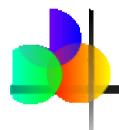
Statistica



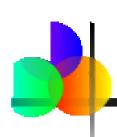
Capitolo 5

Variabili Aleatorie Discrete e Distribuzioni di Probabilità

Obiettivi del Capitolo

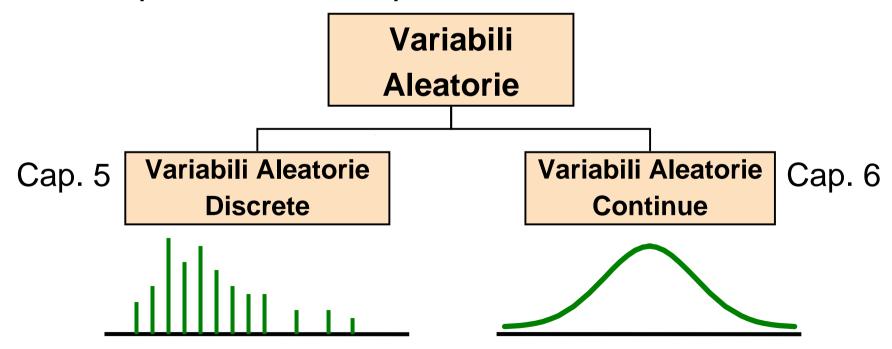
Dopo aver completato il capitolo, sarete in grado di:

- Interpretare la media e lo scarto quadratico medio per una variabile aleatoria discreta
- Usare la distribuzione di probabilità binomiale per calcolare probabilità
- Descrivere quando usare la distribuzione binomiale
- Usare le distribuzioni di probabilità discrete ipergeometrica e Poisson per calcolare probabilità
- Spiegare covarianza e correlazione per variabili aleatorie con distribuzione congiunta



Introduzione alle Distribuzioni di Probabilità

- Variabile Aleatoria
 - Rappresenta un possibile valore numerico prodotto dall'esperimento aleatorio



Variabili Aleatorie Discrete

Può assumere solo un insieme numerabile di valori

Esempi:

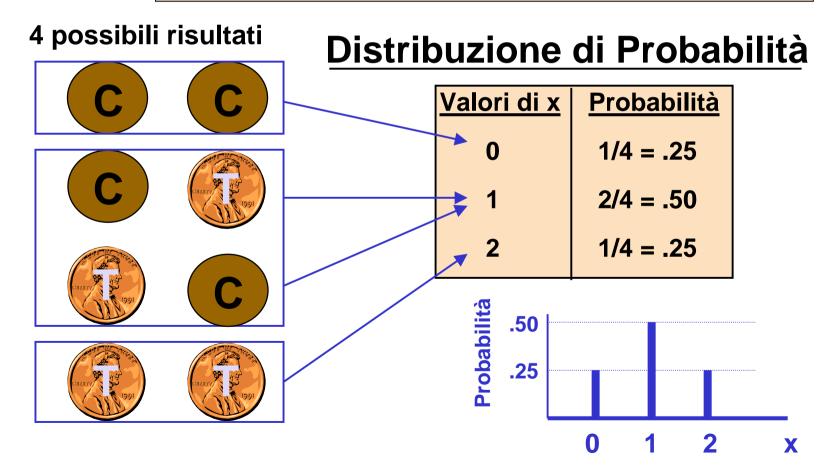
- Lancia due volte un dado
 Sia X il numero di volte che si ottiene 4
 (allora X può essere 0, 1, o 2 volte)

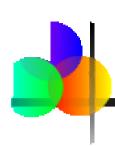
Lancia una moneta 5 volte.
 Sia X il numero complessivo di teste
 (allora X = 0, 1, 2, 3, 4, o 5)

Distribuzioni di Probabilità Discrete

Esperimento: Lancia 2 Monete. Sia X = # di teste.

Calcola P(x), i.e., P(X = x), per tutti i valori di x:



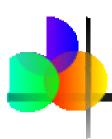


Distribuzione di Probabilità Proprietà Necessarie

- $P(x) \ge 0$ per ogni valore di x
- Le singole probabilità sommano a 1;

$$\sum_{x} P(x) = 1$$

(La notazione indica che la sommatoria si estende a tutti i possibili valori di x)



Funzione di Ripartizione

La Funzione di ripartizione, indicata con F(x₀),
 esprime la probabilità che X non superi il valore x₀

$$F(x_0) = P(X \le x_0)$$

In altre parole,

$$\mathsf{F}(\mathsf{x}_0) = \sum_{\mathsf{x} \leq \mathsf{x}_0} \mathsf{P}(\mathsf{x})$$

