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Our main study begins with these building blocks already in place and focuses
on the contributions in the neoclassical tradition since the late 1950s. We use the
neoclassical methodology and language and rely on concepts such as aggregate cap-
ital stocks, aggregate production functions, and utility functions for representative
consumers (who often have infinite horizons). We also use modern mathematical
methods of dynamic optimization and differential equations. These tools, which are
described in an appendix at the end of this book, are familiar today to most first-year
graduate students in economics.

From a chronological viewpoint, the starting point for modern growth theory
is the classic article of Ramsey (1928), a work that wds several decades ahead of its
time. Ramsey’s treatment of household optimization over time goes far beyond .its
application to growth theory; it is hard now to discuss consumption theory, asset pric-
ing, or even business-cycle theory without invoking the optimality conditions that
Ramsey (and Fisher [1930]) introduced to economists. Ramsey’s intertempora.lly
separable utility function is as widely used today as the Cobb-Douglas production
function. The economics profession did not, however, accept or widely use Ramsey’s
approach until the 1960s.

Between Ramsey and the late 1950s, Harrod (1939) and Domar (1946) at-
tempted to integrate Keynesian analysis with elements of economic growth. They
used production functions with little substitutability among the inputs to argue that
the capitalist system is inherently unstable. Since they wrote during or immediately
after the Great Depression, these arguments were received sympathetically by many
economists. Although these contributions triggered a good deal of research at the
time, very little of this analysis plays a role in today’s thinking.

The next and more important contributions were those of Solow (1956) and
Swan (1956). The key aspect of the Solow—Swan model is the neoclassical form of
the production function, a specification that assumes constant returns to scale, dimin-
ishing returns to each input, and some positive and smooth elasticity of substitution
between the inputs. This production function is combined with a constant-saving-rate
rule to generate an extremely simple general-equilibrium model of the economy.

One prediction from these models, which has been exploited seriously as an
empirical hypothesis only in recent years, is conditional convergence. The lower the
starting level of real per capita GDP, relative to the long-run or steady-state position,
the faster is the growth rate. This property derives from the assumption of diminishing
returns to capital; economies that have less capital per worker (relative to their long-
run capital per worker) tend to have higher rates of return and higher growth rates. The
convergence is conditional because the steady-state levels of capital and output per
worker depend, in the Solow—Swan model, on the saving rate, the growth rate of pop-
ulation, and the position of the production function—characteristics that might vary
across economies. Recent empirical studies indicate that we should include additional

sources of cross-country variation, especially differences in government policies and
in initial stocks of human capital. The key point, however, is that the concept of con-
ditional convergence—a basic property of the Solow-Swan model—has considerable
explanatory power for economic growth across countries and regions.

Another prediction of the Solow—Swan model is that, in the absence of con-
tinuing improvements in technology, per capita growth must eventually cease. This
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prediction, which resembles those of Malthus and Ricardo, also comes from the as-
sumption of diminishing returns to capital. We have already observed, however, that
positive rates of per capita growth can persist over a century or more and that these
growth rates have no clear tendency to decline.

The neoclassical growth theorists of the late 1950s and 1960s recognized
this modeling deficiency and usually patched it up by assuming that technological
progress occurred in an exogenous manner. This device can reconcile the theory with
a positive, possibly constant per capita growth rate in the long run, while retaining
the prediction of conditional convergence. The obvious shortcoming, however, is that
the long-run per capita growth rate is determined entirely by an element—the rate
of technological progress—that is outside of the model. (The long-run growth rate
of the level of output also depends on the growth rate of population, another element
that is exogenous in the standard theory.) Thus, we end up with a model of growth
that explains everything but long-run growth, an obviously unsatisfactory situation.

Cass (1965) and Koopmans (1965) brought Ramsey’s analysis of consumer

' optimization back into the neoclassical growth model and thereby provided for an

endogenous determination of the saving rate. This extension allows for richer tran-
sitional dynamics but tends to preserve the hypothesis of conditional convergence.
The endogeneity of saving also does not eliminate the dependence of the long-run
per capita growth rate on exogenous technological progress.

Theequilibriumof the Cass-Koopmans version of the neoclassical growth model
can be supported by a decentralized, competitive framework in which the productive
factors, labor and capital, are paid their marginal products. Total income then exhausts
the total product because of the assumption that the production function features con-
stant returns to scale. Moreover, the decentralized outcomes are Pareto optimal.

