)]

− δ ∑
s1∈S

yv
1(s1) · v1(s1)π(s1|s) + δ ∑

s1∈S
yk

1(s1) ·Wk[k0, s, a0]π(s1|s) + δ ∑
s1∈S

D∗ (s1, y1(s1))π(s1|s),

where the first equality uses (27), the additive separability in s1 of the terms in the
last row of (27) and the fact that, following the argument in Proposition 2, each inf-
sup in the curly brackets of (28) is bounded above and, hence, the inf-sup of the sum
equals the sum of the inf-sup’s (although some may equal −∞). The second equality
then follows from the definition of D∗. Combining the last equality with the definition
of J gives the second equality (22) in the proposition.

Proof of Proposition 4. (Only if) Let J0(y0, v0) = F[s0, v0]− yv
0 · v0 + yk

0 · k̄. Then from the
definition of the Lagrangian for all (p, q) ∈ P×Q,

L (p, q) = J0(y0, v0)− yk
0 · k0 + yv

0 ·Wv[s0, a0, Mv[s0, v1(·)]] + m0 · H[k, s0, a0, v1(·)]
+ δ ∑

s1∈S
〈q, z(p)|s1〉π(s1|s0).
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To show D∗0 ≥ J0(y∗0 , v∗0) + D∗(s0, y∗0), note that by definition, D∗0 = L (p∗, q∗) and

L (p∗, q∗) = sup
P

J0(y∗0 , v0)− yk∗
0 · k0 + yv∗

0 ·Wv[s0, a0, Mv[s0, v1(·)]] + m∗0 · H[k0, s0, a0, v1(·)]

+ δ ∑
s1∈S
〈q∗, z(p)|s1〉π(s1|s0)

=sup
V

J0(y∗0 , v0) + sup
P(v0)

−yk∗
0 · k0 + yv∗

0 ·Wv[s0, a0, Mv[s0, v1(·)]] + m∗0 · H[k0, s0, a0, v1(·)]

+ δ ∑
s1∈S
〈q∗, z(p)|s1〉π(s1|s0)

≥J0(y∗0 , v∗0) + inf
Q(y∗0)

sup
P(v∗0)
−yk∗

0 · k0 + yv∗
0 ·Wv[s0, a0, Mv[s0, v1(·)]] + m0 · H[k0, s0, a0, v1(·)]

+ δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s0)

=J0(y∗0 , v∗0) + D∗(s0, y∗0), (29)

where the first equality uses the definition of p∗, the second uses the decompo-
sition and moving forward over constants properties of supremum operations, the
inequality uses the feasibility of v∗0 for the supremum over V and the feasibility of the
continuation of q∗ for the continuation minimization described in this line, and the
final equality uses the definition of D∗. For the reverse inequality, note first that:

L (p∗, q∗) = inf
Q

sup
P

J0(y0, v0)− yk
0 · k0 + yv

0 ·Wv[s0, a0, Mv[s0, v1(·)]] + m0 · H[k0, s0, a0, v1(·)]

+ δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s0),

≤sup
P

J0(y∗0 , v0)− yk∗
0 · k0 + yv∗

0 ·Wv[s0, a0, Mv[s0, v1(·)]] + m0 · H[k0, s0, a0, v1(·)]

+ δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s0) ∀q ∈ Q(y∗0),

=J0(y∗0 , v∗0) + sup
P(v0)

−yk∗
0 · k0 + yv∗

0 ·Wv[s0, a0, Mv[s0, v1(·)]] + m∗0 · H[k0, s0, a0, v1(·)]

+ δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s0), ∀q ∈ Q(y∗0), (30)

where the first inequality uses the feasibility of q ∈ Q(y∗0) for the inf problems, the
second equality uses the decomposition property of the sup operator and the maxi-
mality of v∗0 in supV J∗0 (y

∗
0 , v0). Since the last equality in (30) holds ∀q ∈ Q(y∗0):

D∗0 ≤J0(y∗0 , v∗0) + inf
Q(y∗0)

sup
P(v0)

−yk∗
0 · k0 + yv∗

0 ·Wv[s0, a0, Mv[s0, v1(·)]] + m∗0 · H[k0, s0, a0, v1(·)]

+ δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s0) = J0(y∗0 , v∗0) + D∗(s0, y∗0), (31)

where the last equality uses the definition of D∗. Combining (29) and (31) gives:
D∗0 = J0(y∗0 , v∗0) + D∗(s0, y∗0). Thus, y∗0 attains the minimum in (21) and since v∗0 attains

36



the maximum in supV J0(y∗0 , v0), (y∗0 , v∗0) ∈ G0. Repeating the argument at succes-
sive histories implies that q∗t (s

t) = (m∗t (s
t), y∗t+1(s

t)) attains the minimum in (22) at
(st, y∗t (s

t)) and so (q∗t (s
t), p∗t (s

t)) ∈ G(st, y∗t (s
t)).

(If) The remainder of the proof uses the following lemma.

Lemma 5. Let J0(y0, v0) = F[s0, v0] − yv
0 · v0 + yk

0 · k̄. For all (p, q) ∈ P ×Q, L (p, q) =
J0(y0, v0) + ∑∞

t=0 δt ∑S t J(st, yt(st); qt(st), pt(st))πt(st|s0).

Proof. Expanding 〈q, z(p)〉, the Lagrangian L is:

L (p, q) =F[s0, v0] +
∞

∑
t=0

∑
S t

δt{mt(st) · zh
t (p)(s

t) + yk
t (s

t) · zk
t (p)(s

t) + yv
t (s

t) · zv
t (p)(s

t)}πt(st|s0).

From the definition of J, we have for each T:

L (p, q) =J0(y0, v0) +
T

∑
t=0

δt ∑
S t

J(st, yt(st); qt(st), pt(st))πt(st|s0) (32)

+ δT ∑
ST

[
yv

T(s
T)vT(sT) + mT(sT)H[kT(sT), sT, vT+1(sT, ·)]

]
πT(sT|s0)

− δT ∑
ST

yk
T(s

T)kT(sT)πT(sT|s0) + δT+1 ∑
ST+1

〈q, z(p)|sT〉πT+1(sT+1|s0).

Since q ∈ Q and since v, k and z(p) belong to `∞, the infinite sums in the second
and third rows of (32) converge to zero as T → ∞ giving the result.

Let (p∗, q∗) satisfy (i) (yk∗
0 , yv∗

0 , v∗0) ∈ G0, (ii) ∀t ≥ 1, st ∈ S t, (m∗t (s
t), y∗t+1(s

t), p∗t (s
t)) ∈

G(st, y∗t (s
t)) and (iii) q∗ ∈ Q. From the definitions of G0 and G, J0(y∗0 , v∗0) = supV J0(y∗0 , v0)

and J(st, y∗t (s
t); q∗t (s

t), p∗t (s
t)) = supP J(st, y∗t (s

t); q∗t (s
t), pt(st)). So, by Lemma 5, ∀p ∈ P,

L (p∗, q∗) = J0(y∗0 , v∗0) +
∞

∑
t=0

δt ∑
S t

J(st, y∗t (s
t); q∗t (s

t), p∗t (s
t))πt(st|s0)

≥ J0(y∗0 , v0) +
∞

∑
t=0

δt ∑
S t

J(st, y∗t (s
t); q∗t (s

t), pt(st))πt(st|s0),

and p∗ ∈ argmaxP L (p, q∗). Let J∗0 (y) = supV J0(y, v0) and let J∗(st, yt(st); qt(st)) =
supP J(st, yt(st); qt(st), p). For all q ∈ Q, p ∈ P: J∗0 (y0) + ∑∞

t=0 δt ∑S t J∗(st, yt(st); qt(st))πt(st|s0)

≥ J0(y0, v0) + ∑∞
t=0 δt ∑S t J(st, yt(st); qt(st), pt(st))πt(st|s0). Hence,

J∗0 (y0)+
∞

∑
t=0

δt ∑
S t

J∗(st, yt(st); qt(st))πt(st|s0) ≥

sup
P

J0(y0, v0) +
∞

∑
t=0

δt ∑
S t

J(st, yt(st); qt(st), pt(st))πt(st|s0). (33)

On the other hand, for small ε > 0, let p̂ ∈ P be such that J0(y0, v̂0) > J∗(y0)− ε
2 and

for each t and st, J(st, yt(st); qt(st), p̂t(st)) > J∗(st, yt(st); qt(st))− (1− δ) ε
2 , then J∗0 (y0) +

37



∑∞
t=0 δt ∑S t J∗(st, yt(st); qt(st))πt(st|s0) < J0(y0, v̂0)+∑∞

t=0 δt ∑S t J(st, yt(st); qt(st), p̂t(st))πt(st|s0)
+ ε. Since ε > 0 is arbitrary, it follows that

J∗0 (y0)+
∞

∑
t=0

δt ∑
S t

J∗(st, yt(st); qt(st))πt(st|s0)

≤ sup
P

J0(y0, v0) +
∞

∑
t=0

δt ∑
S t

J(st, yt(st); qt(st), pt(st))πt(st|s0). (34)

Combining the definition of D∗0 , Lemma 5 and (33)-(34) and using q∗ ∈ Q gives:

D∗0 = inf
Q

sup
P

L (p, q) = inf
Q

sup
P

J0(y0, v0) +
∞

∑
t=0

δt ∑
S t

J(st, yt(st); qt(st), pt(st))πt(st|s0)

= inf
Q

J∗0 (y0) +
∞

∑
t=0

δt ∑
S t

J∗(st, yt(st); qt(st))πt(st|s0)

≤ J∗0 (y
∗
0) +

∞

∑
t=0

δt ∑
S t

J∗(st, y∗t (s
t); q∗t (s

t))πt(st|s0). (35)

The definitions of G0 and G and the dual Bellman equation imply D∗0 = J∗0 (y
∗
0) +

∑T
t=0 δt ∑S t J∗(st, y∗t (s

t); q∗t (s
t))πt(st|s0) + δT+1 ∑ST+1 D∗(sT+1, y∗T+1(s

T+1))π(sT+1|s0). Tak-
ing the limit as T goes to infinity and using condition (T) implies:

D∗0 ≥ J∗0 (y
∗
0) +

∞

∑
t=0

δt ∑
S t

J∗(st, y∗t (s
t); q∗t (s

t))πt(st|s0). (36)

Combining (35) with (36) implies that q∗ attains the minimum as required.

B Proofs for Section 5

Proof of Lemma 2. Let Ψ, Φ and Ω denote vector spaces and let L : Ψ × Φ × Ω →
R ∪ {−∞}. Assume that for each ω ∈ Ω, L(·; ·, ω) is sub-linear. For ψ ∈ Ψ, let:
T (ψ) = infΦ supΩ L(ψ; φ, ω). Assume that T < ∞. We prove that T is sub-linear.
We first show that T is convex. Let ψ1 and ψ2 be elements of Ψ and λ ∈ [0, 1]. Let
ψλ = λψ1 + (1− λ)ψ2. For i = 1, 2, let {φi

n} denote sequences such that: T (ψi) =
inf

Φ
sup

Ω
L(ψi; φ, ω) = limn→∞ supΩ L(ψi; φi

n, ω). Also let φλ
n = λφ1

n + (1− λ)φ2
n. Then:

λT (ψ1) + (1− λ)T (ψ2) = λ inf
Φ

sup
Ω

L(ψ1; φ, ω) + (1− λ) inf
Φ

sup
Ω

L(ψ2; φ, ω)

= λ lim
n→∞

sup
Ω

L(ψ1; φ1
n, ω) + (1− λ) lim

n→∞
sup

Ω
L(ψ2; φ2

n, ω)

≥ lim
n→∞

sup
Ω
{λL(ψ1; φ1

n, ω) + (1− λ)L(ψ2; φ2
n, ω)}

≥ lim
n→∞

sup
Ω

L(ψλ; φλ
n , ω) ≥ inf

Φ
sup

Ω
L(ψλ; φ, ω) = T (ψλ),
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where the sum on the left hand side of the first line is well defined because T < ∞,
the first equality follows from the definition of T , the second equality uses the defini-
tion of the sequences {φi

n}, i = 1, 2, the first inequality uses the fact that the sup of a
sum is less than or equal to the sum of sups and the second inequality uses the con-
vexity of L(·; ·, ω). Thus, T is convex. Next we show positive homogeneity. Suppose
that ψ ∈ Ψ and λ > 0. Then: T (λψ) = inf

Φ
sup

Ω
L(λψ; φ, ω) = λ inf

Φ
sup

Ω
L(ψ; φ/λ, ω) =

λT (ψ), where the second equality uses the positive homogeneity of L(·, ·, ω). Thus,
T is positively homogenous of degree 1 and, combining results, sub-linear.

(i) For fixed s0 ∈ S and a pair (p, q) ∈ P×Q, let:

L(y0; (m0, {q|s1}), (p, {z(p)|s1})) := −yk
0 · k0 + yv

0 ·Wv[s0, a0, Mv[s0, v1]]

+ m0 · H[k0, s0, a0, v1] + δ ∑
s1∈S
〈q, z(p)|s1〉π(s1|s0).

Then: D∗(s0, y0) = inf
Q(y0)

sup
P(v0)

L(y0; (m0, {q|s1}), (p, {z(p)|s1})). By Proposition 2, D∗(s0, ·)

< ∞. Also, for each ω = (p, {z(p)|s1), the function L(·; ·, ω) is linear and, hence,
sub-linear. Applying the general result from the first part of the proof, D∗(s0, ·) is
sub-linear. Since s0 was arbitrary in S, D∗ is sub-linear. (ii) Recall that:

B(D)(s, y) = inf
Q

sup
P

J(s, y; q, p) + δ ∑
s′∈S

D
(
s′, y′(s′)

)
π(s′|s).

For q = 0, supP J(s, y; 0, p) + δ ∑s′∈S D (s′, 0)π(s′|s) < ∞. Hence, B(D)(s, y) < ∞. Also,
for each (s, p), J(s, ·; ·, p) is linear and D is sub-linear by assumption. Thus, the
function J(s, y; q, p)+ δ ∑s′∈S D (s′, y′(s′))π(s′|s) is sublinear. Thus, again by the general
result, B(D)(s, ·) is sub-linear and, hence, B(D) is sub linear.

Proof of Lemma 3. Evidently, (G , d) is a metric space. Let {Dn} be a Cauchy se-
quence in G . Thus, as n, m→ ∞,

d(Dn, Dm) = sup
S×C

∣∣∣∣∣ln
(

Dn(s, y)− D(s, y)
D(s, y)− D(s, y)

)
− ln

(
Dm(s, y)− D(s, y)
D(s, y)− D(s, y)

)∣∣∣∣∣→ 0.