Valore Atteso

 Valore atteso (o media) di una distribuzione discreta (Media Pesata)

$$\mu = E(x) = \sum_{x} xP(x)$$

Esempio: Lancia 2 monete,

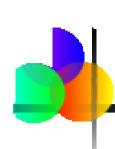
$$x = # di teste,$$

calcoliamo il valore atteso di x:

$$E(x) = (0 \times .25) + (1 \times .50) + (2 \times .25)$$

= 1.0

x	P(x)
0	.25
1	.50
2	.25



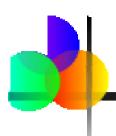
Varianza e Scarto Quadratico Medio

Varianza di una variabile aleatoria discreta X

$$\sigma^2 = E(X - \mu)^2 = \sum_{x} (x - \mu)^2 P(x)$$

 Scarto Quadratico Medio di una variabile aleatoria discreta X

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{x} (x - \mu)^2 P(x)}$$



Esempio Scarto Quadratico Medio

 Esempio: Lancia 2 monete, X = # di teste, calcoliamo lo scarto quadratico medio (ricorda E(x) = 1)

$$\sigma = \sqrt{\sum_{x} (x - \mu)^2 P(x)}$$

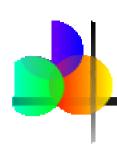
$$\sigma = \sqrt{(0-1)^2(.25) + (1-1)^2(.50) + (2-1)^2(.25)} = \sqrt{.50} = .707$$
Numero possibile di teste
= 0, 1, or 2



Funzioni di Variabili Aleatorie

 Se P(x) è la funzione di probabilità di una variabile aleatoria discreta X, e g(X) è una qualunque funzione di X, allora il valore atteso della funzione g è

$$E[g(X)] = \sum_{x} g(x)P(x)$$



Funzioni Lineari di Variabili Aleatorie

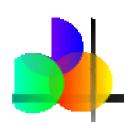
Siano a e b delle costanti.

• a)
$$E(a) = a$$
 e $Var(a) = 0$

i.e., se una variabile aleatoria assume sempre il valore a, avrà media a e varianza 0

b)
$$E(bX) = b\mu_X$$
 e $Var(bX) = b^2\sigma_X^2$

i.e., il valore atteso di b·X è b·E(x)



Funzioni Lineari di Variabili Aleatorie

(continuazione)

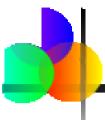
- Sia X una variabile aleatoria con media μ_x e varianza σ²_x
- Siano a e b due costanti.
- Sia Y = a + bX
- Allora la media e varianza di Y sono

$$\mu_Y = E(a+bX) = a+b\mu_X$$

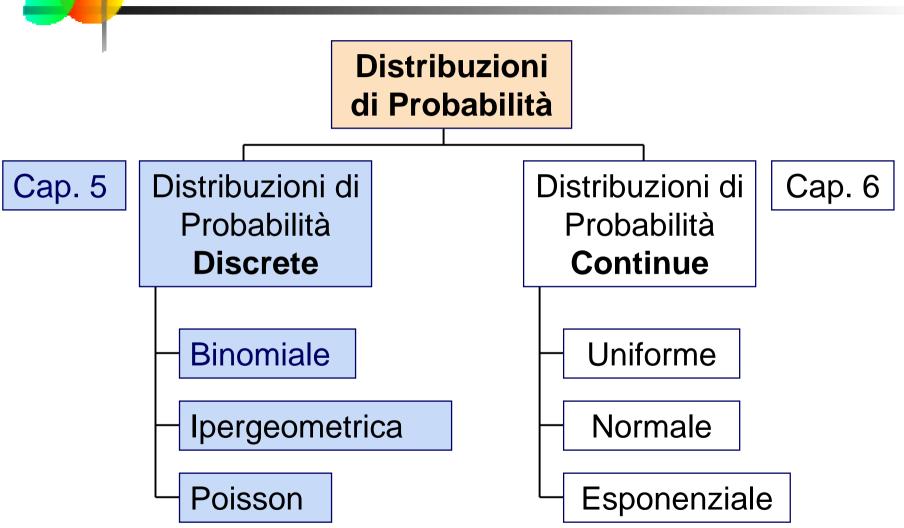
$$\sigma^2 = Var(a+bX) = b^2 \sigma^2 x$$

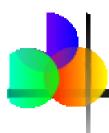
Lo scarto quadratico medio di Y è allora

$$\sigma_{Y} = |b|\sigma_{X}$$



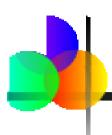
Distribuzioni di Probabilità





La Distribuzione Binomiale

Distribuzioni di Probabilità Distribuzioni di Probabilità **Discrete** Binomiale **Ipergeometrica** Poisson



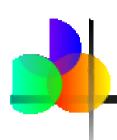
Distribuzione di Bernoulli

- Considera solo due risultati: "successo" o "insuccesso"
- Sia P la probabilità di successo
- Sia 1 − P la probabilità di insuccesso
- Definiamo la variabile aleatoria X:

x = 1 se successo, x = 0 se insuccesso

Allora la Funzione di Probabilità di Bernoulli è

$$P(0) = (1-P)$$
 e $P(1) = P$



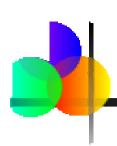
Distribuzione di Bernoulli Media e Varianza

La media è μ = P

$$\mu = E(X) = \sum_{x} xP(x) = (0)(1-P)+(1)P = P$$

• La varianza è $\sigma^2 = P(1 - P)$

$$\sigma^{2} = E[(X-\mu)^{2}] = \sum_{x} (x-\mu)^{2}P(x)$$
$$= (0-P)^{2}(1-P) + (1-P)^{2}P = P(1-P)$$



