
— Online Appendix —

B Additional Proofs

B.1 Proof of Proposition 3

Proof. For the proof of this and the following proposition, it is useful to introduce the terms

T (y) := F (y) (y − E[θ − β|θ ≤ y]) ,

and

S(y) := (1− F (y)) (y − E[θ − β|θ ≥ y]) ,

in the literature referred to as, respectively, backward bias and forward bias (see Alonso and

Matouschek 2008). By condition (7) we have

T ′′(y) = βf ′(y) + f(y) > 0 and S′′(y) = −(βf ′(y) + f(y)) < 0 for all y ∈ [0, 1]

Note first that - since β > 0 - we have T (y) ≥ 0 for all y ∈ [ymin, ymax] and T (y) > 0 for y ≥ 0.

The variable S may change sign. Noticing however, that S(ŷ) = S(1) = 0, strict concavity of S

implies that S(y) > 0 for all y ∈ (ŷ, 1).

Having introduced these terms, we are ready to prove Proposition 3. This proof is presented

via three lemmas.

Lemma 11. Let condition (7) be satisfied and consider y1, y2 ∈ Y with y1 < y2. If y1, y2 ∈
D∗(Y ), then all y ∈ (Y ∩ (y1, y2)) belong to D∗(Y ).

Proof. Towards a contradiction suppose there is some y ∈ Y such that y 6∈ D∗(Y ) and D∗(Y )∩
[ymin, y] 6= ∅, D∗(Y ) ∩ [y, ymax] 6= ∅. Further, let y− be the largest element of D∗(Y ) strictly

smaller than y and let y+ be the smallest element of D∗(Y ) strictly greater than y, that is

y− = max{y′ ∈ D∗(Y ) : y′ < y} and y− = min{y′ ∈ D∗(Y ) : y′ > y}. Define s := y−+y+

2

to be the state at which the agent is indifferent between choosing action y− and action y+,

and similarly define r := y+y−

2 and t := y++y
2 as the states in which the agent is indifferent,

respectively, between choosing y− and y and between y+ and y.

Following Alonso and Matouschek (2008), we can write the change in the principal’s expected

payoff when including action y into the delegation set. The agent changes his choice of action

only in states [r, t]. In states [r, s] he switches from y− to y, while in the remaining states (s, t]
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he switches from y+ to y. The change in the principal’s expected payoff is thus given by

−
∫ t

r
(y − θ + β)2f(θ)dθ +

∫ s

r
(y− − θ + β)2f(θ)dθ +

∫ t

s
(y+ − θ + β)2f(θ)dθ,

= 2(y − y−)F (r) [r − E [θ − β|θ ≤ r]]︸ ︷︷ ︸
=T (r)

+2(y+ − y)F (t) [t− E [θ − β|θ ≤ t]]︸ ︷︷ ︸
=T (t)

−2(y+ − y−)F (s) [s− E [θ − β|θ ≤ s]]︸ ︷︷ ︸
=T (s)

.

Letting y = λy+ + (1 − λ)y− for some λ ∈ (0, 1) so that y − y− = λ(y+ − y−), y+ − y =

(1− λ)(y+ − y−) and s = λr + (1− λ)t, the payoff difference can be written as

2(y+ − y−) [λT (r) + (1− λ)T (t)− T (λr + (1− λ)t)] .

From the strict convexity of T , it then follows that the payoff difference is strictly positive. A

contradiction.

Lemma 12. The optimal delegation set satisfies minD∗(Y ) = minY .

Proof. Consider delegation set D with minD(Y ) > minY . Letting y = minY and y =

minD(ŷ), the state at which the agent is indifferent between the two actions is given by

t = (y + y)/2. If the principal includes y in the delegation set, the agent switches from y

to y in all states θ ≤ t. The principal’s change in expected payoff when including y is hence

given by

−
∫ t

0
(y − θ + β)2f(θ)dθ +

∫ t

0
(y − θ + β)2f(θ)dθ,

=

∫ t

0

[
(y − y)(y + y)− 2(y − y)(θ − β)

]
f(θ)dθ,

= 2(y − y)T (t) ,

which is strictly positive. Including y in the delegation set therefore strictly increases the

principal’s payoff, which implies minD∗(Y ) = minY .

Lemma 13. Let condition (7) be satisfied. The optimal delegation set is such that

maxD∗(Y ) = arg min
y∈Y
|y − ŷ|.

Proof. Consider delegation set D and suppose maxD < maxY . Let y = maxD and consider

action y > y, y ∈ Y . Let t = y+y
2 denote the state at which the agent is indifferent between the

2



two actions. The change in the principal’s payoff when including action y is given by

−
∫ 1

t
(y − θ + β)2f(θ)dθ +

∫ 1

t
(y − θ + β)2f(θ)dθ,

= −
∫ 1

t
[(y − y)(y + y)− 2(y − y)(θ − β)] f(θ)dθ,

= −2(y − y)S (t) .

This change is weakly positive if and only if S(t) ≤ 0 and hence if and only if t ≤ ŷ. Since t

is the midpoint of y and y, this condition holds if and only if the distance between y and ŷ is

weakly greater than the distance between y and ŷ, i.e. |y − ŷ| ≥ |y − ŷ|.

The previous results together conclude the proof.

B.2 Proof of Proposition 4

Proof. Let ŷ(β) be the optimal cap under full awareness when the bias is β. Hence, ŷ(β)

describes the solution of the problem

max
y
−
∫ y

ymin

β2dF (θ)−
∫ 1

y
(y − (θ − β))2 dF (θ). (23)

and is implicitly defined by the first-order condition∫ 1

ŷ
(θ − β) dF (θ)− ŷ(1− F (ŷ)) = 0.