For each n = 1, 2, . . ., define gn : S × C → R according to: gn(s, y) = ln
(

Dn(s,y)−D(s,y)
D(s,y)−D(s,y)

)
,

(s, y) ∈ S × C. Let g = 0 and g = ln
(

D−D
ε

)
≥ ln

(
D−D
D−D

)
. Note that g is bounded

in S × C by the continuity of each D(s, ·) − D(s, ·) and the compactness of C. The
sequence of functions {gn} is Cauchy with respect to the sup-norm and that for each
n, g ≤ gn ≤ g. By the completeness (with respect to the sup-norm) of the bounded
functions from C to R,{gn} converges in the sup-norm to a function g∞, with each
g∞(s, ·) bounded and g ≤ g∞ ≤ g. Use g∞ to define the homogeneous function D∞ as:

D∞(s, y) = ‖y‖E

{
D
(

s,
y
‖y‖E

)
+ exp

{
g∞

(
s,

y
‖y‖E

)}(
D
(

s,
y
‖y‖E

)
− D

(
s,

y
‖y‖E

))}
.
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By construction D ≤ D∞ ≤ D and Dn
d→ D∞. Since D∞ is the pointwise limit of a

sequence of sub-linear and, so, convex functions, it is convex. Thus, it is in G .

Proof of Proposition 5. Let G0 denote the interval of real-valued functions between D
and D. Let D1 and D2 be any pair of functions in G0 and let λ ∈ [0, 1]. Define for each
(s, y, q) ∈ S × Y ×Q, J∗(s, y, q) = supP J(s, y; q, p) ∈ R. Then, for each (s, y) ∈ S × Y ,

B(λD1 + (1− λ)D2)(s, y)

= inf
Q

J∗(s, y, m, y′) + δ ∑
s′∈S
{λD1

(
s′, y′(s′)

)
+ (1− λ)D2

(
s′, y′(s′)

)
}π(s′|s)

= inf
Q

λ
{

J∗(s, y, m, y′) + δ ∑
s′∈S

D1
(
s′, y′(s′)

)
π(s′|s)

}
+ (1− λ)

{
J∗(s, y, m, y′) + δ ∑

s′∈S
D2
(
s′, y′(s′)

)
π(s′|s)

}
≥ λ inf

Q

{
J∗(s, y, m, y′) + δ ∑

s′∈S
D1
(
s′, y′(s′)

)
π(s′|s)

}
+ (1− λ) inf

Q

{
J∗(s, y, m, y′) + δ ∑

s′∈S
D2
(
s′, y′(s′)

)
π(s′|s)

}
= λB(D1)(s, y) + (1− λ)B(D2)(s, y),

where, recall, B(D) < ∞ hence the sums in the last two rows are well defined. Thus,
B is concave on G0. Let D1, D2 ∈ G ⊂ G0. By definition of d, for each (s, y) ∈ S × C,

ln

(
D2(s, y)− D(s, y)

D− D

)
≤ ln

(
D1(s, y)− D(s, y)
D(s, y)− D(s, y)

)
+ d(D1, D2).

Taking the exponential of each side and rearranging gives:

exp{−d(D1, D2)}
(

D2(s, y)− D(s, y)
D(s, y)− D(s, y)

)
≤
(

D1(s, y)− D(s, y)
D(s, y)− D(s, y)

)
.

But, by Assumption 3 (i), D− D > 0 and so, after rearrangement,

D1(s, y) ≥ exp{−d(D1, D2)}D2(s, y) + (1− exp{−d(D1, D2)})D(s, y).

Since D1, D2 and D are positively homogeneous of degree 1, this inequality holds at
all (s, y) ∈ S × Y . Then, by monotonicity and concavity of B (on G0),

B(D1) ≥ B(exp{−d(D1, D2)}D2 + (1− exp{−d(D1, D2)})D)

≥ exp{−d(D1, D2)}B(D2) + (1− exp{−d(D1, D2)})B(D). (D1)

By assumption there is an ε > 0 such that for each (s, y) ∈ S × C, B(D)(s, y) >
D(s, y) + ε. For (s, y) ∈ S × C, define:

λ(s, y) :=
ε

D(s, y)− D(s, y)
.
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Since D(s, y) ≥ B(D)(s, y) ≥ B(D)(s, y) > D(s, y) + ε, λ(s, y) ∈ (0, 1). Now, for each
s ∈ S, D(s, ·) and D(s, ·) are continuous. Thus, λ(s, ·) is continuous and since C is
compact, there is a λ∗ = minS×C λ(s, y) ∈ (0, 1). Then, for all (s, y) ∈ S × C,

B(D)(s, y) > D(s, y) + ε = λ(s, y)D(s, y) + (1− λ(s, y))D(s, y)

≥ λ∗D(s, y) + (1− λ∗)D(s, y)

≥ λ∗B(D2)(s, y) + (1− λ∗)D(s, y), (D2)

where the first inequality is by assumption, the first equality uses the definition
of λ(s, y), the second inequality uses the definition of λ∗ and D ≥ D and the final
inequality uses D ≥ B(D) ≥ B(D2). Combining (D1) with (D2) gives for all (s, y) ∈ C,

B(D1)(s, y) ≥ exp{−d(D1, D2)}B(D2)(s, y) + (1− exp{−d(D1, D2)})
× [λ∗B(D2)(s, y) + (1− λ∗)D(s, y)].

Letting r := exp{−d(D1, D2)}+ (1− exp{−d(D1, D2)})λ∗, then gives for (s, y) ∈ S × C:

B(D1)(s, y)− D(s, y)
D(s, y)− D(s, y)

≥r
B(D2)(s, y)− D(s, y)

D(s, y)− D(s, y)
.

Hence, taking logs, for (s, y) ∈ S × C,

ln

(
B(D1)(s, y)− D(s, y)

D(s, y)− D(s, y)

)
≥ ln r + ln

(
B(D2)(s, y)− D(s, y)

D(s, y)− D(s, y)

)
.

But from the definition of r and Jensen’s inequality:

ln r ≥ (1− λ∗) ln exp{−d(D1, D2)}+ λ∗ ln 1 = −(1− λ∗)d(D1, D2).

Thus, for (s, y) ∈ S × C,

(1− λ∗)d(D1, D2) ≥ − ln r ≥ ln

(
B(D2)(s, y)− D(s, y)

D(s, y)− D(s, y)

)
− ln

(
B(D1)(s, y)− D(s, y)

D(s, y)− D(s, y)

)
.

(D3)
Repeating the argument with D1 and D2 interchanged and combining with (D3) im-
plies that for all (s, y) ∈ S × C,

(1− λ∗)d(D1, D2) ≥
∣∣∣∣∣ln
(

B(D2)(s, y)− D(s, y)
D(s, y)− D(s, y)

)
− ln

(
B(D1)(s, y)− D(s, y)

D(s, y)− D(s, y)

)∣∣∣∣∣ .

Consequently, letting ρ := (1− λ∗) ∈ (0, 1),

ρd(D1, D2) ≥ sup
S×C

∣∣∣∣∣ln
(

B(D2)(s, y)− D(s, y)
D(s, y)− D(s, y)

)
− ln

(
B(D1)(s, y)− D(s, y)

D(s, y)− D(s, y)

)∣∣∣∣∣
= d(B(D1), B(D2))
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as desired.

We now show that the Bellman operator’s iterates converge uniformly to D∗ on
S × C. For sublinear functions D1, D2 define ‖D1 − D2‖ := supS×C |D1(s, y)− D2(s, y)|.

Proposition 10. Let Assumption 3 hold. (i) For any two functions D1, D2 ∈ G we have
‖D1 − D‖, ‖D2 − D‖ ≤ ‖D − D‖ < ∞, and ‖D1 − D2‖ ≤ ‖D − D‖(exp d(D1, D2)− 1). (ii)
Let D ≤ D∗ ≤ D. For any initial function D0 ∈ G we have limn→∞ ‖Bn(D0)− D∗‖ = 0,
that is, the dual Bellman operator’s iterates converge uniformly to D∗ in S × C.

Proof. (i) Since D1, D2 ∈ G the inequalities ‖D1 − D‖, ‖D2 − D‖ ≤ ‖D − D‖ are im-
mediate, the boundedness comes from the continuity of D and D and compactness
of S × C. Now, for any two distinct functions D1 and D2 we have d(D1, D2) > 0
hence µ := exp d(D1, D2) > 1. From the definition of the Thompson distance, we have

µ = exp d(D1, D2) ≥
∣∣∣D1(s,y)−D(s,y)

D2(s,y)−D(s,y)

∣∣∣ for all (s, y). We hence have (pointwise) that both

D1−D ≤ µ(D2−D) and D2−D ≤ µ(D1−D). Therefore D1−D2 ≤ (µ− 1)(D2−D) and
D2−D1 ≤ (µ− 1)(D1−D). This implies that (again pointwise) −(µ− 1)|D2−D| ≤ D2−
D1 ≤ (µ− 1)|D1−D|. From this, we have |D2−D1| ≤ (µ− 1)max{|D2−D|, |D1−D|} ≤
(µ− 1)‖D−D‖, delivering ‖D1−D2‖ ≤ ‖D−D‖(µ− 1) as we stated in the proposition.
(ii) Immediate from point (i) and Theorem 2 which implies exp d(Bn(D), D∗)→ 1.

C Proofs for Section 6

Proof of Proposition 6. Equality of values follows from standard arguments (e.g., Rock-
afellar (1974), Theorem 2). Saddle point existence implies that both the dual and pri-
mal problems have solutions (again see Rockafellar (1974), Theorem 2). If q∗ solves
the dual problem (i.e. q∗ attains the minimum in (IS)) and p∗ solves the primal prob-
lem, then from the definitions of these problems: D∗0 = supp∈P L (p, q∗) ≥ L (p∗, q∗) ≥
infq∈Q L (p∗, q) = P∗0 . Hence, equality of values D∗0 = P∗0 , implies that p∗ solves the in-
ner supremum in the dual problem and (q∗, p∗) ∈ Λ. The desired result then follows
from Proposition 4.

Proof of Proposition 7. Since a saddle point exists, the set of primal plans P∗ that
solve (P) is nonempty. From Proposition 6, whenever L admits a saddle, P∗ ⊂ P̂. By
assumption, P̂ only contains the element p̂. Hence P∗ = {p̂}.

Proof of Proposition 8. This proof is long and is reported in Online Appendix C. It is
structured as follows. First, existence of a saddle point with summable multipliers
is established for an abstract problem with inequality constraints. Next this problem
is related to a modified version of (P) (called (MP)). A Lagrangian is associated with
(MP) and it is shown that each primal plan solving (MP) is part of a saddle point
with a minimizing summable multiplier. Finally, it is shown that each solution to
(P) defines a solution to (MP) and the minimizing multiplier from (MP) is used to
construct a minimizing multiplier and, hence, saddle point for (P).
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Proof of Proposition 9. If (p̂, q̂) is a candidate plan satisfying Condition (T), then from
Proposition 4, it is a solution to the dual problem (IS). Moreover, from the dual
Bellman equation (21) in Proposition 3, (p̂, q̂) solves: D∗0 = F[s0, v̂0] − ŷv

0 · v̂0 + ŷk
0 ·

k̄ + D∗(s0, ŷk
0, ŷv

0). Condition (ii) implies F[s0, v̂0] ≥ D∗0 , and hence, from the weak du-
ality inequality, F[s0, v̂0] ≥ P∗0 . The feasibility condition (iii) then implies that P∗0 ≥
F[s0, v̂0]. Combining inequalities F[s0, v̂0] = P∗0 and p̂ solves (P). In addition, L (p̂, q̂) =
supp L (p, q̂) = D∗0 = P∗0 = infq L (p̂, q), where the first and second inequalities use
the fact that (p̂, q̂) solves the dual, the third uses the result above that D∗0 = P∗0 and
the fourth the fact that p̂ solves (P) and, so, maximizes infq L (p, q) and attains P∗0 .
Thus, p̂ solves max L (p, q̂) and q̂ solves min L (p̂, q) and (p̂, q̂) is a saddle for L .

References

Abreu, D., D. Pearce, and E. Stacchetti (1990). Towards a theory of discounted
games with imperfect information. Econometrica 58, 1041–1063.
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Appendices for Online Publication

A Numerical Implementation
This section describes how to implement the recursive dual approach numerically. Under
the conditions of Theorem 2, the dual Bellman operator is a contraction and, consequently,
it is natural to calculate D∗ via value iteration. Numerical approximation of candidate dual
value functions is facilitated by their sub linearity and the simplicity of their domain. The
dual Bellman involves an (outer) minimization over a set of multipliers; these multipliers are
passed to (and “coordinate”) a family of simple (inner) maximizations over current actions
and states. Additive separability in the objective may be exploited to decompose the inner
maximizations into a family of simpler maximizations that in parametric settings often have
analytical solutions.

Dual Value Function Approximation Numerical implementation of a value function it-
eration algorithm requires approximations to candidate value functions. Our implementation
exploits the sublinearity of dual value functions and use a piecewise linear approximation
(on the spherical domain C). Piecewise linear approximations to value functions defined on
spheres were first applied in economics by Judd et al. (2003). We apply their approximation
procedure to our setting.26 Recall that under the conditions of Theorem 2, the domain for
the dual Bellman operator may be identified with an interval of functions D : S ×Y → R each
of which is sub-linear in its second argument. As noted, these functions are fully determined
on S × C (or a subset thereof). Moreover, their sub-linearity implies that for all y ∈ C,27

D(s, y) = max
r∈V
{r · y | ∀y′ ∈ C, r · y′ ≤ D(s, y′)}. (A.1)

Given such a function D and a set of N distinct points ĈN := {yn}N
n=1 ⊂ C, define the approx-

imation D̂N as, for each (s, y) ∈ S × C,
D̂N(s, y) := max

r∈V
{r · y | ∀yn ∈ ĈN , r · yn ≤ D(s, yn)}. (A.2)

Since the constraint set in problem (A.2) is less restrictive than that in (A.1):

D ≤ D̂N ,

with equality at each (s, yn) ∈ S × ĈN. In addition, the approximation D̂N remains sub-linear,
is summarized by {s, yn, D̂N(s, yn)}N

n=1 and is easily evaluated by solving the simple linear
programming problem in (A.2). Let {ĈN}, N ≥ 1, be a sequence of subsets of C such that
(i) for all N, ĈN ⊂ ĈN+1 and (ii) Ĉ∞ = ∪N ĈN is dense in C.28 It is readily verified that the
corresponding sequence of approximating functions D̂N(s, ·) converges pointwise to D(s, ·)

26Judd et al. (2003) use this approach to approximate the support function of a payoff set in a
repeated game; we use it to approximate the recursive dual value function. In other aspects our
(recursive dual) formulation is different from that of Judd et al. (2003). Alternative approaches to
approximation on spherical domains are described in Sloan and Womersley (2000).

