30001 - STATISTICA / STATISTICS
Dipartimento di Scienze delle Decisioni / Department of Decision Sciences
Per la lingua del corso verificare le informazioni sulle classi/
For the instruction language of the course see class group/s below
PIERO VERONESE
Class group/s taught in English
Suggested background knowledge
Mission & Content Summary
MISSION
CONTENT SUMMARY
The course covers the following broad areas:
- Collection, management and summary of data using frequency distributions, graphical representations and indexes.
- Study of the relationship between two variables.
- Statistical inference and sampling variability.
- Theory of point estimation and confidence intervals.
- Hypothesis testing.
- Simple regression model and brief introduction to the multiple regression model.
Intended Learning Outcomes (ILO)
KNOWLEDGE AND UNDERSTANDING
- Recognize different types of data.
- Understand the difference between the tools of descriptive and inferential statistics, and identify the most suitable approach for the problem at hand.
- Recognize simple statistical models.
APPLYING KNOWLEDGE AND UNDERSTANDING
- Properly summarize a dataset.
- Estimate, and test hypotheses on, the unknown parameters of a population on the basis of sample data.
- Build simple statistical models, as regression models, aimed at studying the relationships between variables of interest.
- Use the R software to find the solutions to the aforementioned problems.
Teaching methods
- Face-to-face lectures
- Exercises (exercises, database, software etc.)
- Case studies /Incidents (traditional, online)
DETAILS
Beyond the traditional classroom lectures, the teaching method adopts practical sessions using the statistical software R to solve the problems previously illustrated. More specifically, during these sessions students use their pc’s to solve several problems together with the instructor. A real-world dataset is used throughout all the course, thus providing an exhaustive example (with respect to the course contents) of a practical statistical analysis.
Assessment methods
Continuous assessment | Partial exams | General exam | |
---|---|---|---|
|
x | x |
ATTENDING AND NOT ATTENDING STUDENTS
The assessment method, equal for attending and not-attending students, considers two alternative ways: 1) three partial exams, 2) a general exam.
-
Two Partial Exams (PE1,PE2) are traditional written exams (at most 31/30), while in the third one using the R software (PR), the students are asked to conduct a short data analysis session to answer some questions. This last partial exam is worth at most 4 points that are added to the weighted average grade of the remaining two partial exams. Thus the final mark is given by: [ (PE1+PE2)/2]*(27/31) + PR.
-
A general written exam (at most 31/30). The exam contains explicit questions on the code of the R software, on its working principles and on the interpretation of its output. The R-related questions are worth 4 points. A total grade of 31/30 is equivalent to 30/30 cum laude.
Both forms of the exam aim at assessing:
- The ability to identify the proper methodology to solve a given problem.
- The understanding of the logic underlying a certain procedure.
- The ability to compute appropriate statistical measures with both a pocket calculator and a statistical software.
- The ability of suggesting and implementing with R a statistical model, consistent with both the assumptions stated and the data at hand.
- The ability to understand the output from the software.
Teaching materials
ATTENDING AND NOT ATTENDING STUDENTS
- P. NEWBOLD, W.L. CARLSON, B. THORNE, Statistics for Business and Economics, Pearson/Prentice Hall, 9th global edition.
-
Additional material document on Frequency Distributions, available on the Bboard platform.
- Specific material on the use of the R software are available on the Bboard platform since the beginning of the course.