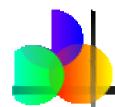
Sequenze di x Successi in n Prove

Il numero di sequenze con x successi in n prove indipendenti è:

$$C_x^n = \frac{n!}{x!(n-x)!}$$

Dove
$$n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 1$$
 e $0! = 1$

 Queste sequenze sono mutuamente esclusive, poichè non se ne possono verificare due contemporaneamente

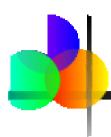


Distribuzione di Probabilità Binomiale

- Un numero fissato di osservazioni, n
 - e.g., 15 lanci di una moneta; dieci lampadine prese in un magazzino
- Due categorie mutuamente esclusive e collettivamente esaustive
 - e.g., testa o croce in ciascun lancio della moneta; lampadina difettosa o non difettosa
 - Generalmente chiamati "successo" e "insuccesso"
 - Probabilità di successo è P, probabilità di insuccesso è 1 P
- La probabilità constante per ciascuna osservazione
 - e.g., Probabilità di ottenere una testa è la stessa ogni volta che lanciamo la moneta
- Le osservazioni sono indipendenti
 - Il risultato di una osservazione non influenza il risultato dell'altra

Possibili Scenari di una Distribuzione Binomiale

- Uno stabilimento di produzione etichetta gli articoli in: difettosi o accettabili
- Un'azienda che fa un'offerta per acquisire dei contratti o otterrà il contratto o non lo otterrà
- Un'azienda di marketing riceve le risposte ad un sondaggio nella forma "si lo comprerò" oppure "no non lo comprerò"
- Nuovi candidati per un lavoro o accetteranno l'offerta o la rifiuteranno



Formula Binomiale

$$P(x) = \frac{n!}{x!(n-x)!}P^{x}(1-P)^{n-x}$$

- P(x) = probabilità di x successi in n prove, con probabilità di successo P in ogni prova
 - x = numero di 'successi' nel campione,<math>(x = 0, 1, 2, ..., n)
 - n = dimensione del campione (numero di prove o osservazioni)
 - P = probabilità di "successo"

Esempio: Lancia in aria una moneta 4 volte, sia x = # di teste:

$$n = 4$$

$$P = 0.5$$

$$1 - P = (1 - 0.5) = 0.5$$

$$x = 0, 1, 2, 3, 4$$

Esempio: Calcolo della Probabilità Binomiale

Qual'è la probabilità di ottenere un successo in cinque osservazioni se la probabilità di successo è 0.1?

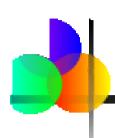
$$x = 1, n = 5, e P = 0.1$$

$$P(x=1) = \frac{n!}{x!(n-x)!} P^{x} (1-P)^{n-x}$$

$$= \frac{5!}{1!(5-1)!} (0.1)^{1} (1-0.1)^{5-1}$$

$$= (5)(0.1)(0.9)^{4}$$

$$= .32805$$

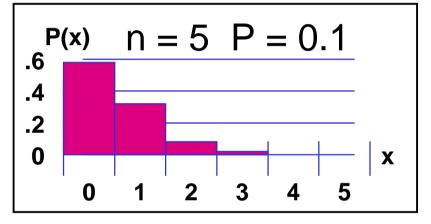


Distribuzione Binomiale

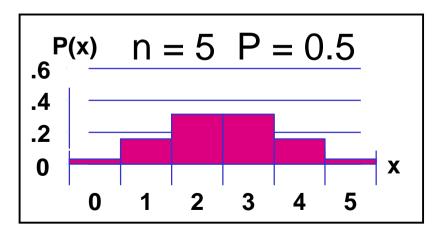
La forma della distribuzione binomiale dipende dai

