Statistica

Capitolo 10

Verifica di Ipotesi su una Singola Popolazione

Obiettivi del Capitolo

Dopo aver completato il capitolo, sarete in grado di:

- Formulare ipotesi nulla ed ipotesi alternativa per applicazioni relative a
 - media di una singola popolazione con distribuzione normale
 - proporzione di una singola popolazione (grandi campioni)
- Formulare una regola di decisione per la verifica di ipotesi
- Usare l'approccio basato sul valore critico e quello basato sul p-value per la verifica di ipotesi (sia per problemi di media che di proporzione)
- Comprendere gli errori di primo e di secondo tipo
- Valutare la potenza di un test

Cos'è un'ipotesi?

 Un'ipotesi è una affermazione (assunzione) circa un parametro della popolazione:

media della popolazione

Esempio: in questa città, il costo medio della bolletta mensile per il cellulare è μ = \$42

proporzione della popolazione

Esempio: In questa città, la proporzione di adulti con il cellulare è p = .68

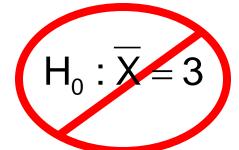
L'ipotesi Nulla, H₀

 Rappresenta l'ipotesi (numerica) che deve essere verificata

Esempio: il numero medio di TV nelle case americane è uguale a tre (H_0 : $\mu = 3$)

 Si riferisce sempre al parametro della popolazione, non alla statistica campionaria

$$H_0: \mu = 3$$



L'ipotesi Nulla, H₀

(continuazione)

- Iniziamo con l'assunzione che l'ipotesi nulla sia vera
 - Simile alla nozione di innocenza a meno che venga dimostrata la colpevolezza
- Si riferisce allo status quo
- Contiene sempre "=", "≤" o "≥"
- Può essere rifiutata o meno

L'Ipotesi Alternativa, H₁

- È l'opposto dell'ipotesi nulla
 - e.g., Il numero medio di TV nelle case americane non è uguale a 3 (H₁: μ ≠ 3)
- Sfida lo status quo
- Non contiene mai "=", "≤" o "≥"
- È generalmente l'ipotesi che il ricercatore sta cercando di dimostrare

Processo della Verifica di Ipotesi

Affermazione: l'età media della popolazione è 50.

(Ipotesi nulla:

$$H_0$$
: $\mu = 50$)



Popolazione

Adesso selezioniamo un campione casuale

È probabile ottenere $\bar{x} = 20$ se $\mu = 50$?

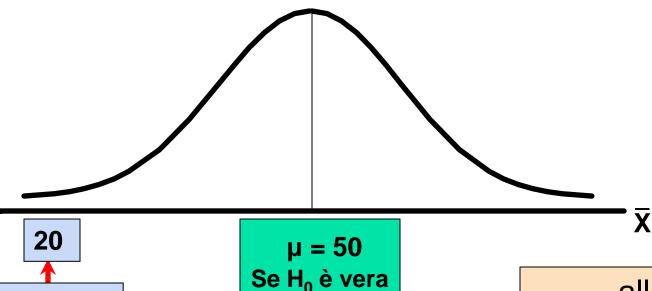
Se non è probabile,

SI RIFIUTA l'Ipotesi Nulla Supponiamo l'età media del campione

sia 20: $\bar{x} = 20$

Motivazione per Rifiutare H₀

Distribuzione Campionaria di \overline{X}



Se non è probabile che si possa ottenere questo valore per la media campionaria...

... quando questa è la vera media della popolazione...

... allora rifiutiamo l'ipotesi nulla che µ = 50.

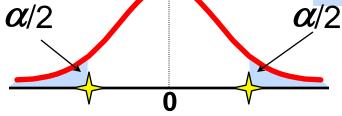
Livello di Significatività, α

- Definisce i valori della statistica campionaria che sono improbabili se l'ipotesi nulla è vera
 - Definisce la regione di rifiuto della distribuzione campionaria
- È indicato con α (livello di significatività)
 - Valori comuni sono .01, .05, o .10
- Fissato a priori dal ricercatore
- Fornisce il(i) valore(i) critico(i) del test

Livello di Significatività e Regione di Rifiuto

 H_1 : µ ≠ 3

Test a due code



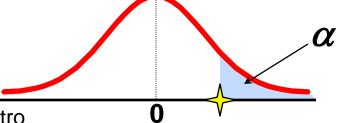
Rappresenta i valori critici

La regione di rifiuto è ombreggiata

$$H_0$$
: µ ≤ 3

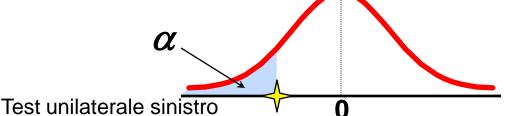
$$H_1$$
: µ > 3

Test unilaterale destro



 H_0 : µ ≥ 3

 H_1 : µ < 3



Errori nel Processo Decisionale

Errore di Primo Tipo

- Rifiutare un'ipotesi nulla vera
- Considerato un tipo di errore molto serio

La probabilità dell'errore di primo tipo è α

- Chiamato livello di significatività del test
- Fissato a priori dal ricercatore