The following second-order necessary condition must be satisfied at ŷ(β):

βf(ŷ(β))− (1− F (ŷ(β))) ≤ 0. (24)

By condition (7), the third derivative of expression (23) with respect to ȳ, given by βf ′(ȳ)+f(ȳ),

is strictly positive. Hence, the first derivative is strictly convex. Strict convexity of the first

derivative, together with the fact that it equals zero from below at ȳ = 1, implies that at

ŷ the first derivative crosses zero from above. Condition (28) must hence be satisfied with

strict inequality. We can then use the implicit function theorem (condition (7) implies that the

cumulate F is C1) to show that ŷ(β) admits a derivative at each β, which equals:

ŷ′(β) = − 1− F (ŷ(β)

βf(ŷ(β))− (1− F (ŷ(β)))
< 0 (25)

where we used the necessary second order condition (28) with strict inequality. Continuous

differentiability is guaranteed by the implicit function theorem and can be checked directly in

the above expression
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Turning to the case of partial awareness, let us first write the agent’s payoff as a function

of ∆ and the parameter β:

U(∆;β) = −
∫ ŷ(β)

ŷ(β)−∆
(ŷ(β)−∆− θ)2dF (θ)−

∫ 1

ŷ(β)
(ŷ(β) + ∆− θ)2dF (θ). (26)

The first and second derivative of this function with respect to ∆ are

U ′∆(∆;β) = 2

∫ ŷ(β)

ŷ(β)−∆
[ŷ(β)−∆− θ] dF (θ)− 2

∫ 1

ŷ(β)
[ŷ(β) + ∆− θ] dF (θ) (27)

U ′′∆∆(∆;β) = −2[1− F (ŷ(β)−∆)] < 0. (28)

Strict concavity implies that the agent’s optimisation problem has a unique solution on [0, ∆̄(Y )].

The interior solution of this problem is characterised by the first-order condition∫ ŷ(β)

ŷ(β)−∆∗
[ŷ(β)−∆∗ − θ] f(θ)dθ −

∫ 1

ˆy(β)
[ŷ(β) + ∆∗ − θ] f(θ)dθ = 0. (29)

Since F is C1, ŷ(β) is C1 and U ′′∆,∆ < 0, the conditions for applying the implicit function

theorem are satisfied. There is hence a function ∆∗(β) describing the unrestricted solution for

the agent that solves the first order condition: U ′∆(∆∗(β);β) = 0, which becomes an identity

when seen as a function of β, and:

∆∗′(β) = −
U ′′∆,β(∆∗(β);β)

U ′′∆,∆(∆∗(β);β)
.

To prove the statement of the proposition, we must then show U ′′∆,β(∆∗(β);β) > 0. Differen-

tiating the expression of the first order condition (10) with respect to β keeping ∆∗ as fixed,

after some rearrangement, delivers:

U ′′∆,β(∆∗(β);β) = −ŷ′(β) [1 + F (ŷ(β)−∆∗(β))− 2F (ŷ(β))] .

Since ŷ′(β) < 0 (see (25)), we would be done if 1 +F (ŷ(β)−∆∗(β))− 2F (ŷ(β)) > 0. Note that

this inequality can be equivalently written as:

2(1− F (ŷ(β))) > 1− F (ŷ(β)−∆∗(β)) .

Using ŷ(β) = E[θ − β|θ ≥ ŷ(β)], the first order condition (29) can be written as:

[1− F (ŷ(β)−∆∗(β))] [E[θ|θ ≥ ŷ(β)−∆∗(β)]− (ŷ(β)−∆∗(β))] = 2[1− F (ŷ(β))]β. (30)

Since ŷ(β)−∆∗(β) is strictly smaller than ŷ(β), the following condition holds:

E [θ − β|θ ≥ ŷ(β)−∆∗(β)]− (ŷ(β)−∆∗(β)) > 0.
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Equivalently we can write

E[θ|θ ≥ ŷ(β)−∆∗(β)]− (ŷ(β)−∆∗(β)) > β.

Given this inequality, (30) requires (1− F (ŷ(β)−∆∗)β))) < 2(1− F (ŷ(β))), as desired.

B.3 Proof of Proposition 8

Proof. We want to show that revealing an awareness set of the form [yA(0), ŷ−∆]∪ {ŷ+ ∆} is

optimal. Towards a contradiction, suppose this is not the case and let the optimal awareness set

be denoted by Y . Define ∆̃ to be the largest value of ∆ such that Y ⊆ (−∞, ŷ−∆]∪[ŷ+∆,+∞)

and Ỹ := [yA(0), ŷ − ∆̃] ∪ {ŷ + ∆̃}. Suppose the principal’s realised awareness set is Y P .

According to Proposition 3, the induced delegation sets from revealing, respectively, Y and Ỹ

are

D∗(Y ∪ Y P ) = {y ∈ Y ∪ Y P : y ≤ arg min
y∈Y ∪Y P

|y − ŷ|},

D∗(Ỹ ∪ Y P ) = {y ∈ Ỹ ∪ Y P : y ≤ arg min
y∈Ỹ ∪Y P

|y − ŷ|}.