27For this and other properties of sublinear functions used below, see Florenzano and Van (2001).
28For example, the set of points in C with rational coordinates is dense in C, see Schmutz (2008).
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from above.29 Moreover, by Dini’s theorem30 it converges uniformly on C and, hence, in the
Thompson-like metric d to D(s, ·). In practical applications we use (hyper)spherical coordi-
nates to represent points in ĈN. The corresponding Cartesian coordinates of points in this
grid are recovered from spherical coordinates {φr

n} according to the formulas y1
n = cos(φ1

n),
for j = 2, . . . , nK + nV − 1, yj

n = cos(φj
n)∏

j−1
r=1 sin(φr

n) and ynK+nV
n = ∏nK+nV−1

r=1 sin(φr
n).

The approximation procedure described above may be integrated into the dual value iter-
ation to give the ν + 1-iteration step:31

∀(s, yn) ∈ S × ĈN , B̂(D̂N
ν )(s, yn) = inf

q∈Q
sup
p∈P

J(s, yn; q, p) + δ ∑
s′∈S

DN
ν (s′, y′(s′))π(s′|s). (A.3)

Optimization The inner supremum operation in (A.3) results in the indirect current dual
function J∗(s, yn; q) = supp∈P J(s, yn; q, p). Additive separability of the function J across dif-
ferent components of p can often be exploited to break the supremum down into separate
optimizations over the components of p which can be run in parallel or in some cases solved
analytically. In these latter cases no explicit numerical maximization over primal choices is
needed. Once the inner suprema are solved, an indirect objective over multipliers is obtained
and (A.3) becomes:

∀(s, yn) ∈ S × ĈN , B̂(D̂N
ν )(s, yn) = inf

q∈Q
J∗(s, yn; q) + δ ∑

s′∈S
DN

ν (s′, y′(s′))π(s′|s). (A.4)

The objective in (A.4) is convex (even if the underlying problem is not), but it is not smooth.32

There are many optimization procedures for non-smooth, convex dual problems (e.g. sub-
gradient algorithms, cutting plane algorithms and so forth33). These may be used to solve
the problems (A.4). An alternative approach developed by Necoara and Suykens (2008) is
to smooth the dual problem through the addition of strongly concave (prox) functions to
the objective in (A.2) (and, if necessary, the objective J in the inner sup problems). In our
calculations, we follow Necoara and Suykens (2008) by adding terms cv‖r‖2 to the objective
in (A.2) and allowing cv → 0 with successive iterations. We use the optimizer SNOPT to solve
these (smoothed) optimizations.

B The Limited Commitment Example
This section collects details of and extensions to the results of Section 2.

29 It clearly converges at all points in Ĉ∞. Choose a point y ∈ C. Let {y1
r} and {y2

r} be two sequences
in ∪N ĈN converging to y and such that y = λrary1

r +(1−λr)bry2
r , with λr ∈ (0, 1), ar, br ∈ R+ and ar, br ↓ 1,

i.e. ary1
r and bry2

r lie either side of y on the tangent to C passing through y. There is a sequence {Nr}
such that D̂Nr (s, y1

r ) = D(s, y1
r ) and D̂Nr (s, y2

r ) = D(s, y2
r ). By the sub-linearity of D(s, ·) and each D̂Nr (s, ·),

we have D(s, y) ≤ DNr (s, y) ≤ λrD̂Nr (s, ary1
r ) + (1− λr)D̂Nr (s, bry2

r ) = λrarD̂Nr (s, y1
r ) + (1− λr)brD̂Nr (s, y2

r ) =
λrarD(s, y1

r ) + (1− λr)brD(s, y2
r ). Since D(s, ·) is real-valued and convex, it is continuous at all interior

points; by linear homogeneity, D(s, ·) is continuous throughout Y , hence y1
r → y, y2

r → y and ar, br ↓ 1,
it follows that the last term in the string of inequalities converges to D(s, y). Thus, the sequence of
functions converges pointwise on C and by the positive homogeneity of the functions on Y as well.

30See Chapter 2, Aliprantis and Border (2006) for a statement and proof of Dini’s theorem.
31With some simplification if the problem is quasilinear.
32 J∗ may be smooth if it is obtained from component problems with strictly concave objectives and

concave constraint functions. However, our approximation procedure implies that D̂N is non-smooth.
33Good references for such methods include Bertsekas (2003) and Ruszczyński (2006).
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B.1 Numerical Method
The numerical approach is outlined in Appendix A. We apply this approach to the trans-
formed version of the problem described in Section 2. Inner maximizations are solved ana-
lytically when possible and the indirect payoffs J∗(s, y; q) are substituted directly into (5). On
the ν-th application of the Bellman operator the following family of minimizations is solved,
for s ∈ S and yn ∈ ĈN

+ ,

DN
ν+1(s, yn) = inf

q
J∗(s, yn; q) + δ ∑

s′∈S
DN

ν (s′, y′(s′))π(s′|s), (B.1)

where J∗ is defined as in (7) and ĈN
+ is a finite subset of C+ = C ∩RnI

+ and is represented as
a grid of points in spherical coordinates (either {φn} ⊂ [0, π) if nI = 2 or {φ1

n, φ2
n} ∈ [0, π)2 if

nI = 3). In the nI = 2 case, the spherical coordinate gives the (Pareto) weights on agents one
and two according to y1 = cos φ and y2 = sin φ); in the nI = 3 case, φ1 gives the weight on
agent 1 relative to agents 2 and 3, while φ2 gives the weight on agent 2 relative to 3.

B.2 Construction of Bounding Functions
Application of Theorem 2 (and the proof that B is a contraction) requires the definition
of bounding value functions D, D and D. In this subsection bounding functions satis-
fying Assumption 3 are obtained for the transformed limited commitment problem. Let
v := maxS

γ(s)1−σ

1−σ and v = (a/2)1−σ

1−σ , where a is the non-negative (positive if σ > 1) lower bound
on agent consumptions. Assume an ã ∈ AnS and let ξ > 0 be such that for each s ∈ S,
γ(s) > ∑i∈I ãi(s), and for each s ∈ S and i ∈ I,

v− ξ ≥ 1− δ

1− σ
[ãi(s)]1−σ + δv >

1− δ

1− σ
[ãi(s)]1−σ +

δ

1− σ

{
∑

s′∈S
[(1− σ)wi(s′)]θπ(s′|s)

} 1
θ
> wi(s) + ξ,

(B.2)

where θ := 1−ρ
1−σ . Set:

D(s, y) = ∑
i∈I

yi ϕi(yi, s), ϕi(yi, s) =

{
v if yi ≥ 0
v else if yi < 0,

and

D(s, y) = ∑
i∈I
{yiψi(yi, s) + |yi|ξ}, ψi(yi, s) =

{
wi(s) if yi ≥ 0
v else if yi < 0.

It is immediate that D is continuous and that D is continuous and positively homogeneous.
It is also easy to see that D ≥ D∗: while the supremum operations defining D∗ are restricted
by feasibility and default constraints, D gives the maximal weighted payoff subject only to
the restriction that payoffs remain within V . In addition, it follows from (B.2) that D ≤ D∗.

We verify that for ε > 0, B(D) ≤ D and B(D) > D + ε on S × C. B(D) is given by, for all
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(s, y) ∈ S × Y ,

B(D)(s, y) = inf
Q

sup
P

∑
i∈I

(yi + mi)

 1− δ

1− σ
[ai]1−σ +

δ

1− σ

{
∑

s′∈S
[(1− σ)v′,i(s′)]θπ(s′|s)

} 1
θ

−∑
i∈I

miwi(s)

−mnI+1

(
∑
i∈I

ai − γ(s)

)
− δ ∑

s′∈S
∑
i∈I

y′,i(s′)v′,i(s′)π(s′|s) + δ ∑
s′∈S

D(s′, y′(s′))π(s′|s). (B.3)

Setting D = D, using the definition of v and v and noting that the dual variables (m, y′)
can always be chosen equal to 0 in the infimum and D(s, 0) = 0, we have B(D)(s, y) ≤
D(s, y). Finally, we show B(D) > D + ε on S × C. Given y′ = {y′,i(s′)}, define ψ(y′) =

{ψi(y′,i(s′), s′)}(i,s′)∈I×S . Setting D = D and noting that for any s and choice of (m, y′), the
pair (ã(s), ψ(y′)) is a feasible choice for the supremum with respect to both the resource and
no default constraints, we have:

B(D)(s, y) ≥ inf
q∈Q∑

i∈I
(yi + mi)

 1− δ

1− σ
[ãi(s)]1−σ +

δ

1− σ

{
∑

s′∈S
[(1− σ)ψi(y′,i(s′), s′)]θπ(s′|s)

} 1
θ


−∑

i∈I
miwi(s)−mnI+1

(
∑
i∈I

ãi(s)− γ(s)

)

≥ inf
y′

∑
i∈I

yi

 1− δ

1− σ
[ãi(s)]1−σ +

δ

1− σ

{
∑

s′∈S
[(1− σ)ψi(y′,i(s′), s′)]θπ(s′|s)

} 1
θ


where the first inequality follows from the replacement of the sup with the choices (ã(s), ψ(y′)).
The second inequality uses the feasibility of these choices, i.e γ(s) − ∑i∈I ãi(s) ≥ 0 and
1−δ
1−σ (ãi(s))1−σ + δ

1−σ

(
∑s′∈S [(1− σ)ψi(y′,i(s′), s′)]θπ(s′|s)

) 1
θ ≥ wi(s), and thus the fact that m = 0 is

minimising. Now, using the additive separability across agents, each agent i can be analyzed
separately. If yi ≥ 0, then

inf
y′,i(·)

yi

 1− δ

1− σ
[ãi(s)]1−σ +

δ

1− σ

{
∑

s′∈S
[(1− σ)ψi(y′,i(s′), s′)]θπ(s′|s)

} 1
θ


≥ yi

 1− δ

1− σ
[ãi(s)]1−σ +

δ

1− σ

{
∑

s′∈S
[(1− σ)wi(s′)]θπ(s′|s)

} 1
θ

 ≥ yi(wi(s) + ξ),

with the inequality strict if yi > 0. Note that if σ > 1, then 0 ≤ (1 − σ)ψi(y′,i(s′), s′) ≤
(1− σ)wi(s′), ∀ i, s, and hence

{
∑S [(1− σ)ψi(y′,i(s′), s′)]θπ(s′|s)

} 1
θ ≤

{
∑S [(1− σ)wi(s′)]θπ(s′|s)

} 1
θ

which implies the above inequality when both sides are multiplied by the negative number
δ

1−σ . The last inequality holds by our assumption on ãi(s). Similarly, if yi < 0, then

inf
y′,i

yi

 1− δ

1− σ
[ãi(s)]1−σ +

δ

1− σ

{
∑

s′∈S
[(1− σ)ψi(y′,i(s′), s′)]θπ(s′|s)

} 1
θ


≥ yi

{
1− δ

1− σ
[ãi(s)]1−σ + δv

}
> yi(v− ξ).
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Consider now the auxiliary function:

D̃(s, y) = ∑
i∈I
{yiψ̃i(yi, s) + |yi|ξ},

where:

ψ̃i(yi, s) =

{
1−δ
1−σ [ã

i(s)]1−σ + δ
1−σ

{
∑s′∈S [(1− σ)wi(s′)]θπ(s′|s)

} 1
θ if yi ≥ 0

1−δ
1−σ [ã

i(s)]1−σ + δv else if yi < 0.

D̃(s, y) is clearly a continuous function. Our preceding derivations show that for all (s, y) ∈
S × C, B(D)(s, y) ≥ D̃(s, y) > D(s, y). The continuity of each D(s, ·) and D̃(s, ·) and the com-
pactness of C then implies that there is a ε > 0 such that for all (s, y) ∈ S × C, B(D)(s, y) ≥
D̃(s, y) > D(s, y) + ε, and hence B(D)(s, y) ≥ D(s, y) + ε as required.

B.3 Numerical Calculations
This subsection reports additional calculations for the two and three agent cases.

B.3.1 Two Agents

In the main text results for the case σ = 1.5 and ρ = 5 are reported. Values of ρ that
are smaller and closer to σ result in more volatility in consumption and a muting of the
dynamics that occur when none of the no default constraints are binding. In the limiting
case of expected utility preferences ρ = σ these dynamics disappear completely. The following
figures illustrate for the case σ = ρ = 1.5.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

ψ

C
o
n
s
u
m
p
t
io

n

(a) Consumption

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

ψ

m

(b) Multipliers

Figure 3: Solid lines give agent 1’s policy, dashed lines agent 2’s policy. Policies are
given as functions of agent 1’s normalized costate and for s = 1. Panel a shows agent
consumption; panel b multipliers on the commitment constraints.
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(a) Costates: s = 1, s′ = 1
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(b) Costates: s = 3, s′ = 3
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(c) Simulated state shocks
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(d) Agent 1’s simulated consumption

Figure 4: Panels a and b show the (normalized) costates associated with remaining
in state 1 and state 3, respectively, as a function of the initial value of the costate
ψ. Solid lines give agent 1’s policy, dashed lines agent 2’s policy. The 45 degree
line is illustrated with dots. Policies are given as functions of agent 1’s normalized
costate and for s = 1. Panels c and d illustate a 250 period simulation of agent 1’s
consumption which displays the usual ’memoryless’ property. When a change of state
s leads a different agent’s no default constraint to bind, an adjustment in agent 1’s
consumption occurs. Thus, this agent’s consumption bounces between two (history
independent) levels; it remains constant whenever the economy remains in the same
state or transitions into s = 3.
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B.3.2 Three Agents

We now show computed results from a 3 agent economy. The preference parameters are
set to σ = 1.5, ρ = 5 and δ = 0.8. In shock state s agent s has an outside option equal to
the utility from a steady endowment stream of 40% of the total endowment, agents s′ 6= s
have outside options equal to the utility from a steady endowment stream of 10% of the
total endowment. These values preclude full risk sharing. It is convenient to plot policies
as functions of spherical coordinates (φ1, φ2). The corresponding costates or “Pareto weights”
on agents are y1 = cos φ1, y2 = sin φ1 cos φ2 and y3 = sin φ1 sin φ2. Thus, higher values of φ1
imply less weight on agent 1’s utility and more on agent 2 and 3’s, while higher values of φ2
imply less weight on agent 2’s utility and more on agent 3’s (with no change in the weight
on agent 1’s). Figure 5 shows the computed optimal dual value function and the Thompson
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(b) Convergence

Figure 5: Panel a shows the planner’s dual value function in shock state s = 1 at the
terminal iteration. Panel b shows the Thompson metric distance between iterates.

metric distance between successive iterates - illustrating the geometric convergence of the
value iteration.