The inclusion of a theory of technological change in the neoclassical framework
is difficult, because the standard competitive assumptions cannot be maintained.
Technological advance involves the creation of new ideas, which are partially nonri-
val and therefore have aspects of public goods. For a given technology—that is, for a
given state of knowledge—it is reasonable to assume constant returns to scale in the
standard, rival factors of production, such as labor, capital, and land. In other words,
given the level of knowledge on how to produce, one would think that it is possible to
replicate a firm with the same amount of labor, capital, and land and obtain twice as
much output. But then, the returns to scale tend to be increasing if the nonrival ideas
are included as factors of production. These increasing returns conflict with perfect
competition. In particular, the compensation of nonrival old ideas in accordance with
their current marginal cost of production—zero—will not provide the appropriate
reward for the research effort that underlies the creation of new ideas.

Arrow (1962) and Sheshinski (1967) constructed models in which ideas were
unintended by-products of production or investment, a mechanism described as
learning-by-doing. In these models, each person’s discoveries immediately spill
over to the entire economy, an instantaneous diffusion process that might be tech-
nically feasible because knowledge is nonrival. Romer (1986) showed later that the
competitive framework can be retained in this case to determine an equilibrium rate
of technological advance, but the resulting growth rate would typically not be Pareto
optimal. More generally, the competitive framework breaks down if discoveries
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depend in part on purposive R&D effort and if an individual’s innovations spread
only gradually to other producers. In this realistic setting, a decentralized theory of
technological progress requires basic changes in the neoclassical growth model to
incorporate models of imperfect competition.? These additions to the theory did not
come until Romer’s (1987, 1990) research in the late 1980s.

The work of Cass (1965) and Koopmans (1965) completed the basic neo-
classical growth model. Thereafter, growth theory became excessively technical
and steadily lost contact with empirical applications. In contrast, development
economists, who are required to give advice to sick countries, retained an applied
perspective and tended to use models that were technically unsophisticated but.em-
pirically useful. The fields of economic development and economic growth drifted
apart, and the two areas became almost completely separated.

Probably because of its lack of empirical relevance, growth theory effectively
died as an active research field by the early 1970s, on the eve of the rational-
expectations revolution and the oil shocks. For about 15 years, macroeconomic
research focused on short-term fluctuations. Major contributions included the incor-
poration of rational expectations into business-cycle models, improved approaches
to policy evaluation, and the application of general-equilibrium methods to real
business-cycle theory.

Since the mid-1980s, research on economic growth has experienced a new
boom, beginning with the work of Romer (1986) and Lucas (1988). The motiva-
tion for this research was the observation (or recollection) that the determinants of
long-run economic growth are crucial issues, far more important than the mechanics
of business cycles or the countercyclical effects of monetary and fiscal policies. But
a recognition of the significance of long-run growth is only a first step; to go further,
one has to escape the straitjacket of the neoclassical growth model, in which the long-
term per capita growth rate is pegged by the rate of exogenous technological progress.
Thus, in one way or another, the recent contributions determine the long-run growth
rate within the model; hence, the designation endogenous-growth models.

The initial wave of the new research—Romer (1986), Lucas (1988), Rebelo
(1991)—built on the work of Arrow (1962), Sheshinski (1967), and Uzawa (1965) and
did not really introduce a theory of technological change. In these models, growth may
go on indefinitely because the returns to investment in a broad class of capital goods—
which includes human capital-—do not necessarily diminish as economies develop.
(This idea goes back to Knight [1944].) Spillovers of knowledge across producers and
external benefits from human capital are parts of this process, but only because they
help avoid the tendency for diminishing returns to the accumulation of capital.

The incorporation of R&D theories and imperfect competition into the growth
framework began with Romer (1987, 1990) and includes significant contributions
by Aghion and Howitt (1992) and Grossman and Helpman (1991, Chapters 3 and
4). In these models, technological advance results from purposive R&D activity,
and this activity is rewarded by some form of ex-post monopoly power. If there is

3 Another approach is to assume that all of the nonrival research—a classic public good—is financed by
the government through involuntary taxes; see Shell (1967).
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no tendency for the economy to run out of ideas, then the growth rate can remain
positive in the long run. The rate of growth and the underlying amount of inventive
activity tend, however, not to be Pareto optimal because of distortions related to the
creation of the new goods and methods of production. In these frameworks, the long-
term growth rate depends on governmental actions, such as taxation, maintenance of
law and order, provision of infrastructure services, protection of intellectual property

. rights, and regulations of international trade, financial markets, and other aspects of

the economy. The government therefore has great potential for good or ill through
its influence on the long-term rate of growth.

The new research also includes models of the diffusion of technology. Whereas
the analysis of discovery relates to the rate of technological progress in leading-
edge economies, the study of diffusion pertains to the manner in which follower
economies share by imitation in these advances. Since imitation tends to be cheaper
than innovation, the diffusion models predict a form of conditional convergence that
resembles the predictions of the neoclassical growth model.