In order for Y to yield a strictly higher payoff for the agent than Ỹ , there must exist some

awareness set Y P and some action y such that y ∈ D∗(Y ∪ Y P ) and y 6∈ D∗(Ỹ ∪ Y P ). By its

definition, D∗(Ỹ ∪Y P ) includes all actions in Ỹ weakly smaller than ŷ. Given Y ⊆ Ỹ , it follows

that y > ŷ. Furthermore, the optimal delegation set includes at most one action strictly greater

than ŷ. By definition of ∆̃, the set Y includes an action whose distance to ŷ is ∆̃. This implies

that the largest action in D∗(Y ∪Y P ) is weakly smaller than ŷ+ ∆̃. Hence, we have y ≤ ŷ+ ∆̃.

Also, since y belongs to D∗(Y ∪ Y P ), it follows that there is no action in Y P strictly closer to

ŷ than y. However, the property |y − ŷ| ≤ ∆̃, together with the fact that there is no action

in Y P that is closer to ŷ than y, implies that y must also belong to D∗(Ỹ ∪Y P ). A contradiction.

To prove the second part of the statement, let EU(∆) denote the agent’s expected payoff

associated to the disclosure of a set of actions parametrised by ∆ and let µ be the probability

which the agent assigns to the event that the principal’s awareness set does not include ŷ.

Then, given our assumption that awareness sets are closed, there exists some ε > 0 such that

no action in (ŷ − ε, ŷ + ε) belongs to any of the realisations of the principal’s awareness sets in

the support that do not contain ŷ. For ∆ ∈ [0, ε], the agent’s expected payoff conditional on

facing a principal who is not aware of ŷ is then described by the function U(∆), as defined in

(26), with U ′(0) = −2
∫ 1
ŷ (ŷ − θ) dF (θ) > 0 (see (27))

With the complementary probability 1−µ, the agent faces a principal who is aware of ŷ. In

this event, the principal never permits an action greater than ŷ. A lower bound for the agent’s

payoff conditional on the principal being aware of ŷ as a function of ∆ is given by the payoff that

obtains when the principal is unaware of all actions in (ŷ −∆, ŷ): any action in the principal’s
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awareness set belonging to (ŷ −∆, ŷ) will be included in the delegation set and thus increases

flexibility for the agent. The lower bound utility is:

U(∆) = −
∫ ŷ−∆/2

ŷ−∆
(ŷ −∆− θ)2f(θ)dθ −

∫ 1

ŷ−∆/2
(ŷ − θ)2dF (θ),

with

U ′(∆) = 2

∫ ŷ−∆/2

ŷ−∆
(ŷ −∆− θ)dF (θ)

The agent’s unconditional expected payoff EU(∆) must then be weakly greater than µU(∆) +

(1 − µ)U(∆). Since U ′(0) = 0 and U ′(0) > 0, the first derivative of µU(∆) + (1 − µ)U(∆)

evaluated at ∆ = 0 is strictly positive. Given that µU(∆) + (1 − µ)U(∆) is equal to EU(∆)

at ∆ = 0 and that µU(∆) + (1 − µ)U(∆) constitutes a lower bound for EU(∆) elsewhere, it

follows that EU(∆) is strictly increasing on a right neighbourhood of ∆ = 0.
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C Generalised extensive-form games with unaware-

ness

Heifetz et al. (2013, from now on HMS) define generalised extensive-form games that allow for

evolving unawareness.

To introduce the generalised extensive-form game Γ, let N be a set of decision nodes, C be

a set of chance nodes, and Z be a set of terminal nodes. The nodes N̄ = N ∪C ∪Z constitute a

tree. HMS capture limited awareness via the notion of subtrees, defined as subsets of nodes of

N̄ . Letting T be a family of subtrees of N̄ , for T, T ′ ∈ T the relation T ′ 4 T signifies that the

nodes of T ′ constitute a subset of the nodes of T . One element of T represents the modeler’s

view of the paths of play that are objectively feasible. The other elements of T represent feasible

paths of play as subjectively viewed by some player, or as the frame of mind attributed to a

player by other players or by the same player at a later stage of the game.

HMS propose a number of natural properties for generalised extensive-form games. These

include basic extensions of standard requirements of extensive form games but also new proper-

ties that are specific to unawareness. All of these features are satisfied in our generalised game,

which we describe in more detail now.

C.1 ’Pure’ Delegation Generalised Extensive-form Game

Consider first the model of the initial part of the paper where renegotiation is not possible.

There are are three players: the principal, the agent, and nature/chance. Each game tree in T

is very similar and all have virtually the same structure. An example of trees in T for the ’pure’

delegation model is reported in Figure 3. At the root, the agent moves with Y ⊇ Y p, then

the principal proposes D ⊆ Y , then nature picks θ which is revealed to the agent,x and finally

the agent picks y ∈ D knowing θ. The agent’s view is the richest one and coincides with the

modeller’s view and with the principal’s view in case of full awareness. Let the associated game

tree be denoted by TY A . The other elements of T represent feasible paths of play as subjectively

viewed by the principal. They also coincide with the way the agent see the principal’s view.

We denote by TY the subtree associated to principal’s awareness level Y . The tree TY can be

depicted starting from TY A and deleting all moves Y ′ such that Y ∩Y ′ = ∅ or Y ⊂ Y ′ (or both)

and all nodes following those moves.