Errori nel Processo Decisionale

(continuazione)

- Errore di Secondo Tipo
 - Non rifiutare un'ipotesi nulla falsa

La probabilità dell'errore di secondo tipo è β

Risultati e Probabilità

Legenda:
Risultato
(Probabilità)

Possibili Risultati Verifica di Ipotesi		
	Stato di Natura	
Decisione	H ₀ Vera	H ₀ Falsa
Non Rifiutare H ₀	Decisione corretta (1 - α)	Errore di Secondo Tipo (β)
Rifiutare H ₀	Errore di Primo Tipo (α)	Decisione corretta (1-β)

Relazione fra Errore di Primo e di Secondo tipo

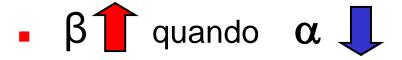
- L'errore di primo tipo e l'errore di secondo tipo non si possono verificare contemporanemente
 - L'errore di primo tipo può verificarsi solo se H₀ è vera
 - L'errore di secondo tipo può verificarsi solo se H₀ è falsa

Se la probabilità dell'errore di primo tipo (α)

allora la probabilità dell'errore di secondo tipo (β)

Fattori che Influenzano l'Errore di Secondo Tipo

- A parità di tutte le altre condizioni,
 - β quando la differenza fra il valore ipotizzato per il parametro e il vero valore



- $\beta \uparrow quando \sigma \uparrow$
- β quando n

Potenza del Test

 La potenza di un test è la probabilità di rifiutare un'ipotesi nulla che è falsa

i.e., Potenza = P(Rifiutare H₀ | H₁ è vera)

 La potenza di un test aumenta quando la dimensione del campione aumenta

Verifica di Ipotesi sulla Media



Verifica di Ipotesi sulla Media (σ nota)

Convertire il risultato campionario (x̄) in valori di Z

Verifica di Ipotesi SU µ

σ nota

σ non nota

Si consideri il test

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

$$H_1: \mu > \mu_0$$

(Assumiamo che la popolazione abbia distribuzione normale)

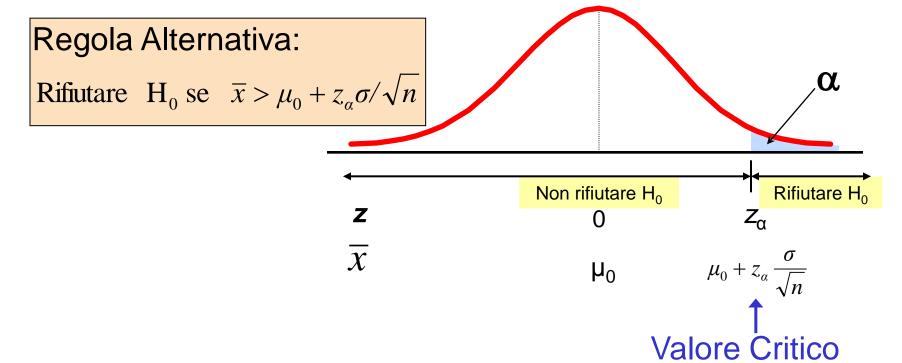
La regola di decisione è:

Rifiutare
$$H_0$$
 se $z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_\alpha$

Regola di Decisione

Rifiutare
$$H_0$$
 se $z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_\alpha$

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu > \mu_0$



- p-value: Probabilità di ottenere un valore della statistica test uguale o più estremo (≤ o ≥) del valore fornito dal campione, assumendo che H₀ sia vera
 - Anche chiamato livello di significatività osservato
 - Il valore di α per il quale H₀ può essere rifiutata, dato il valore osservato della statistica campionaria

Approccio del p-value alla Verifica di Ipotesi

(continuazione)

- Convertire il risultato campionario (e.g., \bar{x}) in valori della statistica test (e.g., statistica Z)
- Ottenere il p-value
 - Per un test sulla coda destra:

p - value = P(Z >
$$\frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$
, assumendo H₀ vera)
= P(Z > $\frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$)

Regola di Decisione: confrontare il p-value con α

Se p-value $< \alpha$, si rifiuta H_0

Esempio: Test Z unilaterale (destro) sulla Media (σ nota)

Un manager di una compagnia telefonica ritiene che la bolletta mensile per il cellulare dei suoi clienti sia aumentata e che in media sia ora al di sopra di \$52 al mese. La compagnia desidera verificare questa ipotesi. (Assumiamo $\sigma = 10$ sia nota)