Another key exogenous parameter in the neoclassical growth model is the
growth rate of population. A higher rate of population growth lowers the steady-
state level of capital and output per worker and tends thereby to reduce the per capita
growth rate for a given initial level of per capita output. The standard model does
not, however, consider the effects of per capita income and wage rates on population
growth—the kinds of effects stressed by Malthus—and also does not take account of
the resources used up in the process of child rearing. Another line of recent research
makes population growth endogenous by incorporating an analysis of fertility choice
in the neoclassical model. The results are consistent, for example, with the empirical
regularity that fertility rates tend to fall with per capita income over the main range
of experience, but may rise with per capita income for the poorest countries. Addi-
tional work related to the endogeneity of labor supply in a growth context concerns
migration and labor/leisure choice.

The clearest distinction between the growth theory of the 1960s and that of the
1980s and 1990s is that the recent research pays close attention to empirical impli-
cations and to the relation between theory and data. Some of this applied perspective
involves amplification of the empirical implications of the older theory, notably the
neoclassical growth model’s prediction of conditional convergence. Other analyses
apply more directly to the recent theories of endogenous growth, including the roles
of increasing returns, R&D activity, human capital, and the diffusion of technology. -

In this book we attempt to reflect the recent emphasis on the interplay between
theory and applications. Thus, we stress the empirical implications of the various
theories that we develop. We also include three chapters that are devoted entirely to
data and empirical analyses.

The recent growth research has attracted interest from economists in a wide
variety of fields. Conferences on growth have participation from specialists in macro-
economics, development, international economics, theory, history, econometrics, and
industrial organization. We think that the effective combination of theory and empir-
ical work will sustain this broad appeal and will allow growth theory to survive this
time as a vibrant field. We do not expect the growth theory of the 1990s to suffer the
same fate as the growth theory of the 1960s.




CHAPTER

1

GROWTH

MODELS WITH
EXOGENOQUS
SAVING RATES
(THE SOLOW-SWAN
MODEL)

1.1 THE BASIC STRUCTURE

All the models of growth that we discuss in this book have the same basic general-
equilibrium structure. First, households (or families) own the inputs and assets of
the economy, including ownership rights in firms, and choose the fractions of their
income to consume and save. Each household determines how many children to
have, whether to join the labor force, and how much to work. Second, firms hire
inputs, such as capital and labor, and use these inputs to produce goods that they sell
to households or other firms. Firms have access to a technology—which may evolve
over time—that allows them to transform inputs into output. Third, markets exist on
which firms sell goods to households or other firms and on which households sell the
inputs to firms. The quantities demanded and supplied determine the relative prices
of the inputs and the produced goods.

It is convenient in this initial chapter to use a simplified setup that excludes
markets and firms. We can think of a composite unit—a household/producer like
Robinson Crusoe—who owns the inputs and also manages the technology that trans-
forms inputs into outputs. There are only two inputs, physical capital, K(¢), and labor,
L(¢). The production function takes the form

Y() = F{K(), L(t), 1], (L.1)
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where Y (z) is the flow of output produced at time ¢. The production function depends
on time, ¢, to reflect the effects of technological progress: the same amount of capital
and labor yields a larger quantity of output in 1995 than in 1895 if the technology
employed in 1995 is superior.

We assume a one-sector production technology in which output is a homo-
geneous good that can be consumed, C(z), or invested, I(r), to create new units of
physical capital, K(z). One way to think about the one-sector technology is to draw an
analogy with farm animals, which can be eaten or used as inputs to produce
more farm animals. The literature on economic growth has used more inventive
examples—with such terms as shmoos, putty, or ectoplasm—to reflect the easy
transmutation of capital goods into consumables, and vice versa.

We assume in this chapter that the economy is closed: households cannot buy
foreign goods or assets and cannot sell home goods or assets abroad. (Chapter 3
allows for an open economy.) In a closed economy, output equals income, and the
amount invested equals the amount saved.

Let s(+) be the fraction of output that is saved—that is, the saving rate—so that
1 — s(+) is the fraction of output that is consumed. Rational households choose the
saving rate by comparing the costs and benefits of consuming today rather than to-
morrow; this comparison involves preference parameters and variables that describe
the state of the economy, such as the level of wealth and the interest rate. In Chapter
2, where we model this decision explicitly, we find that s(-) is a complicated func-
tion for which there are typically no closed-form solutions. To facilitate the analysis
in this initial chapter, we assume that s(+) is given exogenously. The simplest func-
tion, the one assumed by Solow (1956) and Swan (1956) in their classic articles, is a
constant, s() = s > 0. We use this constant-saving-rate specification in this chapter
because it brings out a large number of results in a clear way.