At the outset of the game, the principal’s awareness is Y P and her subjective view of the

game is described by a subtree TY P . Within the confined view of TY P the principal can only

envisage the agent announcing Y P . If the agent reveals additional projects to the principal—

i.e., he announces Y ⊃ Y P—the principal updates her awareness and therefore her subjective

view of the game. Given updated awareness Y , the principal’s subjective game tree TY includes

additional nodes. Once the principal becomes aware of the additional nodes, she can also

contemplate less expressive game trees TY ′ , Y
P ⊆ Y ′ ⊆ Y . That is, the principal can envisage
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how the game would have unfolded had the agent revealed fewer actions. However, the principal

cannot contemplate the paths of play that would have been feasible if the agent would have

revealed more. After the initial stage, awareness no longer changes, which means that, given

the constraints unawareness imposes on the players’ succeeding moves, agent and principal play

a standard game. Finally, it might be useful to note that, within the HMS structure, while the

agent knows that the ‘true’ game tree is TY A , the tree TY represents how the agent’s thinks

the principal sees the game when her awareness level is Y . Furthermore, the tree TY represents

both how the principal actually sees the game when her awareness level is Y (so the agent is

right) and what the principal thinks the agent’s view of the game is (so the principal is wrong).

The tree TY also represents all the higher order beliefs about each other views of both the agent

and the principal.

Information Sets and Strategies. The ‘forest’ of trees T is hence constituted by T =(
{TY }Y ∈Y(Y P )

)
, where TY A is the objective tree and, recall, Y(Y P ) is the set of all closed sets

in R that are subset of Y P .

A complete description of the strategic interactions among the players however requires

considerations across the trees. The delegation game is of perfect information so for each player

each information set contains a sigle node. The same node however, might appear in several

trees. When a node is a decision node we treat the corresponding node in a different tree as a

different node—we thereby generate copies of it—while keeping the obvious order of the nodes

among all copies. Some nodes, however, do not constitute information sets of any player. So

there is a redundancy in this description.

Information sets represent both information and awareness. In each tree TY , the principal

has exactly one information set, where she decides the delegation set given his awareness. How-

ever, as explained above, given her awareness Y , the principal can now contemplate what she

could have done under lower awareness. These views are described by nodes in TY that lead to

information sets in less expressive trees: TY ′ for Y P ⊆ Y ′ ⊆ Y . The nodes representing lower

awareness than Y in TY are reported in TY but they do not constitute principal’s information

sets as they do not represent the ’state of mind’ the principal would have at that node. The

agent’s information sets are the root in each TY and the nodes (Y ′, D, θ) for Y ′ ⊆ Y , D ⊆ Y

an θ ∈ [0, 1].

A TY -partial game in our framework is constituted by the partially ordered set of trees

including TY and all TY ′ with Y ′ ⊆ Y , with all the information sets as specified above. The

TY A together with the linked less expressive trees and the information sets of the two players

specifying subsets of the nodes in T constitutes the generalised extensive-form game.

The agent’s pure strategy restricted to the TY -partial game can be described by a collection

of pairs σY ′ and yY ′ , one pair for each Y P ⊆ Y ′ ⊆ Y , where σY ′ represents the move at the

root of the tree TY ′ with feasibility Y P ⊆ σY ′ ⊆ Y ′ and the function yY ′(·) maps one y ∈ D for

each σY ′ ⊆ Y ′, θ ∈ [0, 1], D ⊆ σY ′ ; that is, yY ′(σY ′ , θ,D) ∈ D. The subscript in the functions
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D ⊆ Y P ∪ {y}

θ ∈ [0, 1]

ỹ ∈ D

UA(θ, y), UP (θ, y)

Y P

Y P ∪ {y}
Y P ∪X

D ⊆ Y P

θ ∈ [0, 1]

ỹ ∈ D

UA(θ, y), UP (θ, y)

Y P

UA(θ, y), UP (θ, y)

ỹ ∈ D

θ ∈ [0, 1]

D ⊆ Y P ∪ {y}

Y P Y P ∪ {y}

Figure 3: Objective and subjective game trees: circles are decision nodes of the agent,
diamonds those of nature, and squares those of the principal. The tree on the top depicts
the objective game tree. The tree on the bottom left illustrates the principal’s subjective
view of the game before the agent discloses additional actions. The tree on the bottom
right shows the principal’s subjective view of the game after becoming aware of action
y. In the branches of the different trees we also indicate the principal’s awareness. After
updating the principal can contemplate how the game would have unfolded if she had not
learned about y but she cannot contemplate branches of the objective game tree following
disclosures of actions different than y. Solid squares (resp. circles) denotes the principal’s
(resp. agent’s) information sets. The principal has exactly one information set in each of
the bottom trees.
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indicates the tree where the nodes constituting agent’s information sets are located.

Recall that to each node Y ′ ⊂ Y in TY we associated an information set (and hence a

decision node) for the principal in tree TY ′ (i.e., to a tree outside TY ). The structure of T is

relatively simple in that the less expressive trees are linked to more expressive ones in a simple

way. This simplicity allows us to describe a pure strategy for the principal as a function D(·)
that associate to each Y ∈ Y(Y P ) a set in D(Y).28 Actions taken by the principal at a given

informations set also generate the same moves at the corresponding nodes in trees with higher

levels of awareness. Each function D(·) embeds all information for a complete description of

the principal’s strategy in the generalised game. In particular, given a function D(·), we can

describe the principal’s strategy restricted to a TY -partial game by considering the behaviour

of D restricted to the domain Y ′ ⊆ Y .

C.2 Rationalizability and Prudent Rationalizability

In this section we show that the equilibrium described in the main text is the unique ∆-

rationalizable outcome of the generalised game we described above whenever we restrict to pure

strategies and assume the two tie-breaking rules reported in the main text to be commonly be-

lieved.