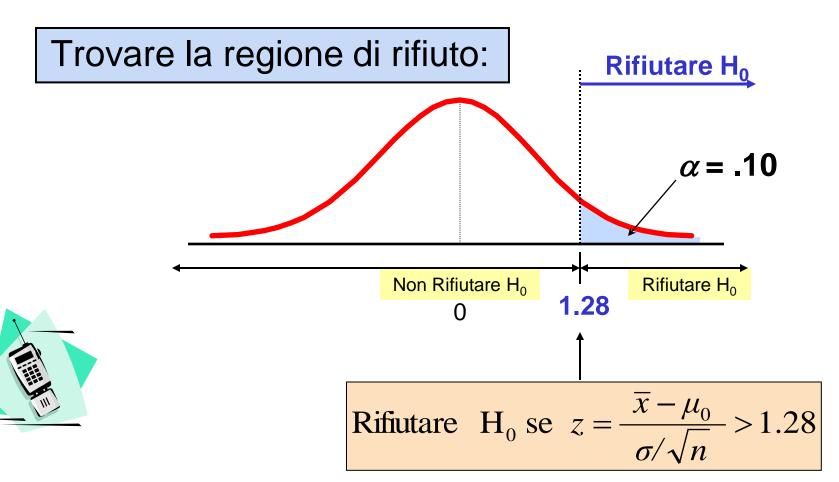
Formare il sistema di ipotesi:

H_0 : $\mu \le 52$	la media mensile non è maggiore di \$52
H_1 : $\mu > 52$	la media mensile è maggiore di \$52 (i.e., esistono sufficienti evidenze per sostenere l'ipotesi del manager)

Esempio: Regione di Rifiuto

(continuazione)

• Assumiamo che per il test sia stato scelto α = .10



Esempio: Risultati Campionari

(continuazione)

Selezionare il campione e calcolare la statistica test

Supponiamo che dal campione estratto si ottengano i seguenti risultati: n = 64, $\overline{x} = 53.1$ ($\sigma = 10$ si assume nota)

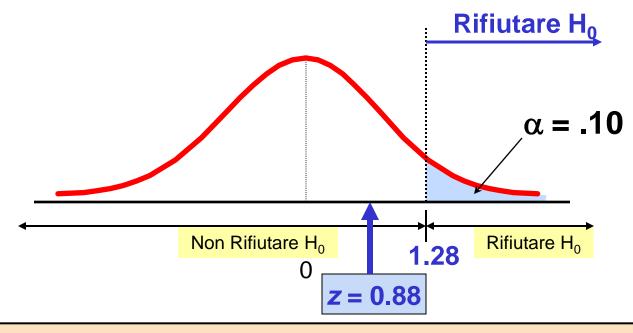
Usando i risultati campionari,

$$z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{53.1 - 52}{\frac{10}{\sqrt{64}}} = 0.88$$

Esempio: Decisione

(continuazione)

Prendere una decisione ed interpretare i risultati:



Non si rifiuta H_0 siccome z = 0.88 < 1.28

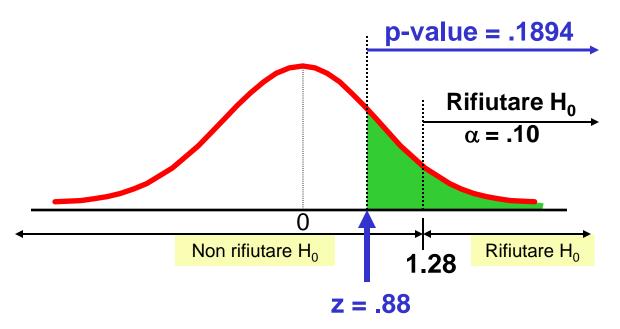
i.e.: non ci sono sufficienti evidenze che la bolletta media sia superiore a \$52

Esempio: Soluzione tramite p-value

(continuazione)

Calcolare il p-value e confrontarlo con α

(assumiamo che $\mu = 52.0$)



$$P(\bar{x} \ge 53.1 | \mu = 52.0)$$

$$= P\left(z \ge \frac{53.1 - 52.0}{10/\sqrt{64}}\right)$$

$$= P(z \ge 0.88) = 1 - .8106$$

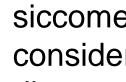
$$= .1894$$

Non si rifiuta H_0 siccome il p-value = .1894 > α = .10

Test Unilaterali

In molti casi, l'ipotesi alternativa si concentra su una particolare direzione

$$H_0$$
: μ ≤ 3

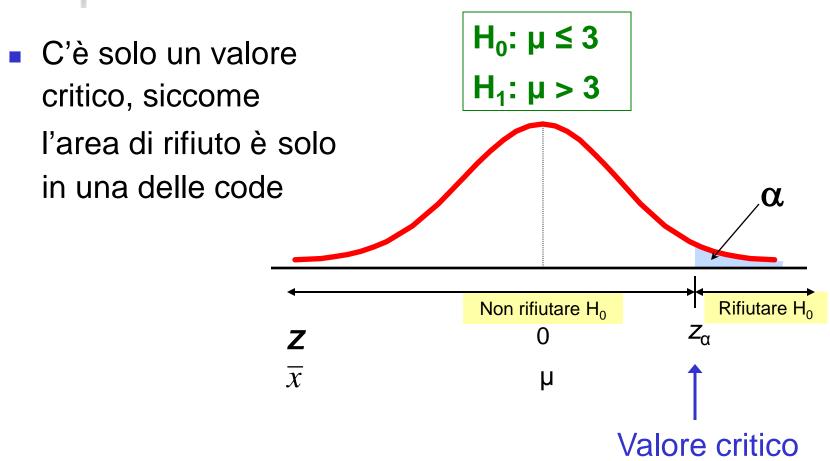


Questo è un test unilaterale destro l'ipotesi alternativa siccome considera valori sulla coda destra, al di sopra della media 3