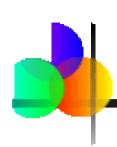
valori di Pen

Considera n = 5 e P = 0.1



Considera n = 5 e P = 0.5





Distribuzione Binomiale Media e Varianza

Media

$$\mu = E(x) = nP$$

Varianza e Scarto Quadratico Medio

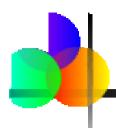
$$\sigma^2 = nP(1-P)$$

$$\sigma = \sqrt{nP(1-P)}$$

Dove n = dimensione del campione

P = probabilità di successo

(1 - P) = probabilità di insuccesso

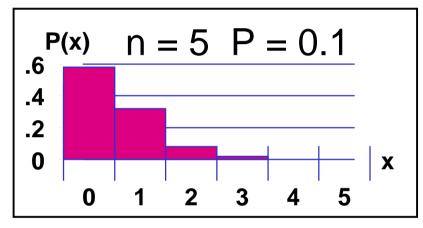


Caratteristiche Binomiale

Esempi

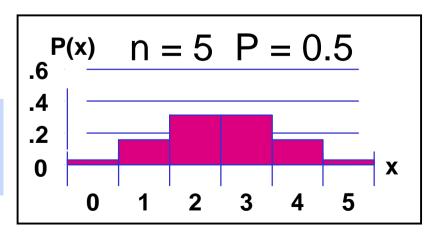
$$\mu = nP = (5)(0.1) = 0.5$$

$$\sigma = \sqrt{nP(1-P)} = \sqrt{(5)(0.1)(1-0.1)}$$
$$= 0.6708$$



$$\mu = nP = (5)(0.5) = 2.5$$

$$\sigma = \sqrt{nP(1-P)} = \sqrt{(5)(0.5)(1-0.5)}$$
$$= 1.118$$



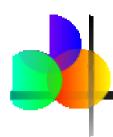
Uso delle Tavole della Binomiale

N	x		p=.20	p=.25	p=.30	p=.35	p=.40	p=.45	p=.50
10	10 0		0.1074	0.0563	0.0282	0.0135	0.0060	0.0025	0.0010
	1		0.2684	0.1877	0.1211	0.0725	0.0403	0.0207	0.0098
	2		0.3020	0.2816	0.2335	0.1757	0.1209	0.0763	0.0439
	3		0.2013	0.2503	0.2668	0.2522	0.2150	0.1665	0.1172
	4		0.0881	0.1460	0.2001	0.2377	0.2508	0.2384	0.2051
	5		0.0264	0.0584	0.1029	0.1536	0.2007	0.2340	0.2461
	6		0.0055	0.0162	0.0368	0.0689	0.1115	0.1596	0.2051
	7		0.0008	0.0031	0.0090	0.0212	0.0425	0.0746	0.1172
	8		0.0001	0.0004	0.0014	0.0043	0.0106	0.0229	0.0439
	9		0.0000	0.0000	0.0001	0.0005	0.0016	0.0042	0.0098
	10		0.0000	0.0000	0.0000	0.0000	0.0001	0.0003	0.0010
	10		0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0010

Esempi:

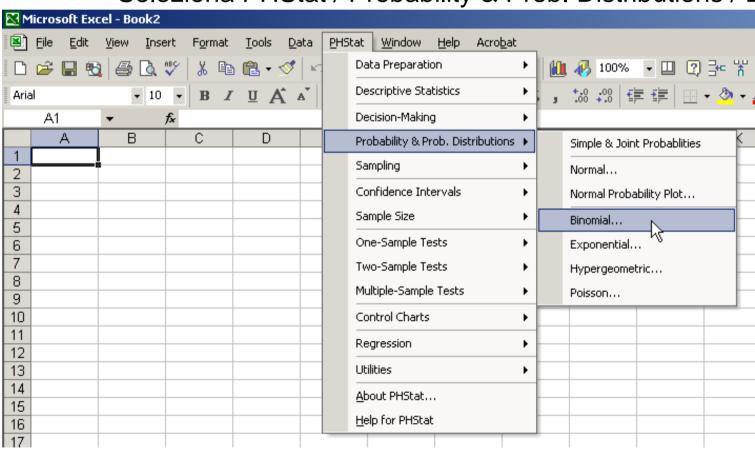
$$n = 10, x = 3, P = 0.35$$
: $P(x = 3|n = 10, p = 0.35) = .2522$

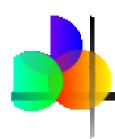
$$n = 10, x = 8, P = 0.45$$
: $P(x = 8|n = 10, p = 0.45) = .0229$



Uso di PHStat

Seleziona PHStat / Probability & Prob. Distributions / Binomial...

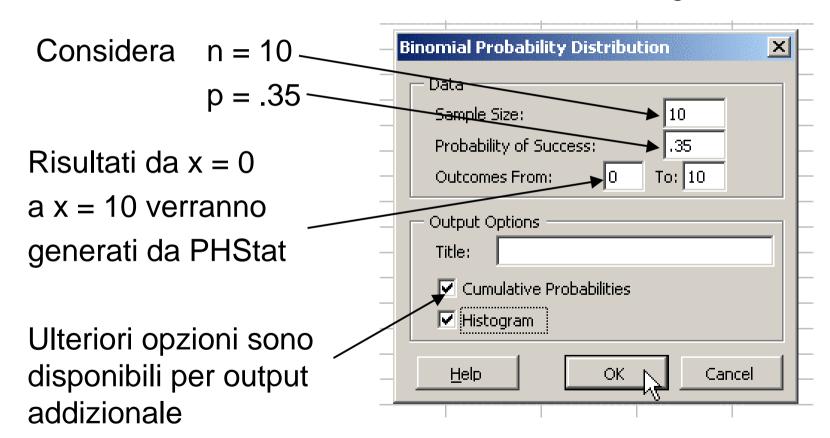


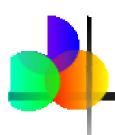


Uso di PHStat

(continuazione)

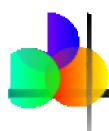
•Inserire i valori desiderati nella finestra di dialogo