Figure 6 shows calculated policy functions. Panel a of the figure displays the optimal
multiplier m2 for agent 2 in shock state 2 (in which agent 2 has a high outside option and
agents 1 and 3 low ones). The weight y2 is small and agent 2’s incentive multiplier corre-
spondingly large when the spherical coordinates φ1 and φ2 are, respectively, small and large.
Then, the combination of a low costate and a high outside option imply that additional con-
sumption must be given to agent 2 now and in the future to keep her inside the risk sharing
arrangement. Panels (b), (c), and (d) of Figure 6 show the consumption of agents 1, 2 and
3 as functions of the costates again given s = 2. Each agent’s consumption rises in areas
of the state space corresponding to a higher (Pareto) weighting. Agent 2’s consumption is
sustained above 0.5 by her binding incentive constraint, while the consumption of agents 1
and 3 decreases towards 0.2 as their (Pareto) weights decrease to zero.

Panels a and b of Figure 7 show “quiver plots” indicating the direction in which the
spherical coordinates describing costates are updated if the economy remains in shock state
s = 1 (panel a) and s = 2 (panel b). Consider panel a. Recall that high values of φ1 imply that
the costate on agent 1 is low. Agent 1’s no default constraint is then binding, her multiplier
is positive and her costate is raised. The spherical coordinate φ1 is correspondingly reduced
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Figure 6: Figures are drawn on a domain of costates expressed in spherical coordi-
nates. Higher values of φ1 place more weight on agents 2 and 3, higher values of φ2
place more weight on agent 3. Panel a displays the incentive multiplier for agent 2 in
shock s = 2. The remaining 3 panels display the consumption of agents in shock s = 2.

(placing less weight on agents 2 and 3 and more on agent 1). This is indicated by a left
pointing arrow at high φ1 values (on the right hand side of the plot). Low values for φ1 and
high values for φ2 imply that the costate on agent 2 is low. If it is low enough, then even
in state 1 (when agent 2’s outside option is low), agent 2’s outside option binds. Hence,
agent 2’s costate is increased. Spherical coordinate φ1 is correspondingly increased and φ2
decreased and the arrows in the top left hand corner of the plot point down and inwards.
Similar reasoning holds with respect to the bottom left hand corner of the plot, where agent
3’s costate is low and outside option binds and the arrows point up and inwards. In the
dotted region in the center left of the plot no incentive constraints bind. Here very small
adjustments to costates occur that stem from the early resolution of uncertainty structure
of preferences and the force for equality that it imparts. Panel b shows the adjustments in
spherical coordinates when the economy remains in shock state s = 2 and agent 2’s outside
option is large. It has an analogous interpretation to panel a.
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Figure 7: Policy functions and simulations. Panels a and b show a quiver plot for the
costate policy functions associated with remaining in states s = 1 and s = 2 respec-
tively. The arrows in the plots indicate the direction in which the spherical coordinates
describing costates are updated. Panels c and d show simulations of shocks and of
the consumption of agent 1.
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Panel c and d show a simulation of shocks and agent 1’s consumption. Consumption
remains relatively stable if the economy persists in a given shock state. But large adjust-
ments occur when a transition into or out of shock s = 1 occurs (and agent 1’s outside option
abruptly changes relative to the other agents’ outside options).

B.4 Primal Formulation
This section considers the primal approach to solving the limited commitment problem in
Section 2 (with untransformed utilities). Assume that λ1 > 0. Recall the definitions in
the main text of the following objects: Ĩ := {2, 3, . . . , nI}, Ṽ := ×i∈Ĩ [a

i, ai], X̃ ∗(s) = {ṽ :
∃v1 with (v1, ṽ) ∈ X ∗(s)} and P̃∗(s, ṽ) = sup{v1 : (v1, ṽ) ∈ X ∗(s)}. Suppose the sets {X ∗(s)}s∈S
of feasible continuation promise values are unknown. The pair (X̃ ∗, P̃∗) can be computed as
a fixed point of the following Bellman-like relation:

∀s ∈ S , X̃ ∗(s) = {ṽ ∈ Ṽ : Γ̃(s, ṽ; X̃ ∗, P̃∗) 6= ∅} (B.4)

∀(s, ṽ) ∈ Graph X̃ ∗, P̃∗(s, ṽ) = sup
Γ̃(s,ṽ;X̃ ∗,P̃∗)

{
(1− δ)[a1]1−σ + δ

{
∑

s′∈S

[
P̃∗(s′, ṽ′(s′))

]1−ρ
π(s′|s)

} 1−σ
1−ρ

} 1
1−σ

(B.5)

where:

Γ̃(s, ṽ; X̃ ∗, P̃∗) :=


(a, ṽ′) ∈ A× ṼnS

∣∣∣∣∣∣∣∣∣∣∣∣

∀i ∈ Ĩ , ṽi(s) =
[
(1− δ)[ai]1−σ + δ

{
∑S
[
ṽ′,i(s′)

]1−ρ
π(s′|s)

} 1−σ
1−ρ
] 1

1−σ

H[s, a, {P̃∗(s′, ṽ′(s′)), ṽ(s′)}s′∈S ] ≥ 0

and ∀s′, ṽ′(s′) ∈ X̃ ∗(s′).


and

H[s, a, {P̃∗(s′, ṽ′(s′)), ṽ(s′)}s′∈S ] =



[
(1− δ)[a1]1−σ + δ

{
∑S
[
P̃∗(s′, ṽ′(s′))

]1−ρ
π(s′|s)

} 1−σ
1−ρ

] 1
1−σ

− w1(s)
[
(1− δ)[ai]1−σ + δ

{
∑S
[
ṽ′,i(s′)

]1−ρ
π(s′|s)

} 1−σ
1−ρ

] 1
1−σ

− wi(s)


i∈Ĩ

γ(s)−∑i∈I ai


.

The pair (X̃ ∗, P̃∗) may be calculated via a monotone iteration that jointly updates a state
space-value function pair at each step. Specifically, this involves selecting a domain X̃1 ⊃ X̃ ∗
and a value function P̃1 : Graph X̃1 → R, such that for all (s, ṽ) ∈ Graph X̃ ∗, P̃1(s, ṽ) ≥ P̃∗(s, ṽ)
and successively updating the pair according to, ∀s ∈ S, X̃n+1(s) = {ṽ ∈ Ṽ : Γ̃(s, ṽ; X̃n, P̃n) 6= ∅}
and ∀(s, ṽ) ∈ Graph X̃n+1,

P̃n+1(s, ṽ) = sup
Γ̃(s,ṽ;X̃n,P̃n)

{
(1− δ)[a1]1−σ + δ

{
∑

s′∈S

[
P̃n(s′, ṽ′(s′))

]1−ρ
π(s′|s)

} 1−σ
1−ρ

} 1
1−σ

.

Rustichini (1998a) gives sufficient conditions for monotone convergence of the sequence
{X̃n, P̃n} to (X̃ ∗, P̃∗) in a related problem. Numerical implementation of the procedure re-
quires approximation of the sequence of correspondences {X̃n}. When nI = 2 this is practical
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as each X̃n(s) is an interval (for a given s) and is, thus, summarized by its two end points.
More generally, for nI > 2, it remains difficult. A recent promising approach is suggested
by Cai et. al. (2016) who, in a different setting, relax the incentive constraints with penalty
functions and use adaptive splines to prevent penalties proliferating.

C Proof of Proposition 8
We first establish existence of a saddle point with summable multipliers for an abstract
problem with inequality constraints. We then relate this problem to a modified version of (P)
(called (MP)). We associate a Lagrangian with (MP) and show that each primal plan solving
(MP) is part of a saddle point with a minimizing summable multiplier. Finally, we show that
each solution to (P) defines a solution to (MP) and use the minimizing multiplier from (MP) to
construct a minimizing multiplier and, hence, saddle point for (P).

The Abstract Problem Consider:

sup f (x) s.t. g(x) ≥ 0, (AP)

where f : `∞ → R and g : `∞ → `∞, with g(x) = {gr(x)}∞
r=1 and each gr : `∞ → R. Associate the

Lagrangian L : `∞ × `∞,?
+ → R with (AP), where:34

L(x, λ) := f (x) + 〈λ, g(x)〉.

Given Assumption 7 below and the existence of a solution x∗ to (AP), Theorem C.1 establishes
the existence of a saddle point.

Assumption 7. (C) Concavity: f and g are concave. (S) Slater Condition: There is an x̂ such
that infr gr(x̂) > 0.

Theorem C.1 (Saddle point existence for the abstract problem).

(i) If x∗ is feasible for (AP) and solves maxx∈`∞ L(x, λ∗) with λ∗ ∈ `∞,? such that λ∗ ≥ 0 and
〈λ∗, g(x∗)〉 = 0, then x∗ solves (AP).

(ii) If Assumption 7 holds and x∗ solves (AP), then there is a λ∗ ∈ `∞,? such that λ∗ ≥ 0 and
〈λ∗, g(x∗)〉 = 0. Moreover, x∗ solves maxx∈`∞ L(x, λ∗).

(iii) If (a) λ∗ ≥ 0 and (b) 〈λ∗, g(x∗)〉 = 0, then x∗ is feasible for (AP) if and only if:

L(x∗, λ∗) ≤ L(x∗, λ) ∀λ ∈ `∞,? with λ ≥ 0.

(iv) If Assumption 7 holds and x∗ solves (AP), then L has a saddle point in `∞ × `∞,?
+ .

Proof of Theorem C.1. (i) If x is feasible for (AP), then all nonlinear constraints must hold with
inequality and 〈λ∗, g(x)〉 ≥ 0. Thus, for any feasible choice x: f (x∗) = f (x∗) + 〈λ∗, g(x∗)〉 =
L(x∗, λ∗) ≥ L(x, λ∗) = f (x) + 〈λ∗, g(x)〉 ≥ f (x). (ii) This proof is standard. To save space, we do
not report it here, but refer the interested reader to Luenberger (1969), Theorem 1, page 217-
218. (iii) (⇒) If x∗ is feasible, then g(x∗) ≥ 0. Hence, for all λ ≥ 0, 〈λ, g(x∗)〉 ≥ 0 and 0 is the
infimum of 〈λ, g(x∗)〉 over λ ≥ 0. Hence, from (a) and (b), f (x∗)+ 〈λ∗, g(x∗)〉 ≤ f (x∗)+ 〈λ, g(x∗)〉,
∀λ ∈ `∞,?

+ . (iii) (⇐) Suppose for a given x∗ we have 〈λ∗, g(x∗)〉 = 0, and λ∗ ∈ arg minλ∈`∞,?
+
L(x∗, λ).

Suppose for some r, gr(x∗) < 0. Let λ̂ = λ∗ + χ, with χ(ν) = 1 if ν = r and 0 otherwise. Then

34Define λ ∈ `∞,∗
+ if λ ∈ `∞,∗ and λ ≥ 0, where λ ≥ 0 ⇐⇒ 〈λ, y〉 ≥ 0 ∀y ∈ `∞, y ≥ 0.
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L(x∗, λ̂) < L(x∗, λ∗) contradicting the fact that λ∗ is a minimizer. Hence, it must be that
g(x∗) ≥ 0 (i.e., x∗ is feasible). (iv) It immediately follows from (ii) and (iii), that if Assumption 7
holds and x∗ solves (AP), then L has a saddle point in `∞ × `∞,?

+ .

We now refine Theorem C.1 and give conditions such that the minimizing multiplier λ∗ in
Theorem C.1(ii) lies in `1 ⊂ `∞,?. By Yosida and Hewitt (1952), Theorems 1.22 and 1.24, `∞,?

admits the decomposition `∞,? = `1 + `s with `s the set of pure finitely additive components.
Assumption 8 below ensures summability of the minimizing multiplier.35 In the assumption
and throughout the proof, for a pair x and y ∈ `∞, and T ∈ N, let xT(x, y) := xr if r ≤ T and yr,
if r > T.

Assumption 8. (C) Continuity: limT→∞ f (xT(x, y)) = f (x).
(AN) Asymptotically non-anticipatory: ∀t, limT→∞ gr(xT(x, y)) = gr(x).
(AI) Asymptotically insensitive: for all N, limr→∞[gr(xN(x, y))− gr(y)] = 0.
(B) Uniform Boundedness: ∃M s.t. for all T, supr ‖gr(xT(x, y))‖E ≤ M.36

Theorem C.2. Suppose f and g satisfy Assumption 7 (S) and Assumption 8. If (x∗, λ∗) ∈
`∞ × `∞,?

+ is a saddle point of L, then (x∗, λ∗) ∈ `∞ × `1
+.

Proof of Theorem C.2. The proof uses two key lemmas.

Lemma C.1. Given Assumption 8 (AI), ∀ λs ∈ `s and N ≥ 1, 〈λs, g(xN(x, y))〉 = 〈λs, g(y)〉.

Proof. If λs ∈ `s, then for all z = {zr} ∈ `∞ with limr→∞ zr = 0, we have 〈λs, z〉 = 0. By As-
sumption 8 (AI), ∀N, limr→∞[gr(xN(x, y))− gr(y)] = 0 and so ∀N, 〈λs, [g(xN(x, y))− g(y)]〉 = 0 as
required.

Lemma C.2. Given Assumption 8 (ANA) and (B), ∀ λ1 ∈ `1, limT→∞〈λ1, g(xT(x, y))〉 = 〈λ1, g(x)〉.

Proof. For all T, N ∈ N, ‖〈λ1, g(xT(x, y))〉 − 〈λ1, g(x〉)‖E ≤ ∑N
r=0 ‖λ1

r‖E ‖gr(xT(x, y)) − gr(x)‖E +
supr ‖gr(xT(x, y))− gr(x)‖E ∑∞

r=N+1 ‖λ1
t ‖E. From Assumption 8 (B), there is an M > 0 such that

∀T, supr ‖gr(xT(x, y))− gr(x)‖E ≤ M̄ := M + supr ‖gr(x)‖E. Since λ1 ∈ `1 for each ε > 0 there
is an N0 such that ∑∞

r=N0+1 ‖λ1
r‖E < ε

/
2M̄ , and so, from Assumption 8 (ANA), there is a T̄r

such that ∀T ≥ T̄r, ‖λ1
t ‖E ‖gr(xT(x, y))− gr(x)‖E < ε/2N0 . Hence, combining conditions, for all

T > maxr≤N0 {T̄r}, ‖〈λ1, g(xT(x, y))〉 − 〈λ1, g(x)〉‖E < N0 ε/2N0 + M̄ ε
/

2M̄ = ε. Since ε > 0 was
arbitrary this proves the result.