$$H_0$$
: $\mu \ge 3$

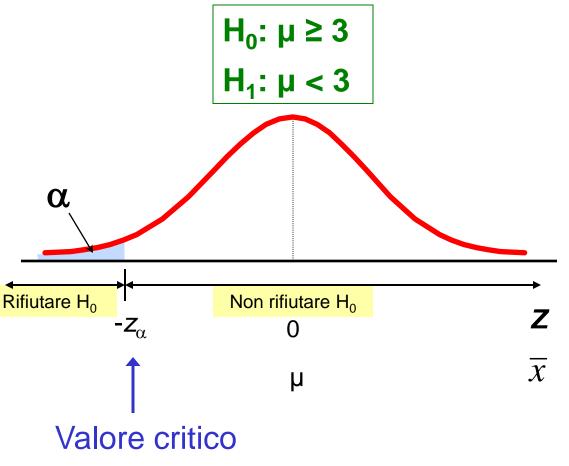
Questo è un test unilaterale sinistro l'ipotesi alternativa ⇒ siccome considera valori sulla coda sinistra, al di sotto della media 3

Test Unilaterale Destro



Test Unilaterale Sinistro

 C'è solo un valore critico, siccome l'area di rifiuto è solo in una delle code

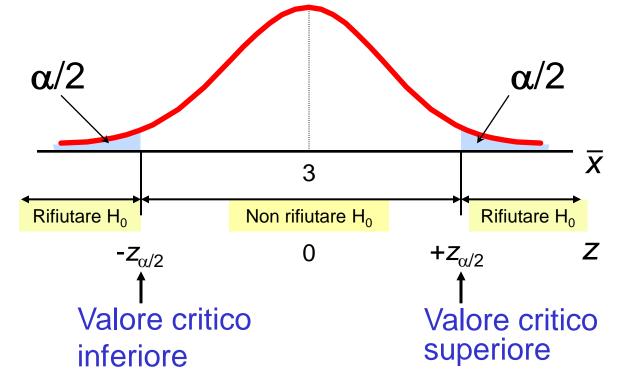


Test Bilaterale

 In alcune situazioni, l'ipotesi alternativa non specifica un'unica direzione

$$H_0$$
: $\mu = 3$
 H_1 : $\mu \neq 3$

 Ci sono due valori critici che definiscono le due regioni di rifiuto



Verificare l'ipotesi che il vero numero medio di TV nelle case americane sia uguale a 3. (Assumiamo $\sigma = 0.8$)

- Fornire le appropriate ipotesi nulla ed alternativa
 - H_0 : $\mu = 3$, H_1 : $\mu \neq 3$ (Si tratta di un test bilaterale)
- Specificare il livello di significatività desiderato
 - Supponiamo che per questo test venga scelto $\alpha = .05$
- Scegliere la dimensione del campione
 - Supponiamo di selezionare un campione di ampiezza n = 100.

(continuazione)

- Determinare la tecnica appropriata
 - σè nota quindi si tratta di un test Z
- Calcolare i valori critici
 - Per α = .05 i valori critici di z sono 1.96
- Rilevare i dati campionari e calcolare la statistica test
 - Supponiamo i risultati campionari siano n = 100, $\overline{x} = 2.84$ ($\sigma = 0.8$ si assume nota)

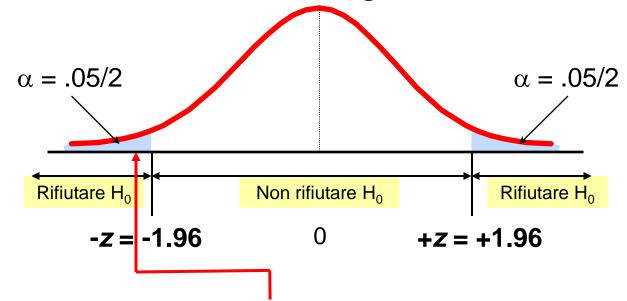
Quindi la statistica test vale:

$$z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$

(continuazione)

La statistica test cade nella regione di rifiuto?