Output di PHStat

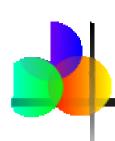
		_		_	_	-	_		
	A	В	С	D	Е	F	G	Н	
1	Binomial Probabilities								
2									
3	Data								
4	Sample size	10							
5	Probability of success	0.35							
6									
7	Statistics								
8	Mean	3.5							
9	Variance	2.275	D/v	x = 3	n – 1	n P.	- 351	- 2	522
10	Standard deviation	1.50831	1 (/	\ – 3	11 — 1	0, 1	00 <i>)</i>	<u> </u>	
11				/					
12	Binomial Probabilities	Table							
13		X	P(X)	P(≮=X)	P(< X)	P(>X)	P(>=X)		
14		0	0.013463	0,013463	0	0.986537	1		
15		1	0.072492	ø.085954	0.013463	0.914046	0.986537		
16		2	0.175653	0.261607	0.085954	0.738393	0.914046		
17		3	0.25222	0.513827	0.261607	0.486173	0.738393		
18		4	0.237668	0.751496	0.513827	0.248504	0.486173		
19		5	0.15357	0.905066					
20		6	0.06891	0.973976	0.905066	0.026024	0.094934		
21		7	0.021203	0.995179	0.973976	0.004821	0.026024		
22		8	0.004281	0.99946	0.995179	0.00054	0.004821		
23		9	0.000512	0.999972	0.99946	2.76E-05	0.00054		
24		10	2.76E-05		0.999972	0	2.76E-05		
25									
26									
27				D/v >	5 l n	_ 10	D _ '	32/ —	.0949
28				<u> </u>	<u> </u>	= 10,	Γ = . .	<u> ၁၁) =</u>	.0349
20									



La Distribuzione Ipergeometrica

Distribuzioni di Probabilità Distribuzioni di Probabilità **Discrete** Binomiale **Ipergeometrica** Poisson

- "n" prove in un campione estratto da una popolazione finita di dimensione N
- Campione estratto senza reintroduzione
- I risultati delle prove sono dipendenti
- Riguarda il calcolo della probabilità di "X" successi nel campione quando ci sono "S" successi nella popolazione



Formula Distribuzione Ipergeometrica

$$P(x) = \frac{C_x^S C_{n-x}^{N-S}}{C_n^N} = \frac{\frac{S!}{x!(S-x)!} \times \frac{(N-S)!}{(n-x)!(N-S-n+x)!}}{\frac{N!}{n!(N-n)!}}$$

Dove

N = dimensione della popolazione

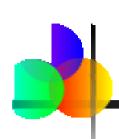
S = numero di successi nella popolazione

N - S = numero di insuccessi nella popolazione

n = dimensione del campione

x = numero di successi nel campione

n - x = numero di insuccessi nel campione



Uso della Distribuzione Ipergeometrica

Esempio: Nel dipartimento ci sono 10 computer, 3 dei quali vengono selezionati per un controllo. Sappiamo che su 4 dei 10 computer sono stati installati dei programmi illegali. Qual'è la probabilità che 2 dei 3 computer selezionati contengono programmi illegali?

$$N = 10$$
 $n = 3$ $S = 4$ $x = 2$

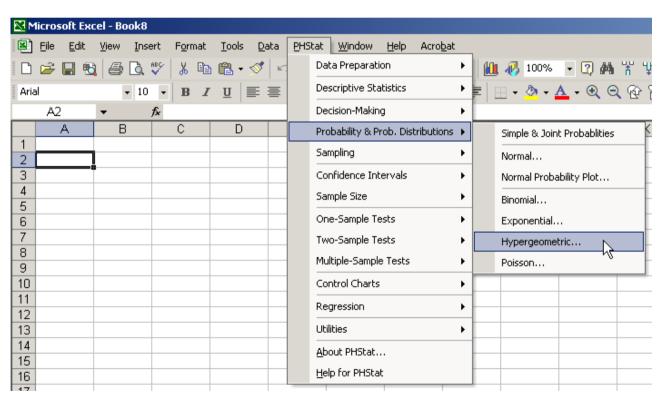
$$P(x=2) = \frac{C_x^{S}C_{n-x}^{N-S}}{C_n^{N}} = \frac{C_2^{4}C_1^{6}}{C_3^{10}} = \frac{(6)(6)}{120} = 0.3$$

La probabilità che 2 dei 3 computer selezionati contengono programmi illegali è 0.30, o 30%.

Distribuzione Ipergeometrica in PHStat

Seleziona:

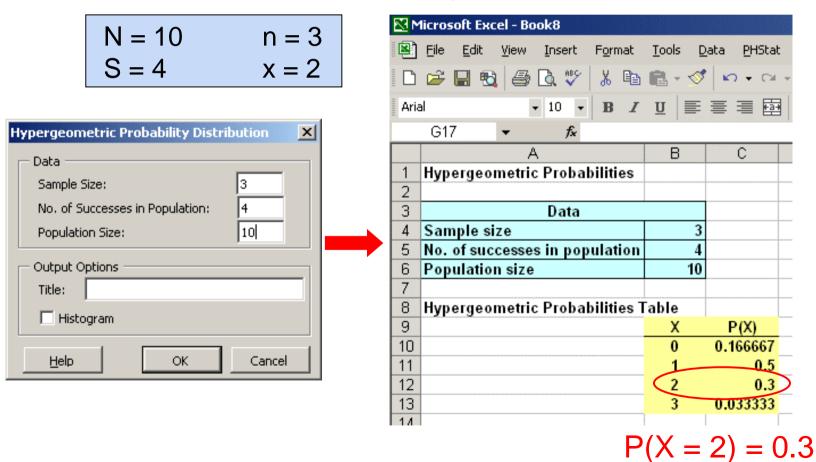
PHStat / Probability & Prob. Distributions / Hypergeometric ...