We now conclude the proof of Theorem C.2. Since (x∗, λ∗) is a saddle in `∞ × `∞,?
+ , we have

for all x ∈ `∞, L(x, λ∗) ≤ L(x∗, λ∗), and 〈λ∗, g(x∗)〉 = 0. Let λ∗ = λ1 + λs. Since λ∗ ≥ 0 we have
both 〈λ1, g(x∗)〉 = 0 and 〈λs, g(x∗)〉 = 0. Since x∗ maximizes L(·, λ∗) over `∞ and 〈λ∗, g(x∗)〉 = 0:

f (x∗) ≥ f (xT(x∗, x̂)) + 〈λ1, g(xT(x∗, x̂))〉+ 〈λs, g(xT(x∗, x̂))〉. (C.1)

Recall that if x̂ is chosen to satisfy the Slater condition then infr gr(x̂) > 0. Lemma C.1 and
Lemma C.2 together imply that for T → ∞ we have both: 〈λ1, g(xT(x∗, x̂))〉 → 〈λ1, g(x∗)〉 and
〈λs, g(xT(x∗, x̂))〉 → 〈λs, g(x̂)〉. Moreover, from Assumption 8 (C) we have f (xT(x∗, x̂)) → f (x∗).
If λs 6= 0 since λs ≥ 0 taking limits in (C.1) we have the following contradiction: f (x∗) ≥
f (x∗) + 〈λs, g(x̂)〉 > f (x∗). Thus, λs = 0.

35 Dechert (1982) introduced the terminology used in Assumption 8 (AN) and (AI). He shows
summability of multipliers under slightly different assumptions. The proofs of Lemma C.1 and
Lemma C.2 follow Le Van and Saglam (2004) who focus on variations to the deterministic model
of optimal growth.

36The number ‖gr(x)‖E represents the Euclidean norm of the vector gr(x).
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Modified Problem Let

PR =
{

p = (a, k, v)
∣∣ ∀t ≥ 0, at : S t → A, kt : S t−1 → K, vc

t : S t → V c }
denote the set of (modified) primal plans that exclude the quasilinear state variables. In
addition, letting bl

0 = Inl (with Inl the nl-identity matrix) and for all ∀t, st, s′ bl
t+1(s

t, s′|s0) =

bl
t(s

t|s0)Bl(st, s′), define:

V l(st, a|st) := (1− δ)
∞

∑
n=0

δn ∑
Sn

bl
n(s

t+n|st)ul(st+n, al
t+n(s

t+n))πn(st+n|st), (C.2)

where the previous expression is well defined since Assumption 5(iv) implies that all entries
of the diagonal matrices Bl are bounded between −1 and +1. Relax the non-linear laws of
motion for state variables and replace the quasilinear state variables using (C.2) to obtain
the modified problem:

MP∗0 := sup F[s0, vc
0, V l(s0, a)] (MP)

subject to pR ∈ PR, k0 ≤ k̄ and ∀t, st,

kt+1(st) ≤Wk[kt(st−1), st, at(st)], (C.3)

vc
t(s

t) ≤Wc[st, at(st), Mc[st, vc
t+1(s

t, ·)]], (C.4)

and H[kt(st−1), st, at(st), vc
t+1(s

t, ·), V l(·, a|st, ·)] ≥ 0.

We relate the original problem (P) to the modified problem (MP).

Lemma C.3. Let Assumptions 2, 4 and 5 (iv) hold and let k̄ ∈ K∗(s0). Then MP∗0 = P∗0 and for
any solution p∗ = (pR∗, vl∗) to (P), pR∗ is a solution to (MP).

Proof. Let p = (pR, vl) denote a feasible plan for (P), then, given Assumption 5 (iv), it is
readily shown via iteration on the law of motion for quasilinear states that v0 = V l(s0, a) and
for all t = 1, 2, . . . and st ∈ S t, vl

t(s
t) = V l(st, a|st). Hence, since the nonlinear laws of motion are

relaxed in (MP), pR is feasible for (MP) and, so, MP∗0 ≥ P∗0 . Since k̄ ∈ K∗(s0) and the constraints
of (P) are non-empty, the constraint set for (MP) is also non-empty. By Assumption 2 and a
similar argument to Proposition 1, (MP) has a solution p̂R. Let v̂l = {v̂l

t}, with v̂0 = V l(s0, â)
and for all t = 1, 2, . . . and st ∈ S t, v̂l

t(s
t) = V l(st, â|st). If p̂ = (p̂R, v̂l) is feasible for (P), then

MP∗0 = P∗0 and, hence, the pR component of any solution to the original problem (P) solves
(MP). Suppose that p̂ is not feasible for (P) and that F[s0, v̂0] > P∗0 . Then k̂0 ≤ k̄,

k̂t+1(st) ≤Wk[k̂t(st−1), st, ât(st)], (C.5)

v̂c
t(s

t) ≤Wc[st, ât(st), Mc[st, v̂c
t+1(s

t, ·)]], (C.6)

v̂l
t(s

t) = W l [st, ât(st), Ml [st, v̂l
t+1(s

t, ·)]],
and H[k̂t(st−1), st, ât(st), v̂t+1(st, ·)] ≥ 0,

with at least one of the constraints k̂0 ≤ k̄, (C.5) or (C.6) a strict inequality. Consider first
modifying p̂ by increasing k̂0 until it equals k̄ ∈ K∗(s0) ⊂ K and successively at each history
raising k̂t+1(st) until it equals Wk[k̂t(st−1), st, ât(st)]. By Assumption 4 (ii) and (iii), the modified
plan satisfies (C.3) with equality at each st, the H constraints at each st and has each kt(st) ∈
K. If each (C.6) holds with equality at p̂ and, hence, at the modified plan, then the modified
plan has a payoff MP∗0 (since it did not alter v̂0) and is feasible for (P). Thus, P∗0 ≥ MP∗0 .
Suppose that at some st, v̂c

t(s
t) < Wc[st, ât(st), Mc[st, v̂c

t+1(s
t, ·)]]. Then further modify the plan
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by raising v̂c
t(s

t) until equality is restored. Since we assume throughout that Wv[s, a, Mv[s, ·]] :
VnS → V and, hence, Wc[s, a, Mc[s, ·]] : (V c)nS → V c and since vc

t+1(s
t, ·) ∈ (V c)nS , the adjusted

vt
c(st) ∈ V c. Continuing in this way through successively shorter histories sτ, each vc

τ(sτ)
is increased (by the strict monotonicity of Wc and Mc) and, in particular, vc

0 is increased.
Hence, by the increasingness of F[s0, ·], the modified plan raises the value of F[s0, ·] above
F[s0, v̂0]. Since the pR component of this plan is feasible for (MP), the optimality of p̂R for
(MP) is contradicted. Thus, the modified plan must satisfy the conditions (C.4) with equality.
We conclude that P∗0 ≥ MP∗0 . Combining inequalities P∗0 = MP∗0 and the pR component of
any optimum for (P) is feasible for (MP), attains a payoff of MP∗0 and, hence, is optimal for
(MP).

Relating the modified problem to the abstract problem For each (modified) primal
plan pR, define the constraint values as follows: z(pR) = (zk(pR), zc(pR), zh(pR)), with zk(pR) =
{zk

t (p
R)}∞

t=0, where zk
0(p

R) := k̄− k0 and, for all t = 1, 2, . . . , and st ∈ S t,

zk
t (p

R)(st) := Wk[kt−1(st−1), st−1, at−1(st−1)]− kt(st);

zc(pR) = {zc
t(p

R)}∞
t=0, where for all t = 0, 1, 2, . . ., st ∈ S t,

zc
t(p

R)(st) := Wv[st, at(st), Mc[st, vc
t+1(s

t, ·)]]− vc
t(s

t)

and zh(pR) = {zh
t (p

R)}∞
t=0, where:

zh
t (p

R)(st) := H[kt(st−1), st, at(st), vc
t+1(s

t, ·), V l(s′, a|st, ·)].

Let yk = {yk
t}∞

t=0, with yk
t : S t → R

nK
+ , denote non-negative costates for the backward-

looking law of motion and yc = {yc
t}∞

t=0, with yc
t : S t → R

nc
+ , non-negative costates for the

forward-looking non-linear laws of motion. Let m = {mt}∞
t=0, with mt : S t → R

nH
+ , denote

multipliers for the H-constraints. Collect these various multipliers into a (modified) dual
plan qR = {m, yk, yc} and define the set of such dual plans to be:

QR =

{
qR

∣∣∣∣∣ ∞

∑
t=0

∑
S t

δt{‖mt(st)‖E + ‖yk
t (s

t)‖E + ‖yc
t(s

t)‖E}πt(st|s0) < ∞

}
,

We associate the following Lagrangian L : PR ×QR → R with (MP):

L R(pR, qR) = F[s0, vc
0, V l(s0, a|s0)] + 〈qR, z(pR)〉,

with: 〈qR, z(pR)〉 = ∑∞
t=0 ∑S t δt{mt(st) · zh

t (p
R)(st) + yk

t (s
t) · zk

t (p
R)(st) + yc

t(s
t) · zc

t(p
R)(st)}πt(st|s0).

Lemma C.4. If pR∗ solves (MP) and Assumptions 5 and 6 hold, then there exists a qR ∈ QR

such that (pR∗, qR∗) is a saddle point of L R on PR ×QR.

Proof. We first re-express (MP) as an abstract problem of the form (AP). Next, we verify As-
sumptions 7 and 8. The result then follows from Theorems C.1 and C.2. In (MP) constraints
are indexed by histories, in (AP) by the natural numbers. To convert one to the other, let
S = ∪∞

t=0S t denote the countable set of all histories (and recall that S = {1, . . . , nS}). Relabel
histories according to τ : S → N with τ(st) = (1 + ∑t−1

r=1 sr · nt−r
S + st).37 Thus, the relabeled

37For example, consider the history (s0, s1, s2) = (s0, 2, 5). We have τ(s0) = 1, τ(s0, 2) = 1 + 2 = 3, and
τ(s0, 2, 5) = 1 + 2 · nS + 5 = 2 · nS + 6.
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history 1 is the initial (date 0) history, relabeled histories 2, . . . , nS + 1 are the period 1 his-
tories occurring after each period 1 shock realization and so on. Choice variables may be
grouped and re-indexed accordingly. Specifically, let x = {xτ}∞

τ=1 ∈ `∞, denote a regrouped
and labeled primal plan, with

xτ(st) = (kt(st), at(st), vc
t(s

t)) ∈ X = K×A× V c,nS ,

where V c denotes the bounded set of nonlinear states. Let g denote a regrouped and relabeled
constraint function with g = {gτ}∞

τ=1 and for each τ(st):

gτ(st)(x) = (zk
t (p

R(x))(st), zc
t(p

R(x))(st), zh
t (p

R(x))(st)),

where pR(x) = {pR
t (x)(st)}∞

t=0 is the primal plan associated with x. The boundedness of the
constraint functions implies g : `∞ → `∞. Finally, let f (x) = F[s0, vc

0(x), V l(s0, a(x))], where
vc

0(x) and a(x) denote the v0 and a components of x. In this way (MP) is re-expressed in
the form (AP) and, in particular, a Lagrangian of the form L(x, λ) = f (x) + 〈λ, g(x)〉 may be
associated with (MP).

We next show that Assumptions 5 and 6 in the main text and the structure of f , and g
in our setting imply Assumptions 7 and 8. From Assumption 5, the concavity of F, H, Wc

and Mc imply concavity of f and g as required by Assumption 7 (CV). Assumption 6 ensures
Assumption 7 (S) (the Slater Condition). Specifically, if there is, as required by Assumption 6,
a p̂ ∈ P satisfying the law of motion constraints for vc and k and the H constraints with strict
inequality and zl(p̂) = 0, then the corresponding p̂R ∈ PR satisfies Assumption 7 (S).

Assumption 8 (C) holds if for all x and y, limT→∞ F[s0, vc
0(xT(x, y)), V l(s0, a(xT(x, y)))] =

F[s0, vc
0(x), V l(s0, a(x))]. Since vc

0(xT(x, y)) = vc
0(x) for all T ≥ 1 and F is linear and, so, contin-

uous in its third argument, Assumption 8 (C) holds if limT→∞ V l(s0, a(xT(x, y))) = V l(s0, a(x)).
For any pair x and y, there is a non-decreasing sequence of dates R(T) with limT→∞ R(T) = ∞
such that for all st with t < R(T) all elements pR

t (x)(st) = pR
t (xT(x, y))(st). Thus,38

|V l(s0,a(xT(x, y)))−V l(s0, a(x))|
≤ δR(T) ∑

sR(T)

|bl
R(T)(s

R(T)|s0)||V l(sR(T), a(xT(x, y))|sR(T))−V l(sR(T), a(x)|sR(T))|πR(T)(sR(T)|s0)

Since δR(T) converges to 0 and the sequence of sums ∑sR(T) |bl
R(T)(s

R(T)|s0)| |V l(st, a(xT(x, y))|st)−
V l(st, a(x)|st)|πR(T)(sR(T)|s0) is uniformly bounded, limT→∞ |V l(s0, a(xT(x, y)))−V l(s0, a(x))| = 0.
Thus, Assumption 8 (C) is satisfied. Assumption 8 (ANA) holds if for each j = k, c, h and t
and all x and y, limT→∞ zj

t(p
R(xT(x, y)))(st) = zj

t(p
R(x))(st). This result follows from the fact

that each zj
t(p

R)(st), j = k, c, depends only upon variables measurable with respect to st and
st+1 and each zh

t (p
R)(st) depends only upon these variables and upon V l(st, a|st) continuously.

Thus, defining R(T) as before, once R(T) > t + 1, zj
t(p

R(xT(x, y))(st) = zj
t(p

R(x))(st), j = k, c.
Also, by a similar argument to that given above: |V l(st, a(xT(x, y))|st) − V l(st, a(x)|st)| → 0.
Thus, limT→∞ zh

t (p
R(xT(x, y))(st) = zh

t (p
R(x))(st) and Assumption 8 (ANA) is verified.

Assumption 8 (AI) requires that for each j = c, k, h and N, limt→∞[z
j
t(p

R(xN(x, y))− zj
t(p

R(y))]
= 0. This is an immediate consequence of the fact that each zj

t does not depend on any
variable that is measurable with respect to st−1. Thus, for any fixed N there exists an
M(N) such that for each j, t > M(N) and r ≥ 0, pR

t+r(xN(x, y))(st+r) = pR
t+r(y)(s

t+r) and so

38We use the following notation: for a generic matrix R, |R| denotes the element-wise application of
the absolute value operator to R.
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[zj
t(p

R(xN(x, y))− zj
t(p

R(y))] = 0. This confirms Assumption 8 (AI). Finally, Assumption 8 (B)
follows from the boundedness of the constraint functions.