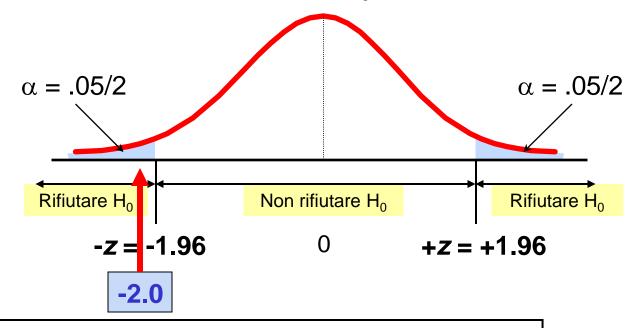
Rifiutare H_0 se z < -1.96o z > 1.96; altrimenti non rifiutare H_0



Poiché z = (-2.0) < -1.96, la statistica test cade nella regione di rifiuto

(continuazione)

Prendere una decisione ed interpretare il risultato



Siccome z = -2.0 < -1.96, <u>rifiutiamo l'ipotesi nulla</u> e concludiamo che ci sono sufficienti evidenze che il numero medio di TV nelle case americane non sia uguale 3.

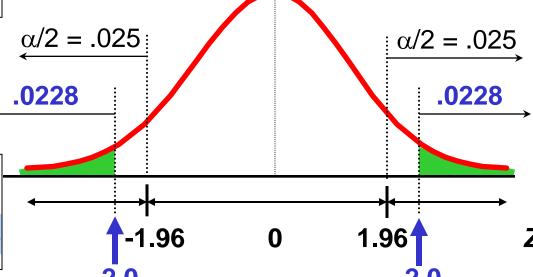
Esempio: p-value

Esempio: Qual è la probabilità di osservare una media campionaria di 2.84 (o un valore più lontano dalla media, in entrambe le direzioni) se la vera media è μ = 3.0?

 \overline{x} = 2.84 viene tradotto in un valore z = -2.0

$$P(z < -2.0) = .0228$$

$$P(z > 2.0) = .0228$$



p-value

$$= .0228 + .0228 = .0456$$

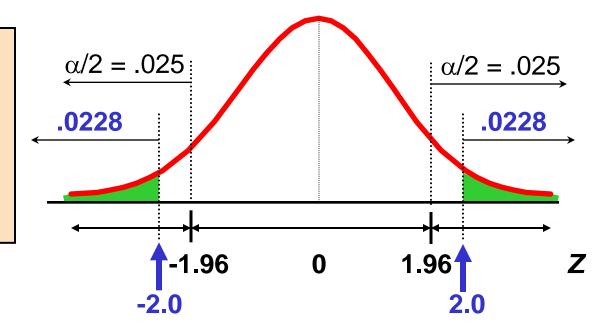
Esempio: p-value

(continuazione)

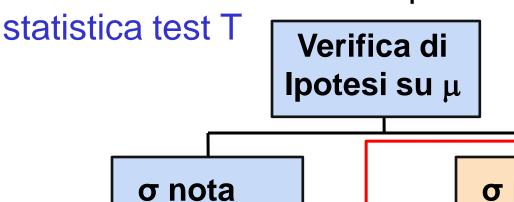
- Confrontare il p-value con α
 - Se p-value $< \alpha$, rifiutare H_0

Qui: p-value = .0456 α = .05

Siccome .0456 < .05, rifiutiamo l'ipotesi nulla



■ Convertire il risultato campionario (x̄) in una



σ non nota

Consideriamo il test

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

(Assumiamo che la popolazione abbia distribuzione normale)

La regola di decisione è:

Rifiutare
$$H_0$$
 se $t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}} > t_{n-1,\alpha}$

Verifica di Ipotesi sulla Media (σ non nota)

(continuazione)

Per un test bilaterale:

Consideriamo il test

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

(Assumiamo che la popolazione abbia distribuzione normale e la varianza della popolazione non sia nota)

La regola di decisione è:

Rifiutare
$$H_0$$
 se $t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}} < -t_{n-1, \alpha/2}$ o se $t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}} > t_{n-1, \alpha/2}$

$$t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}} > t_{n-1, \alpha/2}$$

Esempio: Test Bilaterale (σ non nota)

Si vuole verificare se il costo medio di una camera di hotel a New York sia pari a \$168 per notte. Un campione casuale di 25 hotel ha determinato $\overline{x} = 172.50 e s = \$15.40. Verificare l'ipotesi ad un livello $\alpha =$ 0.05. (Assumiamo che popolazione abbia distribuzione normale)

 H_0 : $\mu = 168$

 H_1 : µ ≠ 168

Esempio: Test Bilaterale (Soluzione)

$$H_0$$
: $\mu = 168$

$$H_1$$
: µ ≠ 168

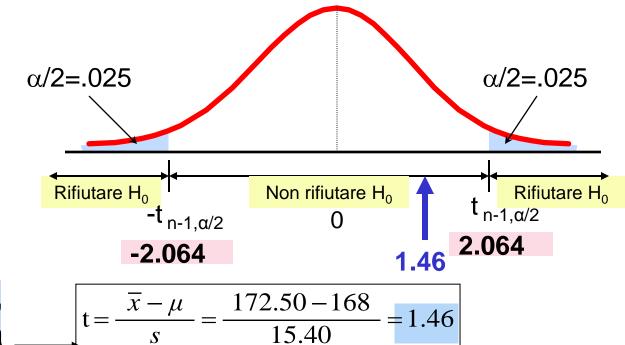
$$\alpha = 0.05$$

$$n = 25$$

σ non è nota,
 quindi usiamo la
 statistica T

Valore Critico:

$$t_{24,.025} = \pm 2.064$$



Verifica di Ipotesi sulla Proporzione della Popolazione

- Riguarda variabili categoriche
- Due possibili risultati
 - "Successo" (una certa caratteristica è presente)
 - "Insuccesso" (la caratteristica non è presente)
- La frazione o proporzione della popolazione nella categoria dei "successi" è indicata con p
- Assumiamo che il campione sia grande

