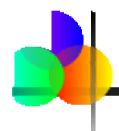
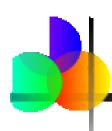
Statistica



Capitolo 4

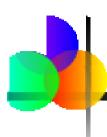
Probabilità



Obiettivi del Capitolo

Dopo aver completato il capitolo, sarete in grado di:

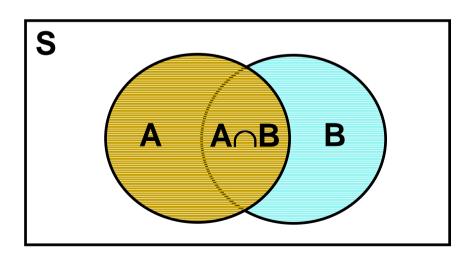
- Spiegare concetti e definizioni fondamentali della probabilità
- Usare il diagramma di Venn o ad albero per illustrare semplici probabilità
- Applicare regole comuni di probabilità
- Calcolare probabilità condizionate
- Determinare se gli eventi sono statisticamente indipendenti
- Usare il teorema di Bayes per probabilità condizionate

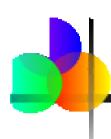


- Esperimento aleatorio un processo che porta ad un risultato incerto
- Evento elementare un possibile risultato di un esperimento aleatorio
- Spazio Campionario l'insieme di tutti i possibili risultati di un esperimento aleatorio
- Evento qualsiasi sottoinsieme di eventi elementari di uno spazio campionario

(continuazione)

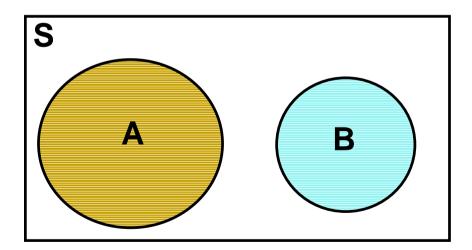
Intersezione di Eventi – Se A e B sono due eventi in uno spazio campionario S, allora l'intersezione, A ∩ B, è l'insieme di tutti gli eventi elementari in S che appartengono sia ad A che a B

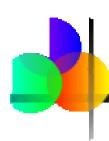




(continuazione)

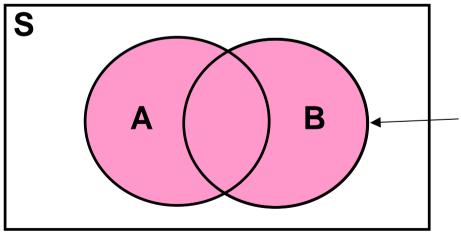
- A e B sono Eventi Mutuamente Esclusivi se non hanno in comune alcun evento elementare
 - i.e., l'insieme A ∩ B è vuoto



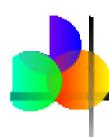


(continuazione)

 Unione di Eventi – Se A e B sono due eventi in uno spazio campionario S, allora l'unione, A U B, è l'insieme di tutti gli eventi elementari di S che appartengono ad A oppure a B

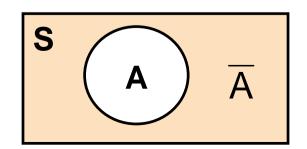


L'area ombreggiata rappresenta **A** U **B**



(continuazione)

- Gli eventi E₁, E₂, ... E_k sono Collettivamente Esaustivi se E₁ U E₂ U . . . U E_k = S
 - i.e., gli eventi compongono interamente lo spazio campionario
- L'Evento complementare di un evento A è l'insieme di tutti gli eventi elementari nello spazio campionario che non appartengono ad A. L'evento complementare è indicato da A



Esempi

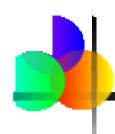
Considera lo Spazio Campionario come la collezione di tutti i possibili risultati nel lancio di un dado:

$$S = [1, 2, 3, 4, 5, 6]$$

Sia A l'evento "Il risultato è un numero pari"

Sia B l'evento "Il risultato è un numero maggiore o uguale a 4" Allora

$$A = [2, 4, 6]$$
 e $B = [4, 5, 6]$



Esempi

(continuazione)

$$S = [1, 2, 3, 4, 5, 6]$$

$$A = [2, 4, 6]$$

$$B = [4, 5, 6]$$

Complementi:

$$\overline{A} = [1, 3, 5]$$

$$\overline{B} = [1, 2, 3]$$

Intersezioni:

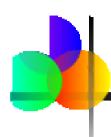
$$A \cap B = [4, 6]$$

$$\overline{A} \cap B = [5]$$

Unioni:

$$A \cup B = [2, 4, 5, 6]$$

$$A \cup \overline{A} = [1, 2, 3, 4, 5, 6] = S$$



Esempi

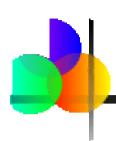
(continuazione)

$$S = [1, 2, 3, 4, 5, 6] \mid A = [2, 4, 6]$$

$$A = [2, 4, 6]$$

$$B = [4, 5, 6]$$

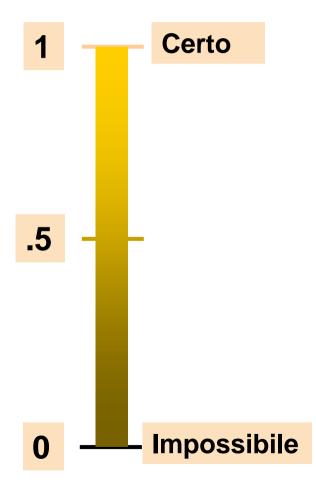
- Mutuamente esclusivi:
 - A e B non sono mutuamente esclusivi
 - I risultati 4 e 6 sono comuni ad entrambi
- Collettivamente esaustivi:
 - A e B non sono collettivamente esaustivi
 - A U B non contiene 1 o 3

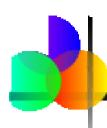


Probabilità

 Probabilità – la possibilità che un evento incerto si manifesti (sempre tra 0 e 1)

 $0 \le P(A) \le 1$ Per qualsiasi evento A





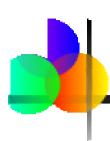
Valutando la Probabilità

Ci sono tre approcci per valutare la probabilità di un evento incerto:

1. probabilità classica

probabilità dell'evento
$$A = \frac{N_A}{N} = \frac{\text{numero di eventi elementari che soddisfano la condizione dell'evento}}{\text{numero complessivo di eventi elementari dello spazio campionario}}$$

 Ipotizza che tutti i risultati dello spazio campionario siano ugualmente possibili



Conteggio dei Possibili Risultati

 Usare la formula per determinare il numero di combinazioni di n oggetti presi k alla volta

$$C_k^n = \frac{n!}{k!(n-k)!}$$

- dove
 - n! = n(n-1)(n-2)...(1)
 - 0! = 1 per definizione

Valutando la Probabilità

Tre approcci (continuazione)

2. Interpretazione frequentista

probabilità dell'evento
$$A = \frac{n_A}{n} = \frac{\text{numero di eventi nella popolazione che soddisfano l'evento } A}{\text{numero complessivo di eventi nella popolazione}}$$

Il limite della proporzione di volte che un evento A occorre in un numero elevato di ripetizioni dell'esperimento, n

3. Probabilità soggettiva

un'opinione o credenza individuale circa la probabilità del verificarsi di un certo evento

Assiomi della Probabilità

 Se A è un qualunque evento dello spazio campionario S, allora

$$0 \le P(A) \le 1$$

2. Sia A un evento di S, e indichiamo con O_i gli eventi elementari. Allora

$$P(A) = \sum_{A} P(O_i)$$

(la notazione indica che la sommatoria si estende a tutti gli eventi elementari di A)

3.
$$P(S) = 1$$

Regole della Probabilità

La Regola dell'evento complementare:

$$P(\overline{A}) = 1 - P(A)$$
 i.e., $P(A) + P(\overline{A}) = 1$

- La Regola Additiva:
 - La probabilità dell'unione di due eventi è

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

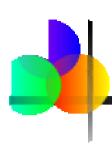
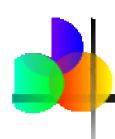


Tabella delle Probabilità

Probabilità marginali e congiunte per i due eventi A e B sono riassunte nella seguente tabella:

	В	B	
А	P(A∩B)	$P(A \cap \overline{B})$	P(A)
Ā	$P(\overline{A} \cap B)$	$P(\overline{A} \cap \overline{B})$	$P(\overline{A})$
	P(B)	P(B)	P(S) = 1.0

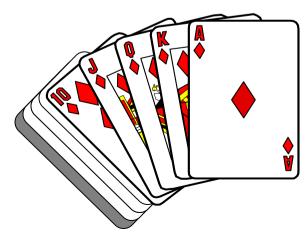


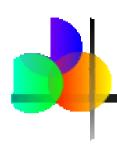
Esempio Regola Additiva

Considera un mazzo di 52 carte, con i quattro semi:

Evento A = la carta è un asso

Evento B = la carta è rossa





Esempio Regola Additiva

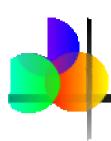
(continuazione)

 $P(Rossa \cup Asso) = P(Rossa) + P(Asso) - P(Rossa \cap Asso)$

= **26/52** + **4/52** - **2/52** = **28/52**

	Colore		
Tipo	Rossa	Nera	Totale
Asso	2	2	4
Non-Asso	24	24	48
Totale	26	26	52

Non contare due volte i due assi rossi!

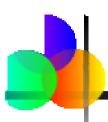


Probabilità Condizionata

Una probabilità condizionata è la probabilità di un evento, dato che l'altro evento si è verificato:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
La probabilità condizionata di A dato che B si è verificato

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$
La probabilità condizionata di B dato che A si è verificato



Esempio Probabilità Condizionata

- In una concessionaria di macchine usate, 70% delle loro macchine hanno l'aria condizionata (AC) e 40% hanno un lettore CD (CD). 20% delle loro macchine hanno entrambi.
- Qual'è la probabilità che una macchina abbia un lettore CD, dato che ha l'aria condizionata?

i.e., vogliamo calcolare P(CD | AC)

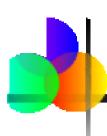
Esempio Probabilità Condizionata

(continuazione)

In una concessionaria di macchine usate, 70% delle loro macchine hanno l'aria condizionata (AC) e 40% hanno un lettore CD (CD). 20% delle loro macchine hanno entrambi.

	CD	No CD	Totale
AC	.2	.5	7 .
No AC	.2	.1	3.
Totale	.4	.6	1.0

$$P(CD \mid AC) = \frac{P(CD \cap AC)}{P(AC)} = \frac{.2}{.7} = .2857$$



Esempio Probabilità Condizionata

(continuazione)

 Dato AC, consideriamo solo la prima riga (70% delle macchine). Fra queste, 20% hanno un lettore CD. 20% di 70% è 28.57%.

	CD	No CD	Totale
AC	.2	.5	.7
No AC	.2	1	.3
Totale	.4	.6	1.0
			X .

$$P(CD \mid AC) = \frac{P(CD \cap AC)}{P(AC)} = \frac{.2}{.7} = .2857$$

Regola Moltiplicativa

Regola moltiplicativa per due eventi A e B:

$$P(A \cap B) = P(A \mid B)P(B)$$

inoltre

$$P(A \cap B) = P(B \mid A)P(A)$$

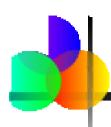
Esempio Regola Moltiplicativa

P(Rossa ∩ Asso) = P(Rossa | Asso)P(Asso)

$$=\left(\frac{2}{4}\right)\left(\frac{4}{52}\right)=\frac{2}{52}$$

$$= \frac{\text{numero di carte che sono rosse e asso}}{\text{numero complessivo di carte}} = \frac{2}{52}$$

	Colore		
Tipo	Rossa Nera		Totale
Asso	(2)	2	4
Non-Asso	24	24	48
Totale	26	26	52



Indipendenza Statistica

Due eventi sono statisticamente indipendenti se e solo se:

$$P(A \cap B) = P(A)P(B)$$

- Gli eventi A e B sono indipendenti quando la probabilità di un evento non è influenzata dall'altro evento
- Se A e B sono indipendenti, allora

$$P(A | B) = P(A)$$
 se $P(B)>0$

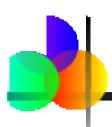
$$|P(B|A) = P(B)| \qquad \text{se } P(A) > 0$$

Esempio Indipendenza Statistica

 In una concessionaria di macchine usate, 70% delle loro macchine hanno l'aria condizionata (AC) e 40% hanno un lettore CD (CD). 20% delle loro macchine hanno entrambi.