System of Beliefs A system of beliefs associates to each information set h of a player,

his/her beliefs over the opponent’s strategies restricted to the T−partial game that includes

the information set, assigning probability one to the opponent’s strategies that lead to the

information set h. The system is ‘prudent’ whenever it gives otherwise full support to all

‘conceivable’ strategies of the opponent (see Heifetz et al. (2020) for details).

First, we describe the principal’s set of beliefs. When confronted with awareness Y , the

principal must attach probability one to all strategies of the agent that include the first move

σY ′ = Y (so only to the node σY = Y in the tree TY ) and then must form beliefs about the

continuation of the agent’s strategy yY ′ in the last stage for all Y ′ ⊆ Y . However note, that

the entry Y in the functions describing the component of the agent’s strategy at the last stage

is only in trees TY or more expressive trees. But such more expressive trees are not part of

the TY -partial game. This implies that the principal must assign probability zero to all such

functions. Moreover, since the agent’s move at the root is taken before knowing the realisation

of θ, all of the equilibrium considerations are useless for the principal in terms of inference based

on forward induction considerations. As a consequence, what matters for the principal’s beliefs

at the (sole) information set in tree TY is the agent’s strategy yY in that tree alone. This is

what we will keep track of. So, our ‘prudent rationalizability’ sets omit some (redundant and

irrelevant) elements compared to the defintion by Meier and Schipper (2014).

28Since the principal has one information set in each tree, we could have equivalently written her
strategy as an action DY in the sole information sets for the tree TY .
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In our problem, the only agent’s beliefs that need to be specified are those at the root about

the principal’s rationalizable strategies D(·). Those refer to actions taken over different trees.

However, as argued above, they can be described by a single function.

To define prudent rationalizability, consider hence the following sequence of sets:

RA0 (Y ) =
{

(σY , yY ) : σY ∈ Y, σY ⊆ Y, for Y ′ ⊆ Y,D ⊆ Y ′, yY : (Y ′, θ,D) 7→ D
}
,

RP0 =
{
D : ∀Y ∈ Y, D(Y ) ∈ D̄(Y )

}
,

and for k > 0:

RAk (Y )=

{
(σY , yY ) ∈ RAk−1(Y ) : yY (Y ′, θ,D) ∈ BRA(θ,D) ∃µA ∈ ∆̄(RPk−1);σY ∈ arg max

Ŷ⊇Y p

∫
RP

k−1

V A(Ŷ , D(Ŷ ), yY )dµA

}
,

RPk =

{
D ∈ RPk−1 : ∀Y ∈ Y ∃µP ∈ ∆̄(RAk−1(Y )); D(Y ) ∈ arg max

D̂⊆Y

∫
RA

k−1(Y )
V P (Y, D̂, yY )dµP

}
.

In the above:

1. The entry Y in RA(·) indicates strategies defined on information sets located in the tree

TY . Recall that those are the only ones we will keep track of in the TY -partial game.

2. ∆̄(RAk−1(Y )) is the set of distributions over RAk−1(Y ) that gives probability one to σY = Y

and has ‘full support’ over all functions yY in RAk−1(Y ) that satisfy the tie-breaking rule;

3. ∆̄(RPk−1) is the set of distributions over RPk−1 with ‘full support’ over the delegation sets

in it that satisfy the tie-breaking rule;

4. The set BRA(θ,D) indicates the best response of the agent as defined in (1).

5. For i = A,P , V i(Y,D, yY ) :=
∫ 1

0 U i(θ, yY (Y, θ,D))dF (θ).

The sets of prudent-rationalizable strategies for player i = A,P are defined as:

RA∞(Y ) := ∩∞k=0R
A
k (Y ) and RP∞ := ∩∞k=0R

P
k .

The technical complications involved in the definition of ‘full support’ are not analysed in

detail because, as we will see next, the sets quickly shrink to singletons.

Consider indeed the sets RA1 (·) and note that RP0 allows for all D ⊆ Y in each information

set σ = Y , so all agent’s information sets are reached. Furthermore, it is immediate to see that

the objective function and the feasibility sets defining yY are identical across all sets. With an

appropriate restriction of the domain (to be expressible within the tree TY ) each of these rules

can hence be described concisely by a function describing the agent’s best strategy in all trees.

The function yY would then coincide with this extended function when its domain is restricted

to Y ′ ⊆ Y and D ⊆ Y ′. Moreover, the commonly believed tie-breaking rule implies that such
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function is unique. Recalling the notation used in Appendix A.3, let’s denote this function by

y∗.

Next, while RP1 is still a rich set, we now argue that RP2 is a singleton. The argument in

the previous paragraph implies that for each Y , the belief µP must be concentrated on the

singleton (σY , yY ) = (Y, y∗Y ) (where we denote by y∗Y the reduced domain version of y∗). This

implies that, for each Y , when deciding D, the principal only considers the objective function

V P (Y,D, y∗Y ) (with full probability weight on this combination alone). This, together with the

tie-breaking rule implies that the principal has only one solution for each Y . This is what we

denote in the main text as D∗(Y ). The solutions across the principal’s information sets defines

the function D∗(·)
Finally, consider the sets RA3 (·). We already argued that the last stage component can

be described by the function y∗. Moreover, we argued in the previous paragraph that RP2 is

a singleton. The objective of the agent is hence V A(Y,D∗(Y ), y∗Y ) with full weight on this

combination alone.