Thus, Assumptions 7 and 8 are verified. Let x∗ denote the regrouped and relabeled
primal plan corresponding to the solution pR∗ of (MP). By Theorems C.1 and C.2 there exists
a multiplier λ∗ ∈ `1

+ such that (x∗, λ∗) is a saddle point of L(x, λ) = f (x) + 〈λ, g(x)〉, where f
and g are those implied by (MP) and defined above. Resetting the labeling it follows that pR∗

and qR∗ (where qR∗ is obtained from λ∗ by resetting the labeling and normalizing multipliers
at each t and history st by δtπt(st|s0)) is a saddle point of L R on PR ×QR.

The preceding result establishes that if pR∗ solves (MP), then there is a qR∗ ∈ QR such
that (pR∗, qR∗) is a saddle point of L R on PR ×QR. We now seek to show that if p∗ solves
(P), then there is a q∗ ∈ Q such that (p∗, q∗) is a saddle point of L on P ×Q. Recall that
the Lagrangian L associated with (P) incorporates quasi-linear state variables and the laws
of motion for such variables. It also allows the costates associated with nonlinear laws of
motion to belong to R rather than R+. We use a constructive argument to show that this
Lagrangian also has a saddle point. Under Assumption 5, F[s0, vc

0, vl
0] is linear in its third

argument. Below we use the notation:

F[s0, vc
0, vl

0] = F̂[s0, vc
0] + Fl(s0) · vl

0.

In addition, H[k, s, a, vc′, vl′] is linear in its final argument. Below we use the notation:

H[k, s, a, vc′, vl′] = Ĥ[k, s, a, vc′] + δ ∑
s′∈S

Nl(s, s′) · vl(s′)π(s′|s).

Lemma C.5. Let p∗ = (pR∗, vl∗), with pR∗ = (a∗, k∗, vc∗), be a solution to (P). If (pR∗, qR∗),
with qR∗ = (yk∗, yc∗, m∗), is a saddle point of L R on PR ×QR, then (pR∗, vl∗, qR∗, yl∗), where yl∗

satisfies the recursion yl∗
0 = Fl(s0) and for all t = 1, 2, . . . and st ∈ S t,

yl∗
t+1(s

t, s′) = yl∗
t (s

t) · Bl(st, s′) + m∗t (s
t) · Nl(st, s′), (C.7)

is a saddle point of L on PR ×QR

Proof. Let Q+ denote the subset of Q in which the costates yk and yc on backward-looking
and non-linear forward-looking state variables are non-negative. For (p, q) ∈ P × Q+ and
(pR, qR) ∈ PR ×QR, define

∆(a,vl , m, yl) := L R(pR, qR)−L (p, q) (C.8)

= Fl(s0) ·V l(s0, a) +
∞

∑
t=0

δt ∑
S t

mt(st) · ∑
st+1∈S

δNl (st, st+1)V l(st+1, a|st, st+1)π(st+1|st)π
t(st|s0)

− Fl(s0) · vl
0 −

∞

∑
t=0

δt ∑
S t

mt(st) · ∑
st+1∈S

δNl (st, st+1) vl
t+1(s

t, st+1)π(st+1|st)π
t(st|s0)

−
∞

∑
t=0

δt ∑
S t

yl
t(s

t) ·
[
ul(st, at(st)) + δ ∑

st+1

Bl (st, st+1) vl
t+1(s

t, st+1)π(st+1|st)− vl
t(s

t)
]
πt(st|s0),

where the second equality follows from the definitions of the Lagrangians. From the recursion
(C.7) defining the plan yl∗ and the assumption |B(s, s′)| ≤ Inl , yl∗ is summable with respect to
the δtπt(st|s0) normalization as long as m∗ is, that is, we have ∑∞

t=0 ∑st∈S t δt‖yl∗
t (s

t)‖Eπt(st|s0) <
∞. Consequently, (qR∗, yl∗) ∈ Q+ and is feasible for the minimization defining the saddle
point of L . Hence, using the saddle point inequalities for L and L R and the definition of ∆,
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(pR∗, vl∗, qR∗, yl∗) is a saddle point of L on P×Q+ if for all (a, vl) ∈ P and (m, yl) ∈ Q+,

∆(a, vl , m∗, yl∗) ≥ ∆(a∗, vl∗, m∗, yl∗) ≥ ∆(a∗, vl∗, m, yl).

Consider first ∆(a∗, vl∗, m, yl). Since (a∗, vl∗) is part of an optimum and, hence, feasible for (P),
it satisfies the law of motion for quasilinear states with equality. Consequently, the last line
in (C.8) when evaluated at (a∗, vl∗) equals zero. Moreover, the law of motion for quasilinear
states and Assumption 5 (iv) imply that for all t, st we have v∗t (s

t) = V l(st, a∗|st). Thus, (C.8)
implies that for for all m and yl forming part of q ∈ Q+,

∆(a∗, vl∗, m, yl) = 0.

Consequently, the inequality ∆(a∗, vl∗, m∗, yl∗) ≥ ∆(a∗, vl∗, m, yl) is trivially satisfied. Next con-
sider ∆(a, vl , m∗, yl∗). Substituting the recursion defining yl∗ into (C.8) eliminates all terms
involving vl from ∆(a, vl , m∗, yl∗). Moreover, the definition of V l implies that for all a ∈ A,

∞

∑
t=0

δt ∑
S t

yl∗
t (s

t) · ul(st, at(st))

=Fl(s0) ·V l(s0, a) +
∞

∑
t=0

δt ∑
S t

m∗t (s
t) · ∑

st+1∈S
δNl (st, st+1)V l(st+1, a|st, st+1)π(st+1|st)π

t(st|s0).

Substituting this into (C.8), it follows that ∆(·, ·, m∗, yl∗) is zero and independent of a and vl.
Hence,

∆(a, vl , m∗, yl∗) ≥ ∆(a∗, vl∗, m∗, yl∗), ∀ a, vl ∈ P.

Thus, (p∗, q∗) = (pR∗, vl∗, qR∗, yl∗) is a saddle point of L on P×Q+. It remains only to show
that (pR∗, vl∗, qR∗, yl∗) is a saddle point of L on P × Q (i.e. of the Lagrangian without the
costates yk and yc restricted to be non-negative). However, since p∗ is a solution to (P) it
satisfies the laws of motion for backward-looking and non-linear forward-looking states with
equality. Hence, L (p∗, ·) is independent of the multipliers on these states implying that q∗

minimizes L (p∗, ·) on the set Q.

Proof of Proposition 8. The proof now follows from the preceding lemmas. By Assumption 2,
the restriction on k̄ and Proposition 1, (P) has a solution p∗ = (pR∗, vl∗). Given Assumptions 2,
4 and 5 (iv), by Lemma C.3, pR∗ solves (MP). Given Assumptions 5 and 6, Lemma C.4 implies
that the Lagrangian L R has a saddle point (pR∗, qR∗). Finally, by Lemma C.5, the Lagrangian
L has a saddle point.

D The Quasilinear Case
As noted in the main text (see Subsection 4.3), many problems have aggregators and con-
straint functions that are quasi-linear in k or v or both. In this appendix, we show how
directly exploiting this structure prior to the formulation of the Lagrangian can lead to con-
siderable simplification. In particular, the backward and forward primal states kt and vt can
be substituted out along with the equality constraints describing their evolution.

Example: Limited Commitment with linear capital accumulation technology
To make the subsequent analysis concrete, we consider the limited commitment example
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from Section 2, set ρ = σ and extend it to include capital, a linear “AK-like” technology and a
default option that is linear in capital. Specifically, defining Vi(s0, a) to be:

Vi(s0, a) = (1− δ)
∞

∑
t=0

δt ∑
S t

ui(at(st))πt(st|s0),

with δ ∈ (0, 1), we consider a decision maker solving:

sup
a,k

∑
i∈I

λiVi(s0, a). (O)

subject to k0 = k̄ ≥ 0 and for all st = (st−1, st) ∈ S t, ai
t(s

t) ≥ 0, kt+1(st) ≥ 0, the no default
constraints:

Vi(st, a|st)− wi
0(s

t)− wi
1(st)kt(st−1) ≥ 0, for i ∈ I , (D)

with wi
0 ≥ 0 and wi

1 ≥ 0, and the law of motion for capital:

γ0(st) + γ1(st)kt(st−1)−∑
i∈I

ai
t(s

t)− kt+1(st) = 0, (R)

with γ0 ≥ 0 and γ1 ≥ 0. With the restriction γ1 < 1, this problem is a special case of
the quasi-linear in states environment we describe below (an even more special case occurs
when γ1 = 0 and w1 = 0; then the model of Section 2 for σ = ρ is obtained).39 We will call
this case the “limited commitment with capital example” and refer back to it throughout the
remainder of this section.

D.1 Quasilinear environments
We now turn to the general quasilinear environment. We proceed as in the main text by first
defining (in this case quasilinear) laws of motion for backward and forward looking states
and then associating them with a decision-maker’s problem.

Shocks and Actions We keep the assumptions and notation for shocks the same as in
earlier sections. The set of actions is denoted by A ⊂ RnA and the set of action plans A = A∞.

Backward-looking states Let K ⊂ R
nK be a bounded set of backward-looking states.

Some problems omit backwards-looking states altogether (for example the problems in Sec-
tion 2). The analysis below is easily specialized to exclude such states and, hence, consider
these simpler settings. Let k = {kt}∞

t=0, with k0 = k̄ ∈ K and for t ∈ N, kt : S t−1 → K, be a
plan for backward-looking states with initial condition k̄. The law of motion for such states
is specialized to be a quasilinear function Wk:

Wk[k, s, a] := Bk(s)k− c(s, a), (D.1)

where Bk(s) is a diagonal matrix of dimension nK and with each element less than one in
absolute value and c : S ×A → [C, C]nK ⊂ RnK . These assumptions imply that Wk(K,S ,A) is a

39The analysis can be extended to a class of unbounded quasilinear problems that can accom-
modate the γ1 ≥ 1 case. To ensure a well defined Lagrangian, a technical modification to our basic
arguments is required. We defer this to later work.
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bounded set. A pair of plans a and k satisfy the law of motion (D.1) if for all t ≥ 0 and st ∈ S t,

kt+1(st) = Bk(st)kt(st−1)− c(st, at(st)).

In our formulation of the decision-maker’s problem below, the quasilinearity of (D.1) in
k is used to substitute backward-looking states from the problem. Anticipating this, it is
useful to have an explicit representation of these states in terms of the action plan. Given an
initial backward-looking state k̄ ∈ K and plans a and k satisfying (D.1), we have:

kt+1(st) = Kt+1(k̄, st, a) := −
t

∑
τ=0

t

∏
j=τ+1

Bk(sj)c(sτ, aτ(sτ)) +
t

∏
j=0

Bk(sj)k̄. (D.2)

Later we absorb the restriction that each kt+1(st) = Kt+1(k̄, st, a) ∈ K directly into a Lagrangian
that is a function of actions and multipliers only.

In the limited commitment with capital example, individual consumptions remain in RnI
+

and K ⊂ R+. Also, Bk(s) = γ1(s), c(s, a) = −γ0 + ∑i∈I ai and, hence, Wk[k, s, a] = γ1(s)k + γ0 −
∑i∈I ai. With γ1 < 1, the accumulation technology implies that capital is bounded above by
kmax = max(k̄, γ̄0

1−γ̄1
) where, for r = 0, 1, γ̄r = maxs∈S γr(s). Then, the nonnegativity of capital

implies that consumption must remain below amax := kmax+γ̄0
1−γ̄1

. Requiring that a belongs to the
interval A := [0, amax]nI ensures that c(s, ·) is bounded for all s ∈ S without restricting the
solution to the problem.

Forward-looking states Let u : S ×A → V ⊂ RnV where V is the bounded set of forward-
looking states. For concreteness, it is useful to think of these states as lifetime payoffs
of (possibly incentive-constrained) agents and u as a function giving the current payoffs of
agents, although other interpretations are possible. Let v = {vt}∞

t=0, with for t ≥ 0, vt : S t → V ,
be a plan for such states. The law of motion for forward-looking states is, as in the main
text, a composition of two functions. The first, the time aggregator Wv, is:

Wv[s, a, m] = (1− δ)u(s, a) + δ ·m, (D.3)

with δ ∈ (0, 1). The second, the certainty equivalent operator Mv, is:

Mv[s, v′] = ∑
s′∈S

Bv(s, s′)v′(s′)π(s′|s), (D.4)

where for each (s, s′) ∈ S2, Bv(s, s′) is diagonal matrix of dimension nV with each entry
bounded in absolute value by one. The composition of Wv and Mv is then quasilinear in
current and future states v and v′. A pair of plans for actions a and forward-looking states v
satisfy this law of motion if for all t ≥ 0,

vt(st) = (1− δ)u(st, at(st)) + δ ∑
s′∈S

Bv(st, s′)vt+1(st, s′)π(s′|st). (D.5)

In addition, letting bv
0 = InV (with InV the nV-identity matrix) and for all ∀t, st, s′ bv

t+1(s
t, s′|s0) =

bv
t (s

t|s0)Bv(st, s′), then (D.5) implies that forward-looking states correspond to discounted ex-
pected sums:

vt(st) = V(st, a|st) := (1− δ)
∞

∑
n=0

δn ∑
Sn

bv
n(s

t+n|st)ul(st+n, al
t+n(s

t+n))πn(st+n|st). (D.6)
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H-constraint function Analogous to the laws of motion, the constraint function H is
assumed to be quasi-linear in states:

H[k, s, a, v′] = Nk(s)k + h(s, a) + δ ∑
s′∈S

Nv(s, s′)v′(s′)π(s′|s), (D.7)

with Nk(s) an nH vector indexed by s, Nv(s, s′) an nH × nV matrix indexed by (s, s′) and h :
S ×A → R

nH a bounded function of current shocks and actions. As noted above, H absorbs
any restrictions that ensure backward-looking states remain in K, i.e. if (k, s, a, v′) ∈ K × S ×
A × VnS satisfies H[k, s, a, v′] ≥ 0, then Wk[k, s, a] = Bk(s)k − c(s, a) ∈ K. H[k, s, a, v′] ≥ 0 also
captures any incentive constraints on agents.