	CD	No CD	Totale
AC	.2	.5	.7
No AC	.2	.1	.3
Totale	.4	.6	1.0

Sono gli eventi AC e CD statisticamente indipendenti?



Esempio Indipendenza Statistica

(continuazione)

	CD	No CD	Totale
AC	.2	.5	.7
No AC	.2	.1	.3
Totale	.4	.6	1.0

$$P(AC \cap CD) = 0.2$$

$$P(AC) = 0.7$$

 $P(CD) = 0.4$ $P(AC)P(CD) = (0.7)(0.4) = 0.28$

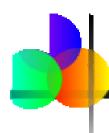
$$P(AC \cap CD) = 0.2 \neq P(AC)P(CD) = 0.28$$

Quindi i due eventi non sono statisticamente indipendenti

Probabilità Bivariate

Risultati di eventi bivariati:

	B ₁	B ₂		B_k
A ₁	$P(A_1 \cap B_1)$	$P(A_1 \cap B_2)$		$P(A_1 \cap B_k)$
A_2	$P(A_2 \cap B_1)$	$P(A_2 \cap B_2)$		$P(A_2 \cap B_k)$
	-			
			•	
•	-	•	-	•
A _h	$P(A_h \cap B_1)$	$P(A_h \cap B_2)$		$P(A_h \cap B_k)$



Probabilità Congiunte e Marginali

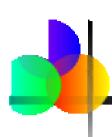
La probabilità di un evento congiunto, A ∩ B:

$$P(A \cap B) = \frac{\text{numero di eventi semplici che soddisfano A e B}}{\text{numero complessivo di eventi elementari}}$$

Calcolo di una probabilità marginale:

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_k)$$

 Dove B₁, B₂, ..., B_k sono k eventi mutuamente esclusivi e collettivamente esaustivi



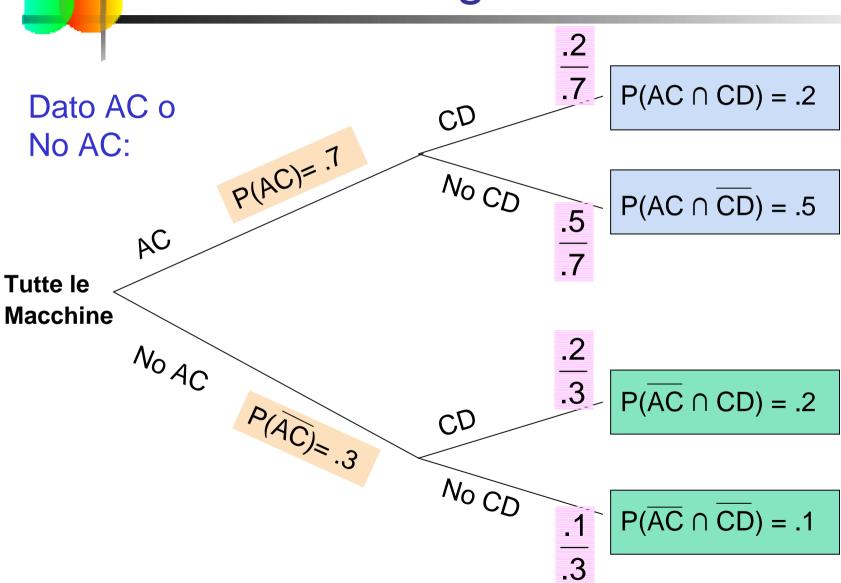
Esempio Probabilità Marginale

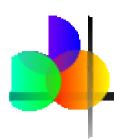
P(Asso)

= P(Asso
$$\cap$$
 Rossa) + P(Asso \cap Nera) = $\frac{2}{52} + \frac{2}{52} = \frac{4}{52}$