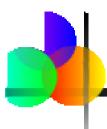


Distribuzione Ipergeometrica in PHStat

(continuazione)

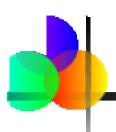
Completa la finestra di dialogo e ottieni l'output ...





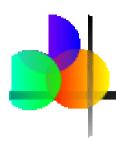
La Distribuzione di Poisson

Distribuzioni di Probabilità Distribuzioni di Probabilità **Discrete Binomiale Ipergeometrica** Poisson



La Distribuzione di Poisson

- Applica la distribuzione di Poisson quando:
 - Desideri contare il numero di volte un evento si verifica in un dato intervallo continuo
 - La probabilità che un evento si verifichi in un sottointervallo è molto bassa ed è la stessa per tutti i sottointervalli
 - Il numero di eventi che si verificano in un sottointervallo è indipendente dal numero di eventi che si verificano in un altro sottointervallo
 - L'evento non si può verificare più di una volta in ciascuno dei sottointervalli
 - Il numero medio di eventi per unità è λ (lambda)



Formula Distribuzione di Poisson

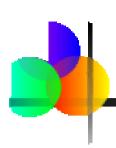
$$P(x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$

Dove:

x = numero di successi per unità

 λ = numero atteso di successi per unità

e = base dei logaritmi naturali (2.71828...)



Caratteristiche Distribuzione di Poisson

Media

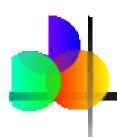
$$\mu = E(x) = \lambda$$

Varianza e Scarto Quadratico Medio

$$\sigma^2 = E[(X - \mu)^2] = \lambda$$

$$\sigma = \sqrt{\lambda}$$

dove λ = numero atteso di successi per unità



Uso delle Tavole Poisson

		λ								
	X	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
	0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066
_	1	0.0905	0.1637	0.2222	0.2681	0.3033	0.3293	0.3476	0.3595	0.3659
	2	0.0045	0.0164	0.0333	0.0536	0.0758	0.0988	0.1217	0.1438	0.1647
	3	0.0002	0.0011	0.0033	0.0072	0.0126	0.0198	0.0284	0.0383	0.0494
	4	0.0000	0.0001	0.0003	0.0007	0.0016	0.0030	0.0050	0.0077	0.0111
	5	0.0000	0.0000	0.0000	0.0001	0.0002	0.0004	0.0007	0.0012	0.0020
	6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003
	7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Esempio: Calcola P(X = 2) se λ = .50

$$P(X=2) = \frac{e^{-\lambda}\lambda^{X}}{X!} = \frac{e^{-0.50}(0.50)^{2}}{2!} = .0758$$

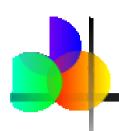
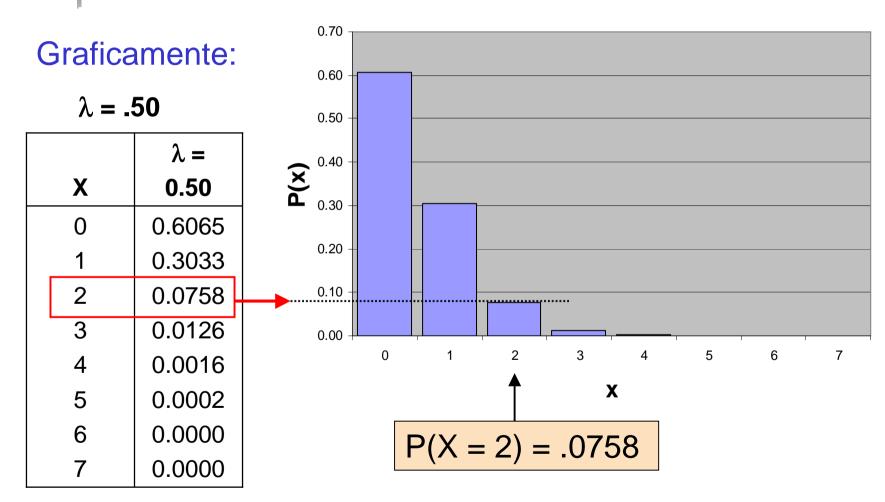
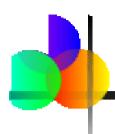


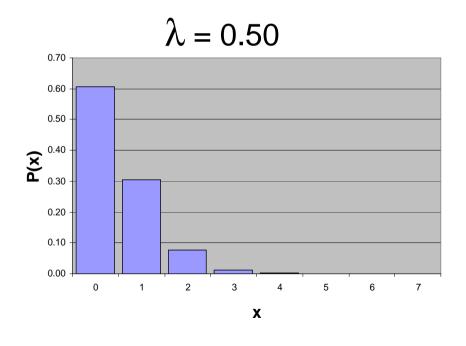
Grafico delle Probabilità di Poisson

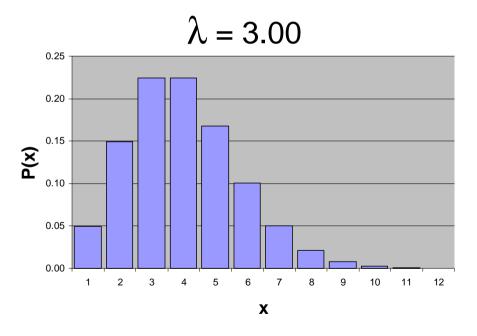


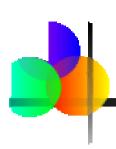


Forma Distribuzione di Poisson

 La forma della distribuzione di Poisson dipende dal parametro λ:



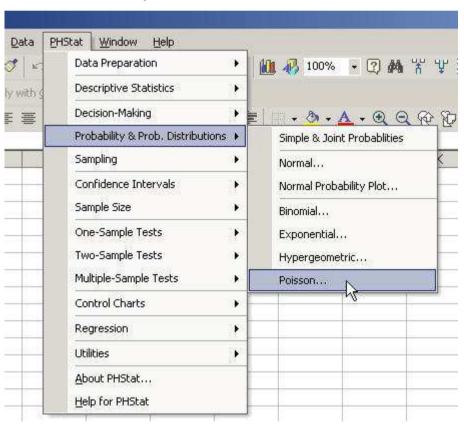


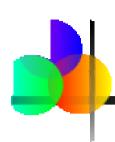


Distribuzione di Poisson con PHStat

Seleziona:

PHStat / Probability & Prob. Distributions / Poisson...

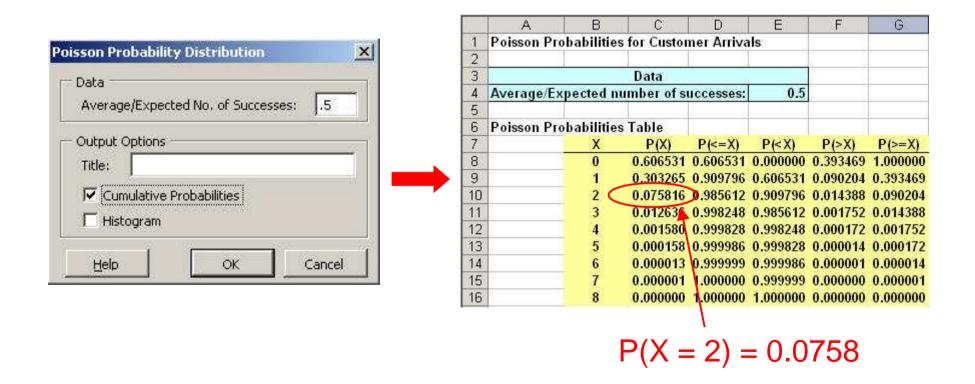


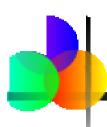


Distribuzione di Poisson con PHStat

(continuazione)

Completa la finestra di dialogo e ottieni l'output ...





Distribuzione di Probabilità Congiunta

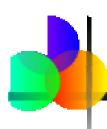
 Una distribuzione di probabilità congiunta viene usata per esprimere la probabilità che X assuma un particolare valore x e, contemporaneamente, Y assuma il valore y, come funzione di x e y

$$P(x,y) = P(X = x \cap Y = y)$$

Le probabilità marginali sono

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$



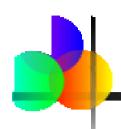
Distribuzione di Probabilità Condizionata

 La distribuzione di probabilità condizionata della variabile aleatoria Y esprime la probabilità che Y assuma il valore y quando si specifica il valore x per X.

$$P(y \mid x) = \frac{P(x,y)}{P(x)}$$

 Analogamente, la distribuzione di probabilità condizionata di X dato Y = y, è:

$$P(x | y) = \frac{P(x,y)}{P(y)}$$



Indipendenza

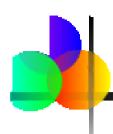
Le variabili aleatorie X e Y distribuite congiuntamente sono dette indipendenti se e solo se la loro distribuzione di probabilità congiunta è uguale al prodotto delle loro distribuzioni di probabilità marginali:

$$P(x,y) = P(x)P(y)$$

per tutte le possibili coppie di valori di x e y

 Un insieme di k variabili aleatorie sono indipendenti se e solo se

$$|P(x_1, x_2, \dots, x_k) = P(x_1)P(x_2) \dots P(x_k)|$$



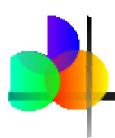
Covarianza

- Siano X e Y due variabili aleatorie discrete con medie rispettivamente μ_X e μ_Y
- Il valore atteso di (X μ_X)(Y μ_Y) è chiamato covarianza di X e Y
- Per variabili aleatorie discrete

Cov(X, Y) = E[(X -
$$\mu_X$$
)(Y - μ_Y)] = $\sum_{x} \sum_{y} (x - \mu_x)(y - \mu_y)P(x, y)$

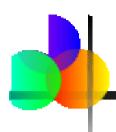
Un'espressione equivalente è

Cov(X, Y) = E(XY) -
$$\mu_x \mu_y = \sum_x \sum_y xyP(x, y) - \mu_x \mu_y$$



Covarianza e Indipendenza

- La covarianza misura la forsa della relazione lineare tra due variabili aleatorie
- Se due variabili aleatorie sono statisticamente independenti, la loro covarianza vale zero
 - Il viceversa non è necessariamente vero