Objective and Problem Statement The objective F is assumed to be linear in forward
states v: F[s, v] = λ · v. Typically, it will be a Pareto weighted aggregate of agent payoffs
and in some problems will place all weight on one of the agents (who is often designated the
principal). The problem may be stated, as in the main text, in terms of action plans and state
plans. However, given the expressions for states in terms of actions: kt(st−1) = Kt(k̄, st−1, a)
and vt(st) = V(st, a|st), the problem may be directly expressed in terms of action plans. Thus,
the decision maker’s problem can be expressed as:

sup λ ·V(s0, a) (PPQL)

subject to a ∈ A and for all t, st,

Nk(st)Kt(k̄, st−1, a) + h(st, at(st)) + δ ∑
st+1∈S

Nv(st, st+1)V(st+1, a|st, st+1)π(st+1|st) ≥ 0. (D.8)

It is easy to see that this formulation encompasses the limited commitment with capital
example described above. In particular, the no default and non-negativity of future capital
restrictions are obtained by setting:

Nk(s) =
(
−w1(s)

γ1(s)

)
, h(s, a) =

(
u(a)− w0(s)

γ0(s)−∑i∈I ai

)
, and Nv =

(
I

0

)
,

where u is the vector-valued function of current agent payoffs and I is an identity matrix (of
dimension nI).

D.2 The Lagrangian and Dual Problem
A Lagrangian for the dual problem is constructed as follows. Since (PPQL) incorporates only
the H-function constraints, the constraint process is given by zh(k̄, a) = {zh

t (k̄, a)}∞
t=0, with

zh
t (k̄, a)(st) = Nk(st)Kt(k̄, st−1, a) + h(st, at(st)) + δ ∑

st+1∈S
Nv(st, st+1)V(st+1, a|(st, st+1))π(st+1|st),

Since Kt, V and h are all bounded, constraint processes have values in `∞. Define the La-
grangian L (k̄, s0, ·) : A×M→ R, as:

L (k̄, s0, a, m) =λ ·V(s0, a) + 〈m, zh(k̄, a)〉,
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with M := {m|mt(st) ≥ 0, ∑∞
t=0 δt ∑S t mt(st)πt(st|s0) < ∞}, and

〈m, zh(k̄, a)〉 =
∞

∑
t=0

δt ∑
S t

mt(st) · zh
t (k̄, a)(st)πt(st|s0).

Associate the following dual problem with (PPQL):

D∗0 = inf
m∈M

sup
a∈A

L (k̄, s0, a, m). (D.9)

D.3 Continuation Dual Function and Recursive Dual Problem
The quasi-linearity of the aggregators ensures that this Lagrangian has the necessary sep-
arability for a recursive dual approach. As a first step, in this direction we recover the
continuation dual problem from (D.9). The definition of zh and (D.2) imply that:

〈m, zh(k̄, a)〉 =
∞

∑
t=0

δt ∑
S t

mt(st) · Nk(st)bk
t (s

t) k̄ πt(st|s0) + 〈m, zh(0, a)〉, (D.10)

where, for a given history st, bk
t (s

t) = ∏t
j=0 Bk(sj). Substituting the right hand side of (D.10)

into the Lagrangian implies that the dual problem (D.9) can be rewritten as:

D∗0 = inf
m∈M

sup
a∈A

∞

∑
t=0

δt ∑
S t

mt(st) · Nk(st)bk
t (s

t) k̄ πt(st|s0) + λ ·V(s0, a) + 〈m, zh(0, a)〉. (D.11)

The coefficient on k̄ in (D.11) is a linear function of multipliers, T : M→ R
nK , where

T (m) :=
∞

∑
t=0

δt ∑
S t

mt(st) · Nk(st)bk
t (s

t) πt(st|s0).

Let M(yk
0) denote the pre-image of T at yk

0:

M(yk
0) = {m ∈ M|yk

0 = T (m)}. (D.12)

Given a value of the coefficient (the costate) on the initial capital k̄, M(yk
0) gives the set of

multiplier sequences m consistent with this. Note that the correspondence M(yk
0) may be

empty-valued for some yk
0. It is useful to identify the set on which is it is not. Let:

Y k := {yk ∈ R|M(yk
0) 6= ∅}.

In other words, Y k is simply the range of T . This set will be used to construct the state space
of the dual value function below. While Y k maybe a strict subset of RnK it is always a closed
convex cone. In many settings it is easy to find. For example, in limited commitment with
capital example Nk(s) = (−w1(s) γ1(s))T, Y k = R and Yv = RnV once more.

Using this notation the infimum in (D.11) may be decomposed as:

D∗0 = inf
yk

0∈Y k

yk
0 · k̄ + inf

m∈M(yk
0)

sup
a∈A

λ ·V(s0, a) + 〈m, zh(0, a)〉

 ,

where the outer infimum is over values for the costate and the (constrained) inner infimum
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is over the set of feasible multiplier sequences. Thus, the dual can be expressed as:

D∗0 = inf
yk

0∈Y k

{
yk

0 · k̄ + D∗(s0, yk
0, λ)

}
,

where D∗ is the continuation dual function, for each y = (yk, yv) ∈ Y := Y k ×RnV ,

D∗(s, y) = inf
m∈M(yk)

sup
a∈A

yv ·V(s, a) + 〈m, zh(0, a)〉. (D.13)

We now turn to the recursive form of (D.13). Define the current dual correspondence Q :
Y k ⇒ R

nH
+ × (Y k)nS ,

Q(yk) =
{
(m, yk′) ∈ RnH

+ × (Y k)nS

∣∣∣yk = (m)T · Nk(s) + Bk(s) ·∑
S

yk′(s′)
}

, (D.14)

Given a current costate yk, Q(yk) gives current H-constraint multipliers m and continuation
costates yk′ that are consistent with (D.12). Next define the current dual objective J : S ×
R

nV ×RnH
+ × (YnK)nS ×A → R,

J(s, yv; m, yk′, a) =yv · u(s, a)− ∑
s′∈S

yk′(s′)c(s, a) + m · h(s, a). (D.15)

Relative to the general setting in the main text, this omits terms involving k and v′ and is
simpler. It evaluates the shadow value of current increments to constraints inclusive of laws
of motion. It is immediate to see that absent backward looking states (i.e., ∑s′∈S yk′(s′)c(s, a) =
0) we recover the J function in Subsection 4.3. Define the law of motion for costates yv:

φ(s, yv, m, s′) = yv · Bv(s, s′) + m · Nv(s, s′). (D.16)

The quasilinear recursive dual problem combines (D.14), (D.15) and (D.16) and is described
in the following proposition.

Proposition D.1. (Value Functions). The optimal value D∗0 and the continuation dual value
function satisfy:

D∗0 = inf
yk∈Y k

D∗(s0, yk, λ) + yk · k̄ (D.17)

The continuation dual value function satisfies the recursion, for all (s, y) ∈ S × Y ,

D∗(s, y) = inf
(m,yk′)∈Q(yk)

sup
a∈A

J(s, yv; m, yk′, a) + δ ∑
s′∈S

D∗(s′, yk′(s′), φ(s, yv, m, s′))π(s′|s). (D.18)

The proof of the previous proposition is the same as Proposition 3 and is omitted. In
addition, it is easy to see that D∗ is a sub-linear function. Notice that in (D.17) the initial
condition for the costate yk is picked, whilst that for yv is pinned down by the parameter λ.
Thus, the costate yk for the backward-looking state k is forward-looking and the the costate
yv for the forward-looking state v is backward-looking. It follows from (D.18) that the dual
Bellman operator is:

B(D)(s, y) = inf
(m,yk′)∈Q(yk)

sup
a∈A

J(s, yv; m, yk′, a) + δ ∑
s′∈S

D(s′, yk′(s′), φ(s, yv, m, s′))π(s′|s). (D.19)

Comparison of terms defining the dual Bellman operator in the main text in Definition 1
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and in (D.19) (in particular, comparison of the terms defining the J functions) reveals how
exploitation of quasilinearity simplifies matters.

To make the preceding discussion concrete, consider again the limited commitment with
capital example. Applying (D.18), the dual Bellman equation is:

D∗(s, y) = inf
(m,yk′)Q(yk)

sup
a∈A

J(s, yv; m, yk′, a) + δ ∑
s′∈S

D∗(s′, yk′(s′), φ(s, yv, m, s′))π(s′|s),

with:

J(s, yv; m, yk′, a) = ∑
i∈I

(yv,i + mi)ui(ai)−
(

∑
s′∈S

yk′(s′) + mnI+1
)

∑
i∈I

ai + mnI+1γ0,

Q(yk) =
{
(m, yk′)

∣∣∣yk = −∑
i∈I

mh,iwi(s) +
(

mnI+1 + ∑
S

yk′(s′)
)

γ1(s)
}

and φ(s, yv, m, s′) = yv + m̄, where m̄ = (m1, . . . , mnI )T. Thus, the weight yv,i on agent i’s current
utility ui(ai) is augmented by the multiplier on her incentive constraint mi. The constraint set
Q(yk) reveals the evolution of the costate yk, the shadow value of capital. This value is de-
pressed to the extent that capital tightens incentive constraints −∑i∈I miwi(s), but enhanced
to the extent that capital relaxes the current resource constraint or augments the future
capital stock (mnI+1 + ∑S yk′(s′))γ1(s).

D.4 Contraction
Consider the dual Bellman operator defined in (D.19). As in the main text, it is immediate
from (D.18) and (D.19) that D∗ = B(D∗). Moreover, since a sub-linear function on a convex
cone is fully determined on C := {y ∈ Y | ‖y‖E = 1}, it is sufficient to consider the restriction
of candidate (sub-linear) value functions to the domain S × C. Define the set G as in the
main text and recall that, when endowed with the (modified) Thomson metric d, (G , d) is a
complete metric space. The following result mimics Theorem 2 in the main text (and admits
the same proof).

Theorem D.1. (Contraction). Given D, D and D satisfying Assumption 3 in the main text, the
operator B defined in (D.19) is a contraction on the metric space (G , d) of sub-linear functions
bounded below by D and above by D and endowed with the metric d. In addition, B admits a
unique fixed point D̂ and if D ≤ D∗ ≤ D, then D̂ = D∗.

E Further Examples and Variations
Our framework accommodates many problems from the literature. In Section 2, we con-
sidered limited commitment economies; in Appendix D we described a (quasilinear) limited
commitment problem with physical capital. Below we briefly describe other examples that
highlight the scope of our method. In each case, we state the corresponding recursive dual
problem and comment on the assumptions needed to apply results from the main text. We
start in Appendix E.1 with an optimal monetary policy problem similar to those considered
in Woodford (2003). This problem features a non-linear law of motion for the forward-looking
state variables. Next, in Appendix E.2 we describe a hidden information insurance problem
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from Atkeson and Lucas (1992) and an extension that incorporates persistent private infor-
mation. Finally, in Appendix E.3 we briefly comment on how to extend our formulation to
include problems with (hidden action) moral hazard.

E.1 Optimal monetary policy
In this section we consider a deterministic version of an optimal monetary policy problem
as in Woodford (2003). It is straightforward, although notationally heavier, to extend this
to a stochastic setting. The government’s social objective over sequences of output a =
{at}∞

t=0 and inflation {∆pt}∞
t=0 is given by ∑∞

t=0 δtL(at, ∆pt) with L : R2 → R strictly concave
and continuous.40 Output sequences are restricted to A := A∞, with A = [a, a] a bounded
interval. Inflation evolves according to a simple New Keynesian Philips Curve,

∆pt = κat + δ∆pt+1,

with the terminal condition limt→∞ ∑∞
t=0 δt∆pt = 0. Consequently, given an output plan a,

inflation at t is ∆pt = V2(a|t) := κ ∑∞
τ=0 δτat+τ and the government’s continuation payoff:

V1(a|t) :=
∞

∑
τ=0

δtL(at+τ, V2(a|t + τ)).

The government’s payoff and inflation serve as forward-looking state variables; there are
no backward-looking state variables in this problem. Adopting our previous notation and
letting v = (v1, v2) and v′ = (v′,1, v′,2) denote, respectively, current and future pairs of payoff
and inflation, the aggregator Wv is given by:( v1

v2

)
= Wv

[
a,
( v′,1

v′,2
)]

=
( L(a, κa + δv′,2) + δv′,1

κa + δv′,2
)

.

It is nonlinear in inflation. There is no separate H function in this case and the social
objective is simply F[V(a)] = V1(a). Proceeding as in the main text, the period 0 dual period
value is given by:

D∗0 = inf
y0∈R2

sup
v0∈V

v1
0 − y0 · v0 + D∗(y0),

where v0 = (v1
0, v2

0) is the period 0 government payoff and inflation, y0 = (y1
0, y2

0) is the period
0 costate and D∗ the continuation dual value function. The current dual function specializes
to:

J(y; q, p) =y1
{

L(a, κa + δv′,1) + δv′,1
}
+ y2

{
κa + δv′,2

}
− δy′ · v′, (E.1)

where the first term is the current shadow value of delivering payoff to the government, the
second term is the current shadow value of inflation, while the final term is the shadow cost
of future payoff and inflation promises. The dual Bellman equation for this problem is:

D∗(y) = inf
y′∈R2

sup
(a,v′)∈A×V

J(y; q, p) + δD∗(y′) (E.2)

40In most of Woodford (2003)’s examples, L is a (concave) quadratic approximation to an underlying
objective over primitives. For now we place no such restrictions on L.
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with J as in (E.1). Application of Theorem 2 and Proposition 10 require the existence of
bounding functions satisfying Assumption 3. We now turn to this.

Bounding Functions Let V = ∏i=1,2[vi, vi] denote a set of possible government payoffs
and inflation rates. Assume an ã ∈ A = [a, a] and ξ > 0 such that:(

v1 − ξ

v2 − ξ

)
≥
(

L(ã, κã + δv2)
κã

)
+ δ

(
v1

v2

)
≥
(

L(ã, κã + δv2)
κã

)
+ δ

(
v1

v2

)
>

(
v1 + ξ
v2 + ξ

)
. (E.3)

It is then easily verified that:

D(y) =
2

∑
i=1

yi ϕi(yi), ϕi(yi) =

{
vi yi ≥ 0
vi yi < 0,

D(y) =
2

∑
i=1
{yiψi(yi) + |yi|ξ}, ψi(yi) =

{
vi yi ≥ 0
vi yi < 0.

and D = B(D) satisfy all desired conditions.41

Partial quasi-linearity of the problem The recursive dual problem derived in (E.2)
is obtained via the general approach of Section 4. Appendix D describes how quasilinear
structure in aggregators may be exploited to simplify the analysis. The optimal monetary
policy problem is quasilinear in government payoffs, but not inflation. We now use this
example to show how the analysis of Appendix D extends to problems in which aggregators
are quasi-linear in a subset of state variables.