Recalling that for all Y,D, θ we have y∗Y (Y,D, θ) = y∗(Y,D, θ), our findings can be sum-

marised as follows:

Proposition 14 (Rationalizable Outcome). Let Y P given. The ‘relevant’ set of (prudently)

rationalizable strategies can be compactly defined as the sets (RA, RP ) satisfying:

RP =

{
D∗ : ∀Y ∈ Y, D∗(Y ) ∈ arg max

D̂⊆Y
V P (Y, D̂) together with the tie-breaking rule

}
,

RA =

{
(Y, y∗) : y∗(Y, θ,D) ∈ BR(θ,D) with tie-breaking rule, Y ∈ arg max

Ŷ⊇Y p
V A(Ŷ , D∗(Ŷ ))

}
,

where for all Y ∈ Y and D ∈ D̄(Y ):

V A(Y,D) :=

∫ 1

0
UA(θ, y∗(Y, θ,D))dF (θ); (31)

V P (Y,D) :=

∫ 1

0
UP (θ, y∗(Y, θ,D))dF (θ). (32)

The proof is now complete, it is indeed immediate to see that the singletons described in RP

and RA coincide with the Perfect Bayesian Nash equilibrium strategies described in the main

text.

C.3 The Generalised Game with Renegotiation

In this subsection, we describe in detail the generalised extensive-form game representing our

model with the possibility of renegotiation. An example of the forest of trees is reported in

Figure 4.
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Figure 4: Objective and subjective trees for the game with renegotiation.
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There are two instances in the generalised game where the principal may change her view.

The first one is after the initial move by the agent, as in the ’pure’ delegation game we described

in Section C.1. A second instance where the principal may change her awareness is at the rene-

gotiation stage, whenever the agent proposes an action outside the awareness of the principal.

The generalised game is hence constituted by more trees compared to the ‘pure’ delegation case.

Recall that we assume that the principal is initially unaware of the possibility of renegotia-

tion. This assumption, first of all, implies that the generalised game includes trees very similar

to the ‘pure’ delegation case. They represent situations where the principal only becomes aware

of new actions right after the agent’s move at the root and there is no proposal at the rene-

gotiation stage. To be consistent with the previous notation, we denote all such threes as TY .

However, to be consistent with a richer continuation of the tree in the renegotiation stage,

we append to them a singleton move by the agent and a singleton move by the principal, the

agent’s move can be seen as an ‘articifial’ no-proposal which is followed by the principal’s move

assigning again the original D. These moves lead to a final stage that is identical to that in the

‘pure’ delegation case, where the agent can pick any y ∈ D. The tree TY differs from the tree

that would represent the view of the principal who has been made aware of Y at the initial stage

and does not receive any proposal outside her awareness set at the renegotiation stage, but she

is aware of the possibility of renegotiation. The trees representing the latter situation/view are

denoted by TY,∅, where the second entry in the subscript indicates that there is no proposal

outside the awareness set at the renegotiation stage, so the principal’s awareness over the set of

actions is still Y , although, in this case, she is aware of the possibility or renegotiation. The

notation also permits to compute the final awareness of the principal in the tree: in this case,

Y ∪ ∅ = Y .

Recall further that the agent may only propose singletons at the renegotiation stage. Con-

sider awareness level Y after the agent’s move at the root, and a proposal y /∈ Y at the

renegotiation stage. This leads to a principal’s information set that belongs to the game tree

denoted as TY,y. In this tree, the principal contemplates the fact that at the beginning of the

game the agent could have revealed σ = Y ∪ {y} (followed by N at the renegotiation stage) or

any subset of Y ∪{y} which is a superset of Y P . Similarly, the principal realises that the agent

could have revealed any other y′ ∈ Y at the renegotiation stage had he started at the root with

σ′ = Y ′ ⊂ Y , {y}∩Y ′ = ∅, and so on. Our notation implies that the tree representing both the

modeller’s and the agent’s view is denoted by TY A,∅. This tree will, of course, be identical to

all other trees where the principal has full awareness and she is also aware of the renegotiation

stage. As anticipated, with the exclusion of the trees TY , where the principal remains unaware

of the possibility of a renegotiation stage, all other trees are identical as long as the principal’s

final awareness is the same.29 Despite these similarities, in order to describe the principal’s

information sets, all such trees must be treated separately. This is because within a generalised

29For example, the tree TY ∪{y1},y2
is identical to the tree TY ∪{y2},y2

, because in both games the
principal is aware of the possibility of renegotiation and has the same overall awareness set.
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game, information sets model both information and awareness.

Information sets and Strategies The forest of trees T is constituted by trees of the form

(in increasing order of awareness): TY , TY,∅, and TY,y′ , for Y ∈ Y(Y P ) and y′ ∈ Y A\Y .

In each tree of the form TY , the principal has a single information set after a specific move

at the root by the agent: this is the move σT = Y . At these information sets the principal

chooses the delegation set D ⊆ Y . In TY the principal has also one information set after the

agent’s ‘artificial’ proposal N at the renegotiation stage but the principal has a singleton move

at this information set, so it is less relevant.

In each tree T = TY,y, the principal has information sets at the renegotiation stage alone.