We assume that capital depreciates at the constant rate § > 0; that is, at each
point in time, a constant fraction of the capital stock wears out and, hence, can no
longer be used for production. (If we think of goods as farm animals, then a con-
stant fraction of the animals dies at each moment, unrealistically independent of the
average age of the stock.)

The net increase in the stock of physical capital at a point in time equals gross
investment less depreciation:

K=I—8K=s-F(K,L,t)—6K, (1.2)

where a dot over a variable, such as K, denotes differentiation with respect to time,
and 0 = s = 1. Equation (1.2) determines the dynamics of K for a given technology
and labor force. In the first sections of this chapter, we neglect technological progress;
that is, we assume that F(+) is independent of ¢. This assumption will be relaxed
later.

The labor force, L, varies over time because of population growth, changes
in participation rates, and shifts in the amount of time worked by the typical
worker. The growth of population reflects, in turn, the behavipr of fertility, mor-
tality, and migration. Chapter 9 allows for choices between work and leisure and also
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considers the effects from migration, fertility, and mortality on population. In this
chapter, we simplify by assuming that population grows at a constant, exogenous
rate, I/L = n = 0, and that everyone works at a given intensity. If we normalize the
number of people at time 0 to 1 and the work intensity per person also to 1, then the
population and labor force at time ¢ are equal to -

L) = ™. (1.3)

If L(z) is given from Eq. (1.3) and technological progress is absent, then Eq.
(1.2) determines the time paths of capital, K, and output, Y. In the next sections,
we show that this behavior depends crucially on the properties of the production
function, F(+). In fact, apparently minor differences in assumptions about F(*) can
generate radically different theories of economic growth.

1.2 THE NEOCLASSICAL MODEL
OF SOLOW AND SWAN

1.2.1 The Neoclassical Production Function

If we neglect technological progress, then the production function from Eq. (1.1)
takes the form

Y = F(K, L). (1.4)

We say that the production function is neoclassical if the following three properties
are satisfied. First, for all K > 0 and L > 0, F(*) exhibits positive and diminishing
marginal products with respect to each input:

dF d*F
— >0 — <0
oK ’ dK?
(1.5qa)
aF J*F
—_— > — < 0.
JL 0 aL? 0
Second, F(*) exhibits constant returns to scale:
F(AK,AL) = A- F(K, L) forall A > 0. (1.5b)

Third, the marginal product of capital (or labor) approaches infinity as capital (or
labor) goes to 0 and approaches O as capital (or labor) goes to infinity:
lim (Fg) = lim(Fr) =
K—0 L-0 (L.5¢)
lim (Fx) = lim(Fy) = 0

These last properties are called Inada conditions, following Inada (1963).
The condition of constant returns to scale implies that output can be written as

Y=FK L) =L-F(K/L1) = L- f(k),
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where k = K/L is the capital-labor ratio, y = ¥/L is per capita output, and the func-
tion f(k) is defined to equal F(k, 1). This result means that the production function
can be expressed in intensive form as

y = fh). (1.6)

We can use the condition ¥ = L - f(k) and differentiate with respect to K, for fixed
L, and then with respect to L, for fixed K, to verify that the marginal products of the
factor inputs are given by

YK = f'(k),
YIL = [f(k) — k- f'(k)].

The Inada conditions imply lim,_,o[ f'(k)] = e and lim;_, [ f'(k)] = 0.

We can show that the neoclassical properties, Eqs. (1.5a)-(1.5¢), imply that
each input is essential for production, that is, F(0, L) = F(K, 0) = f(0) = 0. The
properties also imply that output goes to infinity as either input goes to infinity. See
the appendix at the end of this chapter for proofs of these propositions.

One simple production function that is often thought to provide a reasonable
description of actual economies is the Cobb-Douglas function,

Y = AK®L!™, (1.8)

(1.7

where A > 0 is the level of the technology, and « is a constant with 0 < & < 1. The
Cobb-Douglas function can be written in intensive form as

y = AK®. (1.9)

Note that f'(k) = Aak®*! >0, f"(k) = —Aa(l—a)k* 2 < 0,lim;« f'(k) = 0,.
and limy—.q f'(k) = . Thus, the Cobb-Douglas form satisfies the properties of a
neoclassical production function.

1.2.2 The Fundamental Dynamic Equation
for the Capital Stock

We now analyze the dynamic behavior of the economy described by the neoclassical
production function. The resulting growth model is called the Solow—Swan model,
after the important contributions of Solow (1956) and Swan (1956).

The change in the capital stock over time is given by Eq. (I1.2). If we divide
both sides of this equation by L, then we get

K/L = s- f(k) — 6k
The right-hand side contains per capita variables only, but the left-hand side does
not. We can write K/L, as a function of k by using the condition
_d(K/L)

k dt

= K/L — nk, ~