Correlazione

La correlazione tra X e Y è :

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

- $\rho = 0 \Rightarrow \text{non c'è relazione lineare tra } X \in Y$
- $\rho > 0 \Rightarrow$ relazione lineare positiva tra X e Y
 - quando X assume valori alti (bassi) allora anche Y probabilmente assume valori alti (bassi)
 - $\rho = +1 \Rightarrow$ dipendenza lineare perfetta positiva
- ρ < 0 ⇒ relazione lineare negativa tra X e Y</p>
 - quando X assume valori alti (bassi) allora Y probabilmente assume valori bassi (alti)
 - $\rho = -1 \implies$ dipendenza lineare perfetta negativa

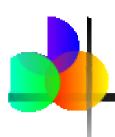


Valutazione di un Portafoglio

- Sia la variabile aleatoria X il prezzo del titolo A
- Sia la variabile aleatoria Y il prezzo del titolo B
- La quotazione di mercato, W, del portafoglio è data dalla combinazione lineare

$$W = aX + bY$$

(a rappresenta il numero di azioni del titolo A, b rappresenta il numero di azioni del titolo B)



Valutazione di un Portafoglio

(continuazione)

La media di W è

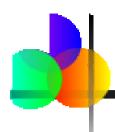
$$\mu_W = E[W] = E[aX + bY]$$
$$= a\mu_X + b\mu_Y$$

La varianza di W è

$$\sigma_W^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2abCov(X, Y)$$

oppure, usando il coefficiente di correlazione

$$\sigma_W^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2abCorr(X, Y)\sigma_X \sigma_Y$$



Esempio: Rendimento Investimenti

Rendimento in migliaia di dollari per due investimenti

		Investimento			
P(x _i y _i) Condizione economica		Fondi Passivi X	Fondi Aggressivi Y		
.2	Recessione	- \$ 25	- \$200		
.5	Economia Stabile	+ 50	+ 60		
.3	Economia in Espansione	+ 100	+ 350		

$$E(x) = \mu_x = (-25)(.2) + (50)(.5) + (100)(.3) = 50$$

$$E(y) = \mu_v = (-200)(.2) + (60)(.5) + (350)(.3) = 95$$

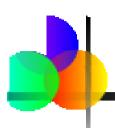
Calcolo dello Scarto Quadratico Medio del Rendimento

F	Investimento		
P(x _i y _i) Condizione economica	Fondi Passivi X	Fondi Aggressivi Y	
0.2 Recessione	- \$ 25	- \$200	
0.5 Economia Stabile	+ 50	+ 60	
0.3 Economia in Espansione	+ 100	+ 350	

$$\sigma_{\chi} = \sqrt{(-25-50)^2(0.2) + (50-50)^2(0.5) + (100-50)^2(0.3)}$$
= 43.30

$$\sigma_{y} = \sqrt{(-200 - 95)^{2}(0.2) + (60 - 95)^{2}(0.5) + (350 - 95)^{2}(0.3)}$$

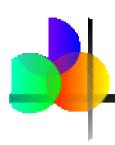
$$= 193.71$$



Covarianza del Rendimento

	Investimento			
P(x _i y _i) Condizione economica	Fondi Passivi X	Fondi Aggressivi Y		
.2 Recessione	- \$ 25	- \$200		
.5 Economia Stabile	+ 50	+ 60		
.3 Economia in Espansione	+ 100	+ 350		

$$Cov(X,Y) = (-25-50)(-200-95)(.2) + (50-50)(60-95)(.5)$$
$$+ (100-50)(350-95)(.3)$$
$$= 8250$$



Esempio Portafoglio

Investimento X: $\mu_x = 50$ $\sigma_x = 43.30$

Investimento Y: $\mu_v = 95$ $\sigma_v = 193.21$

 $\sigma_{xy} = 8250$

Supponiamo 40% del portafoglio (P) sia costituito da Investimento X e 60% da Investimento Y:

$$E(P) = .4(50) + (.6)(95) = 77$$

$$\sigma_{P} = \sqrt{(.4)^{2}(43.30)^{2} + (.6)^{2}(193.21)^{2} + 2(.4)(.6)(8250)}$$

$$= 133.04$$

Il rendimento e la variabilità del portafoglio sono fra i valori degli investimenti X e Y considerati individualmente



Interpretazione dei Risultati per il Rendimento degli Investimenti

 Il fondo aggressivo ha un rendimento atteso più alto, ma molto più rischioso

$$\mu_y = 95 > \mu_x = 50$$
ma
 $\sigma_y = 193.21 > \sigma_x = 43.30$

 La Covarianza di 8250 indica che tra i due investimenti c'è una relazione positiva e varieranno nella stessa direzione



Riepilogo del Capitolo

- Definite le variabili aleatorie discrete e le distribuzioni di probabilità
- Discussa la distribuzione binomiale
- Discussa la distribuzione ipergeometrica
- Trattata la distribuzione di Poisson
- Definite covarianza e correlazione tra due variabili aleatorie
- Esaminata l'applicazione al caso di un portafoglio titoli