To describe the principal’s information sets at the renegotiation stage, say, within the tree TY,y,

recall that the agent’s proposal y at the renegotiation stage occurs after he observes θ, while

the principal cannot observe it. Moreover, the principal might have taken a different delegation

set after the agent’s first move. Given D ⊆ Y , a principal’s information set in the tree TY,y is

constituted by all nodes of the form (Y,D, θ, y) for θ ∈ [0, 1]. In other terms, in each one of the

trees TY,y, the principal has several information sets, one for each D ⊆ Y , and each one of such

information sets includes all nodes with the same agent’s moves in the renegotiation stage (y

in this case) and all θ ∈ [0, 1]. The agent has information sets at each decision node across the

different trees, and they are all singletons.

A principal’s strategy in the generalised game is described by a move in each information

set. Given the specific structure of the principal’s information sets across the trees constituting

the generalised game, a principal’s strategy can be described by a delegation move DT and

a reply function ρT for each tree T of the form TY . The delegation move is as in the ’pure

delegation’ case: it assigns a delegation set D given the awareness of the principal at this stage

of the tree. As indicated, the function ρT for the three TY is reported for completeness but it

is a singleton choice.

In trees of the type TY,y, there is no information set for DT while ρT takes the particular

history (Y,D, y) in the tree and maps into {a, r}, where a stays for ’accept’ and r for ’reject’

the proposal.30 Note that within the tree, only the entry D can vary. This is because each

alternative move of the agent Y ′ 6= Y or y′ 6= y would lead to a principal’s information set in

a different tree.31 In particular, although the agent is aware of the possibility of renegotiation,

the information set corresponding to history (Y,D,N) in the tree TY,y lies in the tree TY .

A complete description of the agent’s set of strategies requires the indexation by the tree and

the history in each tree. Fix a tree T . Then σT represents the agent’s move at the root of the

tree, xT the proposal function and yT the agent’s last stage choice. The function xT takes tuples

(σT , D, θ) into a proposal x ∈ Y A, while the function yT takes a tuple (σT , D, θ, xT , D
′) to D′,

where D′ ∈ {D,xT }. All such functions must be consistent with being in tree T , which indicates

30Recall, when ρT = a then the delegation set the agent faces is D′ = y, and if ρT = r then D′ = D.
31If Y ′ ⊂ Y and y′ ∈ Y these nodes are present in the tree as hypothetical decision nodes for the

principal, but they do not constitute principal’s information sets.
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the view of the principal. So, for example, if T = TY,y then Y P ⊆ σT ⊆ Y , xT ∈ Y ∪ {y}, and

of course D ⊆ σT and yT ∈ D′.
We now describe what a T -partial game associated to a given information set is. There are

two main types of T -partial games. First of all, if the principal remains unaware of the possibility

or renegotiation, her information sets lie into T−partial games constituted by TY and all less

expressible trees (i.e., TY ′ for all Y ′ ⊂ Y ). Again, this is in full analogy to the ‘pure’ delegation

case. We then have T -partial games that are associated (i.e., include) information sets in which

the agent is aware of the possibility of renegotiation. If the information set is at node (Y,D, y)

in the tree TY,y, the T -partial game associated to this information set is constituted by the

following trees: (i) TY ′ for all Y ′ ⊆ Y ∪{y}; and (ii) TY ′,y′ where Y ′ ∪{y′} ⊆ Y ∪{y}, including

the tree TY ∪{y},∅.

In order to define a Bayesian equilibrium, we need to define beliefs over nodes at information

sets that include more then one node. As described above, the only instance where this happens

is at the principal’s information sets at the renegotiation stage after the agent’s proposal. Given

the commonly known cumulate F , and the focus on pure strategies, the principal’s beliefs at

such information sets are uniquely defined by the support. The support’s belief function will

be denoted as ΘT (·) and, for each tree T it maps triplets (Y,D, x) into subsets of [0, 1]. As

mentioned above, such beliefs are irrelevant for the principal’s choice in all trees TY . Given that

both the agent and the principal have a singleton choice, we set w.l.o.g. ΘT (·) = [0, 1] for such

trees (both on and off the equilibrium).

The literature provides several definitions of (Perfect) Bayesian Equilibrium and Sequential

Equilibrium for generalised extensive-from games with unawareness of actions. Some of them

are defined over slightly different frameworks. This is for example the case of Halpern and Rêgo

(2014) and Feinberg (2020).32 Our signalling game of the renegotiation stage fits into the class

of dynamic games studied by Ozbay (2007) in that there is a fully aware agent who moves first.

Definition 2. A PBE equilibrium for the generalised game is constituted by an ‘assessment’,

that is, a pair of strategies for the agent and the principal,

{(σ∗T , x∗T , y∗T )}T∈T and ({D∗TY }Y P⊆Y⊆Y A , {ρ∗T }T∈T),

together with a beliefs’ support system {Θ∗T }T∈T for the principal at the renegotiation stage, that

satisfy the following conditions. (i) At each information set, each player’s choice maximises

his/her expected utility, given the equilibrium strategies, conditional on his/her awareness, and

the associated beliefs’ support system. (ii) The strategies and beliefs’ support system constitute a

PBE in each subtree within any T−partial game. (iii) The beliefs’ support system is consistent

with the principal’s awareness and equilibrium strategies whenever possible, and the conditional

probabilities over each element in Θ∗T are computed using the cumulate F .

32For a related equilibrium definition for games with unawareness in normal-form see Meier and Schip-
per (2014).
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The meaning of the qualification ‘conditional on his/her awareness’ in condition (i) is that

the choices and beliefs at each information set h only consider payoffs and strategies in the

T -partial game that include the information set h. Condition (ii) is imposed for consistency

with the definition given in Appendix A.3 which requires PBE at each (Y,D).