_	Colore		/
Туре	Rossa	Nera	Totale
Asso	2	2	4
Non-Asso	24	24	48
Totale	26	26	52

Uso di un Diagramma ad Albero





Odds

- Gli odds in favore di un particolare evento sono dati dal rapporto tra la probabilità dell'evento e la probabilità dell'evento complementare
- Gli odds in favore di A sono

odds =
$$\frac{P(A)}{1-P(A)} = \frac{P(A)}{P(\overline{A})}$$

Odds: Esempio

Calcolare la probabilità di vittoria se gli odds in favore della vittoria sono 3 a 1:

$$odds = \frac{3}{1} = \frac{P(A)}{1 - P(A)}$$

 Adesso moltiplica entrambi i lati dell'equazione per 1 – P(A) e risolvi rispetto a P(A):

$$3 \times (1-P(A)) = P(A)$$

 $3-3P(A) = P(A)$
 $3 = 4P(A)$
 $P(A) = 0.75$

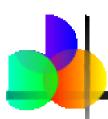
Overinvolvement Ratio

La probabilità dell'evento A₁ condizionata dall'evento B₁ divisa per la probabilità di A₁ condizionata dall'evento B₂ viene definita overinvolvement ratio:

$$\frac{P(A_1 \mid B_1)}{P(A_1 \mid B_2)}$$

 Un overinvolvement ratio maggiore di 1 implica che l'evento A₁ aumenta il rapporto degli odds condizionati in favore di B₁:

$$\frac{P(B_1 | A_1)}{P(B_2 | A_1)} > \frac{P(B_1)}{P(B_2)}$$



Teorema di Bayes

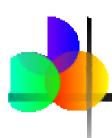
$$P(E_{i} | A) = \frac{P(A|E_{i})P(E_{i})}{P(A)}$$

$$= \frac{P(A|E_{i})P(E_{i})}{P(A|E_{1})P(E_{1}) + P(A|E_{2})P(E_{2}) + ... + P(A|E_{k})P(E_{k})}$$

dove:

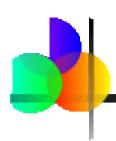
E_i = i^{mo} evento di k eventi mutuamente esclusivi e collettivamente esaustivi

 $A = nuovo evento che può avere un impatto su <math>P(E_i)$



Esempio Teorema di Bayes

- Una compagnia di trivellazione ha stimato che la probabilità di trovare il petrolio nel suo nuovo pozzo è del 40%.
- Per raccogliere ulteriori informazioni, la compagnia programma un test dettagliato. Storicamente, 60% dei pozzi di successo sono passati attraverso un test dettagliato, e 20% dei pozzi non di successo sono passati attraverso un test dettagliato.
- Dato che questo pozzo viene programmato per un test dettagliato, qual'è la probabilità che il pozzo sarà di successo?



Esempio Teorema di Bayes

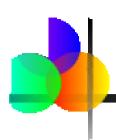
(continuazione)

Sia S = pozzo di successo
 U = pozzo non di successo

- P(S) = .4, P(U) = .6 (probabilità a priori)
- Denotiamo l'evento "test dettagliato" con D
- Probabilità condizionate:

$$P(D|S) = .6$$
 $P(D|U) = .2$

L'obbiettivo è di trovare P(S|D)



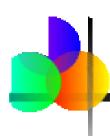
Esempio Teorema di Bayes

(continuazione)

Applichiamo il Teorema di Bayes:

$$P(S|D) = \frac{P(D|S)P(S)}{P(D|S)P(S) + P(D|U)P(U)}$$
$$= \frac{(.6)(.4)}{(.6)(.4) + (.2)(.6)}$$
$$= \frac{.24}{.24 + .12} = 667$$

Quindi la probabilità di successo revisionata (dalla stima iniziale di .4), dato che il pozzo è stato programmato per un test dettagliato, è .667



Riepilogo del Capitolo

- Definiti i concetti fondamentali della probabilità
 - Spazio campionario e eventi, intersezione e unione di eventi, eventi mutuamente esclusivi e collettivamente esaustivi, evento complementare
- Esaminate le regole fondamentali della probabilità
 - Regola dell'evento complementare, regola additiva, regola moltiplicativa
- Definite probabilità condizionate, congiunte, e marginali
- Esaminati odds e overinvolvement ratio
- Definita l'indipendenza statistica
- Discusso il Teorema di Bayes