Since the forward-looking state describing the government’s future payoff v′,1 enters Wv

in a quasi-linear way it can be substituted out of the problem. In contrast, the forward-
looking state describing inflation v′,2 enters non-linearly and cannot be so removed. After
substitution of v1, the problem becomes:

sup
∞

∑
t=0

δtL(at, κat + δv2
t+1)

subject to, for all t, v2
t = κat + δv2

t+1. This leads to the dual problem:

D∗0 = inf
Q

sup
P

∞

∑
t=0

δtL(at, κat + δv2
t+1) +

∞

∑
t=0

δty2
t {κat + δv2

t+1 − v2
t }, (E.4)

where Q is the set of inflation costate sequences {y2
t } and P the set of inflation-output se-

quences {v2
t , at}∞

t=0. Notice that in (E.4) the costate on the government’s payoff y1 is initialized
to and remains at 1. Using arguments similar to before the initial problem specializes to:

D∗0 = inf
y2

0∈R
sup

v2
0∈V2

−y2
0v2

0 + D∗(1, y2
0),

41The verification is similar to that given for the limited commitment case in Appendix E.
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where V2 = κ
1−δ [a, a] is the set of possible inflations, while the dual Bellman equation becomes:

D∗(1, y2) = inf
y′,2∈R

sup
(a,v′,2)∈A×V2

L(a, κa + δv′,2) + y2(κa + δv′,2)− y′,2v′,2 + δD∗(1, y′,2).

In the latter the inner supremum is over current output-inflation pairs (a, v′,2), while the
infimum operation is over the future inflation costate y′,2.

E.2 Hidden Information
In hidden information problems agents must be motivated to reveal the outcomes of privately
observe shock processes. Our framework accommodates such problems. To illustrate this
we describe the application of the dual recursive method to a dynamic risk sharing prob-
lem with privately observed preference shocks similar to Atkeson and Lucas (1992). In this
problem a planner seeks to maximize a weighted sum of an agent’s lifetime utility and a
lifetime resource cost. Incentive compatibility requires that the agent is induced to reveal
her privately observed shocks. Thus, within a period incentive constraints “run across shock
contingent allocations” (since the agent must compare the utility from the allocation associ-
ated with her truthfully revealed shock to that from lying). This is in contrast to, say, limited
commitment problems in which constraints do not run across shock outcomes (the agent
must only consider whether the allocation associated with her current shock is better than
her outside option). To capture this structure within our framework requires an appropriate
definition of actions. Specifically, assume that in each period t ≥ 0, conditional on history
st the planner chooses a vector of consumptions at(st) ∈ A = R

nS
+ , with A compact. The

elements of at(st) are consumption amounts to be consumed in period t + 1 after each history
(st, s), s ∈ S by the agent. Let γ denote a constant (possibly zero) and publicly observable
endowment received by the agent in each period; let u : S ×R+ → R denote a shock contin-
gent utility for the agent that is increasing, continuous and concave in its second argument.
Assuming expected utility preferences on the part of the agent, the resource cost and the
agent’s payoff from a consumption vector a is:

U1(a) := ∑
s′∈S

π(s′)(γ− a(s′))

and

U2(a) := ∑
s′∈S

π(s′)u(s′, a(s′)).

Laws of motion for the lifetime resource amount and the agent’s promised utility are given
by for i = 1, 2:

Wv,i[a, M(v′,i)] = (1− δ)Ui(a) + δM(v′,i) = (1− δ)Ui(a) + δ ∑
s′∈S

π(s′)v′,i(s′).

In general, the hidden information model requires nS × (nS − 1) incentive constraints to en-
sure truth telling at each history. In most applications, a single crossing property is assumed,
which, together with a monotonicity condition on optimal payments, ensures that checking
only for sub-optimality of “local downward deviations” suffices for incentive compatibility.
The local deviation approach reduces the number of incentive constraints from nS × (nS − 1)
to nS − 1.42 Thus, H is given by:

42In our dynamic context, the planner has two instruments a(s′) and v′(s′). Single Crossing is
guaranteed by the following condition on marginal rate of substitution: − 1

δ
∂u(s′ ,a)

∂a to increase with s′,
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H[a, v′] =

 (1− δ)u (nS, a(nS)) + δv′(nS) −[(1− δ)u(nS, a(nS − 1)) + δv′(nS − 1)]
...

(1− δ)u (2, a(2)) + δv′(2) −[(1− δ)u(2, a(1)) + δv′(1)]

 .

Since we have no backwards looking variables, y = yv, and the period 0 dual value satisfies:

D∗0 = inf
y0∈R2

sup
v0∈V

2

∑
i=1

λivi
0 − y0 · v0 + D∗(y0),

where v0 = (v1
0, v2

0) is the period 0 lifetime resource amount and agent payoff, and λi, i = 1, 2,
is, respectively, the initial weight on resources and the agent’s payoff. The current dual
function specialises to:

J(y; q, p) = y ·Wv[a, M(v′)] + m · H[a, v′,2]− δ ∑
s′∈S

y′(s′) · v′(s′)π(s′), (E.5)

where y ·Wv[a, M(v′)] = ∑2
i=1 yiWv,i[a, M(v′,i)], and

m · H[a, v′,2] =
nS

∑
s′=2

m(s′)
{
(1− δ)u(s′, a(s′)) + δv′(s′)− [(1− δ)u(s′, a(s′ − 1)) + δv′(s′ − 1)]

}
π(s′).

The dual Bellman equation then takes the form:

D∗(y) = inf
(m,y′)∈RnS−1×R2×nS

sup
(a,v′)∈A×V

J(y; q, p) + δ ∑
s′∈S

D∗(y′(s′))π(s′),

with J defined as in (E.5). Theorem 2 and Proposition 10 apply after the construction of
appropriate bounding functions.

Quasilinearity Note that the above problem fits within the quasilinear class (and can be
reformulated accordingly). Similar to the class of problems considered in Subsection 4.3,
both forward-looking states that describe the future payoff v′ enter Wv and H in a linear way
and can be substituted out. Notice, moreover, that the costate associated with the principal’s
payoff remains constant over time and histories. Hence, it is sufficient to keep track of the
costate for the agent. After eliminating the forward states v′(s′) and normalizing y1 = 1, the
dual Bellman equation becomes

D∗(1, y2) = inf
(m,y′,2)∈RnS

+

sup
a∈A

J(y2; m, a) + δ ∑
s′∈S

D∗
(
1, y′,2(s′)

)
π(s′), (E.6)

where now:
J(y2; m, a) = (1− δ) ∑

s′∈S
π(s′)

[
γ− a(s′) + y2u(s′, a(s′))

]
+ m · h(a),

with

m · h(a) =
nS

∑
s′=2

m(s′)
{
(1− δ)u(s′, a(s′))− [(1− δ)u(s′, a(s′ − 1))]

}
π(s′)

= (1− δ) ∑
s′∈S

[
m(s′)− π(s′ + 1)

π(s′)
m(s′ + 1)

]
u(s′, a(s′))π(s′),

while monotonicity requires a(·) to increase with s′.

E-27



and m(1) = m(nS + 1) = 0. The law of motion for the costate variable is

y′,2(s′) = y2 + m(s′)− π(s′ + 1)
π(s′)

m(s′ + 1).

In this example, costates y2 can take both positive and negative values. This reflects the fact
that in the original formulations H is not monotone in a or v′,2.

Hidden Information with persistent shocks The case of hidden information with
persistent shocks can be handled similarly. Now, however, in addition to the expansion in
the dimension of the current action set (to cover a menu of consumptions across current
shocks in RnS

+ ), the dimension of the promise set must be similarly expanded (to cover a
menu of promises for future shocks). The law of motion for lifetime resources and promises
to the agent are, for i = 1, 2,

Wv,i[a, M(v′,i)] =

{
(1− δ)ui(s, a(s)) + δ ∑

s′∈S
π(s′|s)v′,i(s′)

}
s∈S
∈ RnS ,

with u1(s, a(s)) = γ− a(s) and u2(s, a(s)) = u(s, a(s)). The incentive constraints are collected
into:

H[a, v′] =

[
(1− δ)u(s, a(s)) + δ ∑

S
π(s′|s)v′,2(s, s′)− (1− δ)u(s, a(s− 1))− δ ∑

S
π(s′|s)v′,2(s− 1, s′)

]nS

s=2

.

With these modifications, the analysis proceeds similarly to the proceeding section.

E.3 Action Moral Hazard
For notational simplicity we have assumed that the stochastic aggregator M does not depend
on a. It is straightforward to allow for such dependence. This variation of our framework
immediately accommodates dynamic (hidden action) moral hazard problems with general
recursive preferences and the timing assumed in Hopenhayn and Nicolini (1997).43

F Recursive Primal: Set Approximation Procedures
We briefly review alternative recursive approaches in our general setting. Define a forward-
looking state v to be feasible at (k̄, s) if there is a primal plan p such that v = v0, k0 = k̄ and
for all t and st, conditions (15), (16), and (17) hold. Let X ∗ : K × S ⇒ V be a correspondence
mapping the current backward-looking state and shock to the set of feasible forward-looking
states. The decision-maker’s problem may then be expressed as:

P∗0 = sup
v∈X ∗(k̄,s0)

F[s0, v]. (F.1)

43Under this timing the public signal (a job or unemployment) of a hidden action (job search) is
realized in the period after the action is taken.
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Let Γ∗(k, s, v) := Γ(k, s, v;X ∗), where:

Γ(k, s, v;X ) :=

(a, k′, v′) ∈ A×K× VnS

∣∣∣∣∣∣
v = Wv[s, a, Mv[s, v′]], k′ = Wk[k, s, a],

H[k, s, a, v′] ≥ 0 and ∀s′ ∈ S , v′(s′) ∈ X (k′, s′)

 .

Given k∗0 = k̄ and a v∗0 solving (F.1), an optimal plan may be obtained from the iteration:

(a∗t (s
t), k∗t+1, v∗t+1(s

t, ·)) ∈ Γ∗(k∗t (s
t−1), st, v∗t (s

t)). (F.2)

Solution of (F.1) and implementation of the iteration (F.2) requires prior recovery of X ∗. Let
the space Ξ := {X : K × S ⇒ V} be equipped with the set inclusion ordering: X1 ≥ X2 if for
all (k, s) ∈ K × S, X1(k, s) ⊇ X2(k, s). Extending arguments of Abreu et al. (1990) and Atkeson
(1991), X ∗ is the largest correspondence in Ξ (with respect to this ordering) satisfying the
fixed point equation X = Ψ(X ), where Ψ : Ξ→ Ξ is given by:

Ψ(X )(k, s) =
{

v
∣∣ Γ(k, s, v;X ) 6= ∅

}
. (F.3)

The continuity properties of Ψ are not well understood. In particular, Ψ has not been shown
to be contractive. Thus, there is no guarantee that an iteration of Ψ from an arbitrary X0 in Ξ
converges to X ∗. However, extending arguments of Abreu et al. (1990) and Atkeson (1991), Ψ
is monotone in the set inclusion ordering described above and iteration of Ψ from a suitable
X0 ≥ Ψ(X0) = X1 ≥ X ∗ generates a sequence of correspondences that converge monotonically
to X ∗:

X0 ≥ . . . ≥ Xn ≥ Ψ(Xn) = Xn+1 ≥ . . . ≥ lim
n→∞
Xn = X ∗. (F.4)

On the other hand, a Ψ-iteration from X0 ≤ Ψ(X0) = X1 ≤ X ∗ generates a sequence of
correspondences that converge monotonically and are bounded above by X ∗:

X0 ≤ . . . ≤ Xn ≤ Ψ(Xn) = Xn+1 ≤ . . . ≤ X ∗. (F.5)

Note that in this case convergence to X ∗ is not ensured. Instead, the sequence converges to
an “inner approximation”: i.e. limn→∞ Xn ≤ X ∗.

A basic challenge in implementing these algorithms is selecting a low dimensional approx-
imation to the correspondences Xn that respects the monotonicity of Ψ. In a setting without
backward-looking states, Chang (1998) forms discrete approximations to the iterates Xn (and
to the set A× VnS ).44 Under his approach, to assess whether a particular v is in an updated
set Xn+1(s) = Ψ(Xn)(s) requires an exhaustive search over all points in the grid associated
with A×VnS for a combination (a, v′) that satisfies (or approximately satisfies) the restrictions
defining Ψ(Xn)(s). However, since X ∗ is not typically discrete, this procedure is not usually
consistent with the selection of an initial X0 ≥ X ∗ and implementation of a sequence (F.4). At
best it produces an inner approximation to X ∗ and the approximation may be rather poor.
Moreover, it suffers from a severe curse of dimensionality especially as nI or nS increase.45

In the context of repeated games without backward-looking states or shocks and with
quasilinear laws of motion for forward-looking states (i.e. for payoffs) and a convex value
set X ∗, Judd et al. (2003) suggest an “inner approximation” implementation of the sequence

44Abraham and Pavoni (2008) apply a similar approach to calculate the domain of feasible promises
in a principal-agent setting.

45This may force the use of rather coarse grids leading to poor approximation. Moreover, as noted,
little is known about the continuity properties of Ψ. Approximation errors introduced by grid approx-
imation may propagate as Ψ is repeatedly applied in an iteration.
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(F.5). This procedure represents candidate sets X with finite tuples of extreme points. At
each step of the iteration, the convex hull of the extreme points is computed. This is used to
generate a feasible set of continuation promises. A new set of extreme points is then obtained
via a collection of updating optimizations. The generation of the convex hull and the possible
high dimensionality of the optimizations involved make this approach computationally costly
to implement. Moreover, since (F.5) is not guaranteed to converge to X ∗, even if implemented
with high accuracy, this approach may converge to a limiting set contained within and far
from X ∗. Finally, no error bounds or convergence criteria are available. Judd et al. (2003)
suggest combining this procedure with an “outer approximation” implementation of (F.4).
The latter uses the intersection of a finite number of supporting hyperplanes to represent
value sets. Such intersections contain the set to be approximated. At each step of the
iteration, an intersection of hyperplanes is used to generate a feasible set of continuation
promises. A new set of hyperplane coefficients is then obtained via a collection of updating
optimizations. The possible high dimensionality of the optimizations involved make this
approach computationally costly to implement. It converges to X ∗ only if this set is convex
and it generates optimal policies only with a further round of optimization. Finally, it suffers
from the usual drawbacks of monotone iterations: a bounding start point possibly far from
the limit is needed and error bounds are only available if the procedure is used with the inner
approximation approach. Sleet and Yeltekin (2016) supply an extension of this procedure to
settings with backward-looking states.

A Special Case In the limited commitment problem considered in Section 2, F is increas-
ing in forward-looking states and both the law of motion (i.e. the composition of Wv and
Mv) and the constraint function H are increasing in the continuation values for these states.
The alternative primal recursive approach procedures described in Section 2 is applicable to
other problems with a similar structure, i.e. in which F is non-decreasing in (at least) one
element of the forward-looking state (call it vi) and both the composition of Wv and Mv and
H are non-decreasing in the corresponding continuation values v′,i. For these problems only
the upper surface of the correspondence X ∗(s, ·) in the direction of vi and the projection of
X ∗(s, ·) onto the other forward-looking states is needed to calculate an optimal value and a
solution to (F.1).
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