The next proposition relates the equilibrium set according to the previous definition to the

equilibrium set according to the definition provided in Appendix A.3.

Proposition 15. (i) Let (σ∗, x∗, y∗), (D∗, ρ∗) and Θ∗ be an equilibrium, where (σ∗, D∗(·)) is

the solution of the contracting phase given y∗ and (x∗, ρ∗, y∗) together with Θ∗ constitute PBE

equilibria according to Definition 1 in Appendix A.3. Then we can find a PBE equilibrium

according to Definition 2 that is payoff equivalent and, in fact, coincides in all ‘payoff-relevant’

elements.

(ii) The payoff-relevant components of the agent’s best equilibrium outcome are the same across

the two definitions.

Proof. (i) Let us start with the function yT , T ∈ T describing the agent’s strategy in the

very last stage. It is clear that, given (θ,D′), the last stage problem of the agent is identical

across all trees. We can hence describe the agent’s strategy component at the last stage with

functions y that map tuples (Y,D, θ,D′) into D′. Given y, each functions yT can be recovered

by appropriately reducing the domain of the function y. The structure of the generalised game

allows for different functions in each tree. As we have argued above, once we impose the tie-

breaking rule, the agent’s final mapping compatible with equilibrium will be a single function.

As a consequence, the restriction we impose here is w.l.o.g. as long as we require subgame

perfection. In fact, abusing notation, we let y∗ be such function and its components that lead

to D′ = D as it has been defined in the pure delegation model, while for D′ = x we obviously

have y∗(·, x) = x.

Recall that the delegation choice of the principal is a move for each Y , so it can be

described—exactly as in the ’pure delegation’ case—by a function mapping principal’s aware-

ness Y into a delegation set D ⊆ Y . Moreover, given the unawareness about the renegotiation

stage at all such information sets, the principal’s considerations regarding the future at these

information sets are summarised by the map y∗, as in the ’pure’ delegation case. In our frame-

work, to take into account the unawareness of the renegotiation phase, the functions which

the principal sees are those where the last entry is D′ = D, which in turn is the consequence

of the (artificial) ‘no proposal’ we assumed at the renegotiations stages in all trees TY . The

tie-breaking rule implies that the equilibrium delegation function is unique and it coincides with

the optimal one in the ’pure delegation’ model, which we denoted by D∗.

So far we have shown that both equilibrium definitions use the (unique) functions D∗ and

y∗ of the pure delegation model (appropriately adjusted for the extensive form).

We now move to the ρ function component of the principal’s strategy. We want to show

that using ρ∗T = ρ∗, as defined in Appendix A.3, for all trees where the principal is aware of the
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renegotiation stage (with appropriate adjustments for the domain) and trivial choices for trees

where the principal is unaware of renegotiation, constitutes an equilibrium for the generalised

game.

For trees corresponding to the principal’s views where she is aware of the renegotiation stage,

the ρT component of the principal’s strategy will be determined by the principal’s beliefs at the

information set (Y,D, x) of the tree TY,x. Note that all changes in Y and x that lead to changes

in principal’s awareness lead to information sets in different trees, so the only redundancy comes

from the principal’s choice D. Since the agent’s initial move σ is done before knowing θ, the

principal’s inference at node (σT , D, xT ) only depends on the pair (D,x), her awareness Y , and

the agent’s strategy at the node. Note that the principal’s beliefs and choices off the equilibrium

path may matter for the agent’s choice at the root. It will be useful to distinguish two type of

off-the-equilibrium beliefs. First, whenever the node has the D-component off-the-equilibrium,

beliefs and the principal’s choices do not affect the agent’s choice. On the other hand, for nodes

of the form (Y,D∗(Y ), x), for each Y ⊇ Y P , we have shown in Proposition 5 that in each PBE

at the renegotiation stage where x is accepted by the principal, the beliefs’ support is:33

Θ(Y,D∗(Y ), x) := {θ ∈ [0, 1] : UA(θ, x) ≥ UA(θ, y′),∀y′ ∈ D∗(Y )}. (33)

Note in particular, that this set does not depend on the agent’s strategy and that the set of the

agent’s proposals that can be accepted by the principal in a PBE is again defined by Proposition

5.

We have hence shown that for trees where the principal is aware of the renegotiation stage

we can set ρ∗T = ρ∗, where ρ∗ is the equilibrium function according to Definition 1 (mapping

tuples (Y,D, x) to D′ ∈ {D,x}); and the principal’s belief at node (Y,D, x) can be the set

Θ∗(Y,D, x) of feasible θ, satisfying (33) together with the marginal induced by the cumulate F

obtained from Definition 1. If faced with the entry (Y,D,N), or in trees where the principal is

unaware of the renegotiation stage, the function ρT has a singleton choice ρT (·) = D and we

can set Θ∗T (Y,D,N) = [0, 1] at these information sets. Similarly, we can set x∗T = x∗ for all

trees where the principal is aware of renegotiation and x∗T = N for all other trees.

It is immediate to see that the mentioned strategies together with the initial choice σ∗T = Y ∗

in all trees reached in equilibrium for some realisation of θ constitute a PBE according to

Definition 2. The agent’s choice at the root of trees which are not reached in equilibrium will

also be specified in Defintion 2, while they are not defined in the more compact definition of

Appendix A.3.

Point (ii) is a direct consequence of the fact that in each equilibrium according to Definition

2, the set of the agent’s proposals that can be accepted by the principal is characterised by

Proposition 5.

33It is easy to see that the inference leading to the set Θ∗ holds in this context as well.
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