Verifica di Ipotesi sulla Proporzione della Popolazione

(continuazione)

 La proporzione campionaria di successi viene indicata con P

$$\hat{P} = \frac{X}{n} = \frac{\text{numero di successi nel campione}}{\text{dimensione del campione}}$$

• Se n è sufficientemente grande da poter ritenere ragionevole che np(1-p) > 9, la distribuzione di \hat{P} può essere approssimata con una distribuzione normale con media e deviazione standard

$$\mu_{\hat{P}} = p$$

$$\sigma_{\hat{P}} = \sqrt{\frac{p(1-p)}{n}}$$

Verifica di Ipotesi sulla Proporzione della Popolazione

La distribuzione campionaria di P è approssimativamente normale, quindi usiamo la statistica test Z:

np(1-p) > 9

$$Z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

| Ipotesi su p | np(1-p) < 9 | Non discusso in questo capitolo

Verifica di

Esempio: Test Z sulla Proporzione

Una società di marketing afferma che il tasso di risposta ai questionari inviati per posta è pari all'8%. Per verificare questa ipotesi si considera un campione aleatorio di 500 clienti e si ottengono 25 risposte. Verificare l'ipotesi ad un livello $\alpha = .05$.



Verifica:

La nostra approssimazione per *p* è

$$\hat{p} = 25/500 = .05$$

$$np(1 - p) = (500)(.05)(.95)$$

= 23.75 > 9

Test Z sulla Proporzione: Soluzione

$$H_0$$
: $p = .08$

 $H_1: p \neq .08$

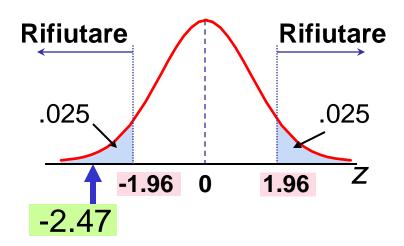
$$\alpha = .05$$

$$n = 500$$
, $\hat{p} = .05$

Statistica Test:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{.05 - .08}{\sqrt{\frac{.08(1 - .08)}{500}}} = -2.47$$

Valori Critici: ± 1.96



Decisione:

Rifiutare H_0 a livello $\alpha = .05$

Conclusione:

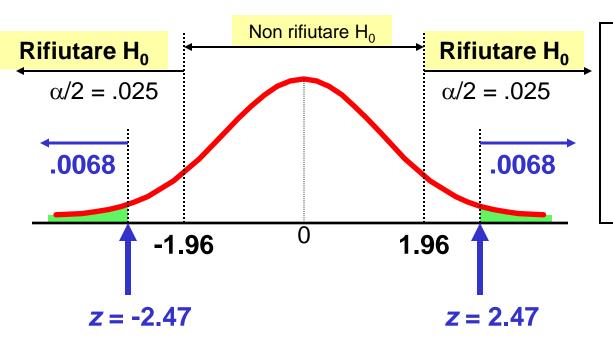
Ci sono sufficienti evidenze per rifiutare l'ipotesi che il tasso di risposta sia 8%.

Soluzione con il p-value

(continuazione)

Calcolare il p-value e confrontarlo con α

(Per un test bilaterale il p-value è sempre a due code)

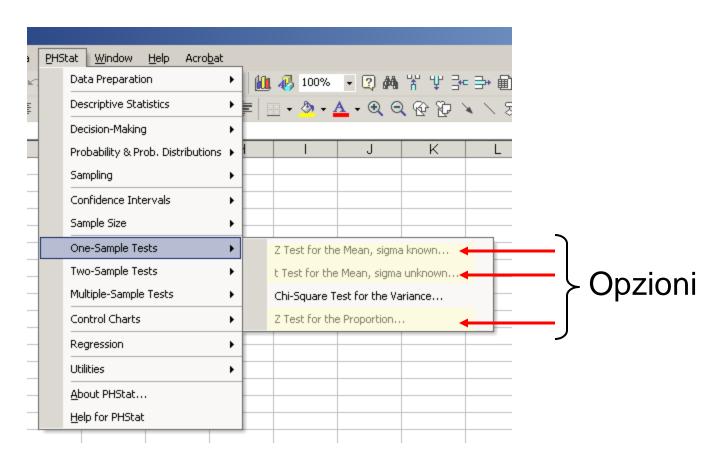


p-value = .0136:

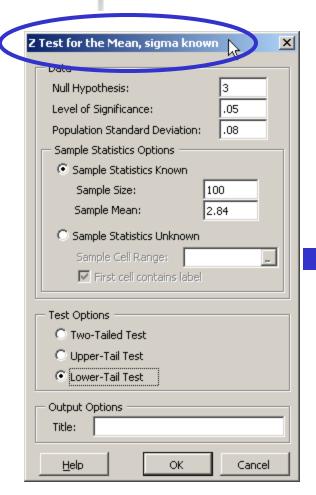
$$P(Z \le -2.47) + P(Z \ge 2.47)$$
$$= 2(.0068) = 0.0136$$

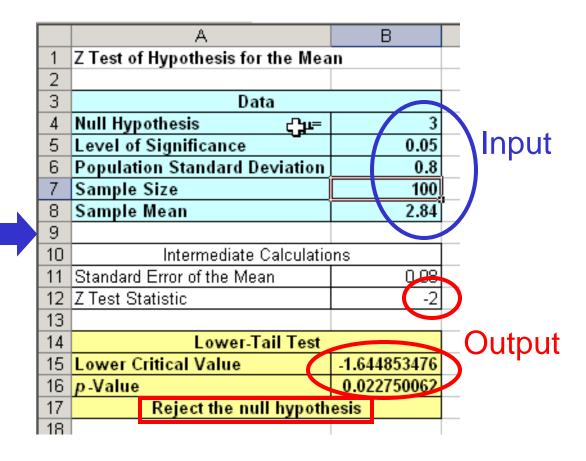
Rifiutare H_0 siccome il p-value = .0136 < α = .05

Uso di PHStat



Output PHStat





Potenza di un Test

Ricordare i possibili risultati della verifica di ipotesi:

Legenda:
Risultato
(Probabilità)

	Stato di Natura	
Decisione	H ₀ Vera	H ₀ Falsa
Non Rifiutare H ₀	Decisione corretta (1 - α)	Errore di Secondo Tipo (β)
Rifiutare H ₀	Errore di Primo Tipo (α)	Decisione corretta (1-β)

- β rappresenta la probabilità dell'errore di secondo tipo
- 1 β è definito come la potenza del test

Potenza = $1 - \beta$ = probabilità che un'ipotesi nulla falsa venga rifiutata

Errore di Secondo Tipo

Assumiamo che la popolazione abbia distribuzione normale e la varianza della popolazione sia nota. Consideriamo il sistema di ipotesi

 $H_0: \mu = \mu_0$ $H_1: \mu > \mu_0$

La regola di decisione è:

Rifiutare H₀ se
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} > z_\alpha$$
 O Rifiutare H₀ se $\overline{x} > \overline{x}_c = \mu_0 + z_\alpha \sigma / \sqrt{n}$

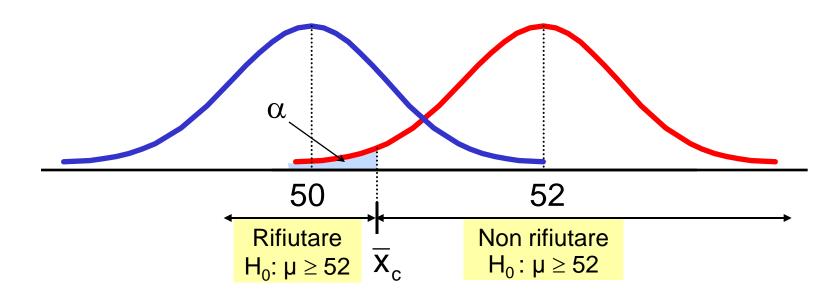
Se l'ipotesi nulla è falsa e la vera media è μ^* ($\mu^* > \mu_0$), allora la probabilità dell'errore di secondo tipo è

$$\beta = P(\overline{X} \le \overline{x}_c \mid \mu = \mu^*) = P\left(Z \le \frac{\overline{x}_c - \mu^*}{\sigma / \sqrt{n}}\right)$$

Esempio: Errore di Secondo Tipo

 L'errore di secondo tipo corrisponde alla probabilità di non rifiutare una H₀ falsa

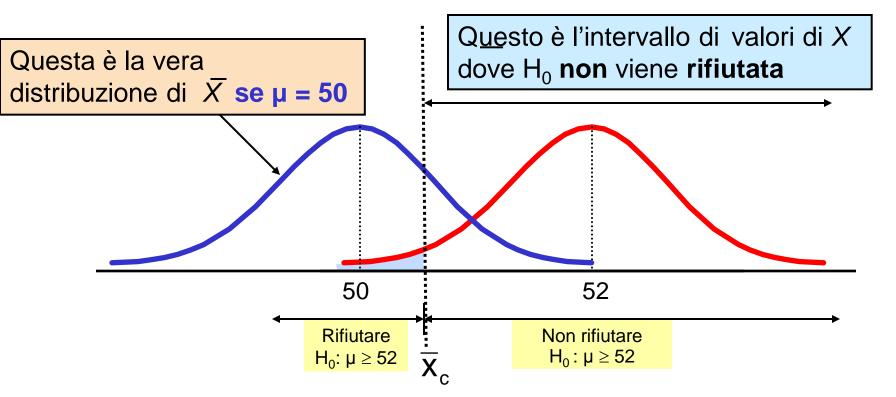
Supponiamo che H_0 : $\mu \geq 52$ non venga rifiutata quando invece la vera media è $\mu^* = 50$



Esempio: Errore di Secondo Tipo

(continuazione)

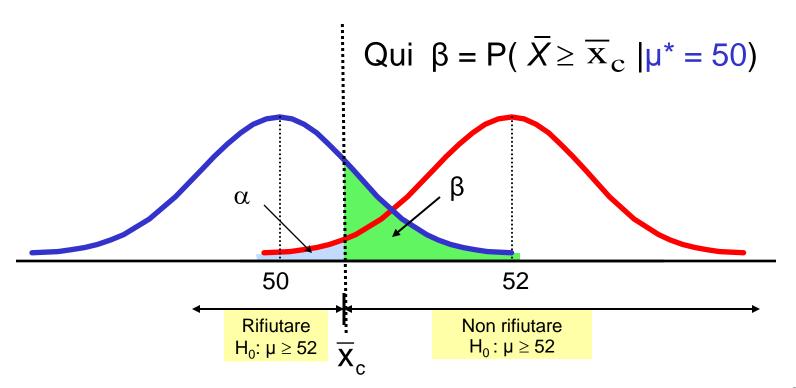
Supponiamo che H₀: µ ≥ 52 non venga rifiutata quando invece la vera media è µ* = 50



Esempio: Errore di Secondo Tipo

(continuazione)

Supponiamo che H₀: µ ≥ 52 non venga rifiutata quando invece la vera media è µ* = 50



Calcolo di B

• Supponiamo n = 64, $\sigma = 6$, e $\alpha = .05$

$$\overline{x}_{c} = \mu_{0} - z_{\alpha} \frac{\sigma}{\sqrt{n}} = 52 - 1.645 \frac{6}{\sqrt{64}} = 50.766$$

$$\text{Quindi } \beta = P(\overline{X} \ge 50.766 \mid \mu^{*} = 50)$$

$$\alpha$$

$$\text{Rifiutare}_{H_{0}: \mu \ge 52}$$

$$\overline{X}_{c}$$

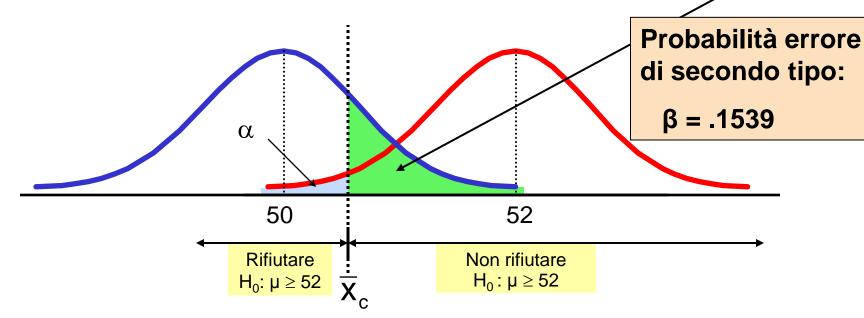
$$\text{Non rifiutare}_{H_{0}: \mu \ge 52}$$

Calcolo di B

(continuazione)

■ Supponiamo n = 64, $\sigma = 6$, e $\alpha = .05$

$$P(\overline{X} \ge 50.766 \mid \mu^* = 50) = P\left(Z \ge \frac{50.766 - 50}{\frac{6}{\sqrt{64}}}\right) = P(Z \ge 1.02) = 1 - .8461 = .1539$$



Esempio: Potenza di un Test

Se la vera media è $\mu^* = 50$,

- Probabilità dell'Errore di Secondo Tipo (β) = .1539
- Potenza del test = $1 \beta = 1 .1539 = 0.8461$

Legenda:
Risultato
(Probabilità)

	Stato di Natura	
Decisione	H ₀ Vera	H ₀ Falsa
Non Rifiutare H ₀	Decisione corretta $1 - \alpha = 0.95$	Errore di Secondo Tipo β = 0.1539
Rifiutare H ₀	Errore di Primo Tipo $\alpha = 0.05$	Decisione corretta $1 - \beta = 0.8461$

(Il valore di β e la potenza saranno diversi per diversi valori di μ^*)

Riepilogo del Capitolo

- Discussa la metodologia della verifica di ipotesi
- Eseguito il test Z sulla media (σ nota)
- Discussi gli approcci del valore critico e del p-value alla verifica di ipotesi
- Eseguiti test unilaterali e bilaterali
- Eseguito il test T sulla media (σ non nota)
- Eseguito il test Z sulla proporzione
- Discussi errore di secondo tipo e potenza del test